Articles | Volume 16, issue 1
https://doi.org/10.5194/ms-16-167-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.Research on online monitoring of chatter based on continuous wavelet transform and convolutional neural network–vision transformer (CNN-ViT)
Related subject area
Subject: Machining and Manufacturing Processes | Techniques and Approaches: Optimization
Structural design and experimental research of a micro-feed tool holder based on topology optimization
Machining distortion control of long beam parts based on optimal design of transition structure
Parameter tuning of robust adaptive fuzzy controller for 3D elliptical vibration-assisted cutting
Additive manufacturing of a continuum topology-optimized palletizing manipulator arm
Mech. Sci., 15, 281–292,
2024Mech. Sci., 14, 557–565,
2023Mech. Sci., 12, 433–442,
2021Mech. Sci., 12, 289–304,
2021Cited articles
Dun, Y. C., Zhu, L. D., Yan, B. L., and Wang, S. H.: A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering, Mech. Syst. Signal Pr., 158, https://doi.org/10.1016/j.ymssp.2021.107755, 2021.
Fu, Y., Zhang, Y., Qiao, H., Li, D., Zhou, H., and Leopold, J.: Analysis of Feature Extracting Ability for Cutting State Monitoring Using Deep Belief Networks, Proc. CIRP, 31, 29–34, https://doi.org/10.1016/j.procir.2015.03.016, 2015.
Fu, Y., Zhang, Y., Gao, Y., Gao, H., Mao, T., Zhou, H. M., and Li, D. Q.: Machining vibration states monitoring based on image representation using convolutional neural networks, Eng. Appl. Artif. Intel., 65, 240–251, https://doi.org/10.1016/j.engappai.2017.07.024, 2017.
Huang, P. L., Li, J. F., Sun, J., and Ge, M. J.: Milling force vibration analysis in high-speed-milling titanium alloy using variable pitch angle mill, Int. J. Adv. Manuf. Tech., 58, 153–160, https://doi.org/10.1007/s00170-011-3380-9, 2012.
Ji, Y. J., Wang, X. B., Liu, Z. B., Wang, H. J., Jiao, L., Wang, D. Q., and Leng, S. Y.: Early milling chatter identification by improved empirical mode decomposition and multi-indicator synthetic evaluation, J. Sound Vib., 433, 138–159, https://doi.org/10.1016/j.jsv.2018.07.019, 2018.