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In order to solve the problem of chatter identification in the machining process of thin-walled parts,
this paper proposes an online chatter-monitoring method based on continuous wavelet transform and convolu-
tional neural network—vision transformer (CNN-ViT). Firstly, the continuous wavelet transform is used to convert
the one-dimensional time domain force signal into a two-dimensional time—frequency image. Secondly, by using
the CNN model’s capabilities of adaptive feature learning and hierarchical feature extraction, the local features
in the input image are learned and captured through a series of convolutional layers, pooling layers, and other
structures, which effectively reduces the complexity of feature extraction. Finally, the self-attention mechanism
of the ViT model is used to integrate and model the global feature map of the input feature map, the global
contextual information of the captured image is calculated by calculating the global contextual information of
the captured image, and then the classification result is outputted according to the integrated global feature. In
this paper, by combining the CNN model with the ViT model, the chatter characteristics are comprehensively
captured from multiple angles and levels, which improves the robustness of the model, thereby improving the ac-
curacy and efficiency of online monitoring and providing an innovative and effective technical means for online

monitoring of chatter.

In today’s machining field, thin-walled parts have been
widely used in aerospace, electronic equipment, automo-
biles, and other fields due to the advantages of their small
size, light weight, and compact structure. However, the fly
in the ointment is that thin-walled parts have the properties
of low stiffness and difficult machining, which makes them
prone to chatter during machining. During machining, chat-
ter can cause sudden fluctuations in cutting forces, which can
adversely affect the quality of the machined surface and the
life of the tool. In addition, chatter can also cause a series
of hazards such as part breakage and production accidents.
Therefore, it is of great significance to monitor the chatter
online and to adopt reasonable control methods in the pro-
cess of metal cutting.

Identifying chatter is essential for more accurate chatter
monitoring. Huang et al. (2012) analyzed the milling force

and acceleration signals to identify the frequency character-
istics of chatter. Dun et al. (2021) clustered the signals us-
ing auto-encoded compression based on the hybrid clustering
method and found a chatter identification method that was
less affected by the measurement error. Shi et al. (2020) col-
lected different types of sensor signals through a large num-
ber of experiments and extracted their features, finding an ef-
fective method for the identification of chatter in high-speed
milling. Li et al. (2021) established a model, based on the
real-time variance in the milling force signal in the time do-
main and the wavelet-to-energy ratio of the acceleration sig-
nal decomposed by wavelet packets in the frequency domain,
that can effectively detect the occurrence of chatter. Lee et al.
(2020) used the acoustic signal generated by the microphone
to record the milling status to detect the occurrence of chat-
ter. At present, sensor technology is developing rapidly, and
multi-sensor fusion can be used to improve the accuracy and
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real-time performance of chatter monitoring by integrating
data from different sensors.

However, multi-sensor systems face the challenge of solv-
ing the problem of data synchronization and signal intrinsic
linkage (Quan et al. 2023, 2024). For signal processing, two
key steps are often implemented: noise removal and feature
extraction, in which de-noising is achieved by filtering irrel-
evant signals and improving data quality. Common methods
for feature extraction include time domain, frequency do-
main, and time—frequency domain analysis and adaptive in-
telligent feature extraction.

The time domain analysis method extracts information
from the data sensor that can reflect the amplitude change
during machining and determines the cutting state through
calculation statistics. Ji et al. (2024) used the time domain
CFD/CSD (computational fluid dynamics and computational
structural dynamics) method to calculate the static equilib-
rium state of the model, and, based on this state, the equation
was solved in the time domain, and the chatter phenomenon
was well evaluated and predicted. Ye et al. (2018) obtained
the root mean square value of real-time acceleration by calcu-
lating the root mean square value of acceleration in the time
domain and used the ratio of its standard deviation to the
mean value (coefficient of variation) as the index for identi-
fying chatter, which provides a new method for the identifi-
cation of chatter. Among them, the time domain features are
divided into two categories, namely dimensioned and dimen-
sionless, and their usage over the past 10 years is shown in
the Figs. 1 and 2.

Although time domain analysis has been applied to chat-
ter monitoring, it still has certain limitations. The time do-
main analysis method is susceptible to external interference,
and, due to the dynamic nature of the tool and the workpiece,
nonlinear and unstable signals are generated; it is difficult

to continuously monitor the machining status through time
domain parameters alone, which may lead to incorrect judg-
ment of the machining status. In addition, time domain anal-
ysis can only provide time series information, not frequency
information, and chatter is closely related to frequency and
energy distribution density. Therefore, when changing ma-
chining conditions such as spindle speed and cutting depth,
the time domain analysis method cannot accurately identify
the onset of chatter, which affects the surface quality of the
workpiece.

A key technique in frequency domain analysis is the
Fourier transform, which converts the frequency character-
istics of a signal into analyzable values (Qin et al., 2022).
Among them, the fast Fourier transform (FFT) is the most
popular method; it can quickly reveal the contents of the
spectrum and is widely used in milling to identify the oc-
currence of chatter. Lee et al. (2023) used FFT to analyze the
frequency component of cutting torque to monitor the ma-
chining process parameters to achieve the purpose of real-
time monitoring of the cutting process. Yesilli et al. (2022)
collected the characteristic signals in turning and milling ex-
periments under different configurations and analyzed them
by using methods such as fast Fourier variation (FFT) to
study the classification accuracy of chatter. Lu et al. (2018)
used FFT to analyze the acceleration signal during the turn-
ing process and studied the influence of machining position
and machining direction on chatter.

However, the Fourier transform also has certain limita-
tions. Thaler et al. (2014) compared the ability of feed force
signals, acceleration signals, and sound signals to detect chat-
ter during band saw cutting. It is found that, although the
Fourier transform can reveal the relationship between signal
amplitude and frequency, it cannot provide time information.
In other words, the Fourier transform only tells you which
frequencies exist, but you do not know when they appeared.
In addition, the Fourier transform is only suitable for station-
ary signal analysis (Qin et al., 2019) and may not be ideal for
non-stationary signals (signals that are unstable in the ma-
chining process).

Time—frequency analysis is a very effective way to mon-
itor chatter because it converts a single-dimensional sig-
nal into a planar image of the time—frequency and shows
the change in frequency over time. At present, the com-
mon time—frequency analysis methods mainly include short-
time Fourier transform (STFT), wavelet transform (WT),
wavelet packet transform (WPT), empirical mode decompo-
sition (EMD), Hilbert—-Huang transform (HHT), variational
mode decomposition (VMD), and their corresponding im-
proved methods.

Li et al. (2020a) used short-time Fourier transform (STFT)
to study the force signals during the cutting process and
found that STFT can handle stationary and non-stationary
signals well. Tinati and Mozaffary (2005) processed speech
signals based on short-time Fourier transform (STFT) and
wavelet transform (WT) and found that wavelet transform
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Figure 3. Time—frequency resolution plot. (a) Short-term Fourier transform. (b) Continuous wavelet transform.

enhanced the orthogonality and sparsity of the signal and was
superior to STFT in terms of the decomposition of signals.
However, it is difficult for WT to determine the appropriate
wavelet basis function and decomposition level, which has
a great impact on the analysis results. Zhang et al. (2018)
used the energy entropy decomposed by wavelet packets to
decompose the vibration signal, and the chatter state could
be well identified according to the different energy distribu-
tions. Susanto et al. (2020) used the Hilbert—-Huang trans-
form (HHT) to process the vibration signals obtained from
the turning experiments; they compared the spectra of HHT
and STFT and found that HHT provided high time and high
frequency resolutions for monitoring chatter, concluding that
HHT was superior to STFT in chatter recognition. EMD
has great advantages in dealing with nonlinear and non-
stationary signals, but it also has certain limitations, with
the main disadvantage being modal mixing, which can lead

https://doi.org/10.5194/ms-16-167-2025

to severe aliasing of time—frequency distributions. In order
to solve this problem, the EMD was improved, and an inte-
grated empirical mode decomposition (EEMD) method was
proposed to suppress modal mixing. Ji et al. (2018) used the
EEMD method to decompose the acceleration signal and ex-
tracted two indicators, namely power spectral entropy and
fractal dimension, to detect chatter characteristics. It has been
verified that, although EEMD can effectively suppress the
mixed mode, it is time-consuming and not suitable for real-
time signal processing and has the disadvantage of the num-
ber of modal functions being difficult to determine.

In order to solve the above two problems, scholars have
proposed a variational mode decomposition (VMD) method,
which has more powerful functions in the preprocessing of
chatter detection signals. VMD mainly solves modal-mixing
problems by constructing and solving variational problems,
which can adaptively estimate and update the number of

Mech. Sci., 16, 167-180, 2025
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modal decompositions, the frequency of the signal, and the
band limit, which effectively improves the accuracy of de-
composition. Liu et al. (2021) used variable decomposi-
tion modes (VMDs) and energy entropy for real-time chat-
ter monitoring. Li et al. (2020b) used the VMD method to
decompose the original signal and analyze the signal fre-
quency to identify chatter in combination with the energy
ratio method. The severe shortcoming of the VMD method
lies in the optimal selection of the number of modes K and
the quadratic penalty a. The maximum kurtosis calculation,

Mech. Sci., 16, 167—-180, 2025

0 2 4
X value
output
> > — —
Softmax
convolution

pooling layer  Fully connected
layer layer

which is based on signal reconstruction, is often highly time-
consuming (Wang et al., 2022).

Compared with the traditional technique of manual se-
lection of chatter features, the intelligent extraction method
based on feature adaptation has great advantages (Fu et al.,
2015). This method needs to be combined with deep learn-
ing, convolutional neural networks, and other methods to
conduct in-depth research on the feature expression and ex-
traction algorithms of chatter. If the wavelet transform is
combined with the convolutional neural network, the accu-
racy of chatter monitoring can be significantly improved. Fu
etal. (2017) used wavelet transform to convert the signal into
the input of the deep convolutional neural network (DCNN)
and found that DCNN could obtain higher accuracy by com-
paring the monitoring of the processing status of convolu-
tional neural network (CNN) and support vector machine
(SVM) models. Tran et al. (2020) used wavelet transform to
convert the signal into the input of the deep convolutional
neural network (DCNN), took the image features of the pro-
cessed surface as the feature signal, and used the signal af-
ter continuous wavelet transform as the input of the CNN
model, thereby successfully realizing the accurate monitor-
ing of the chatter state. Sener et al. (2021) proposed a method

https://doi.org/10.5194/ms-16-167-2025
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Chatter recognition flow based on continuous wavelet transform and CNN-ViT.

to monitor chatter using DCNN and experimentally demon-
strated that the average accuracy of the cutting parameters
could reach 99.88 % when the cutting parameters were used
as the inputs of the DCNN model. Tao et al. (2019) proposed
a method for early flutter recognition of robotic drilling pro-
cesses based on synchronous extraction. This method can
identify the time of flutter much earlier. From the above re-
search results, it can be seen that the identification meth-
ods of various chatter features have certain shortcomings.
Although the convolution operation of the CNN model has
advantages in terms of image recognition, the local features
that can be learned and captured are concentrated in the im-
age, and there are still limitations for global features; thus,
this paper will use the self-attention mechanism of the vision
transformer (ViT) model to identify global features.

In this paper, the force signal data collected in the milling
experiment will be preprocessed. Firstly, the continuous
wavelet transform is used to transform the one-dimensional

digital signal into a two-dimensional time—frequency image,
and then the obtained image is input into the convolutional
neural network for feature extraction. Subsequently, the ex-
tracted feature images were input into the visual model (ViT)
of the transformer structure for recognition. The image is
segmented into a series of patches through ViT, and each im-
age block is converted into a vector representation (patch em-
beddings). After linear projection and position encoding, the
vector is input into the transformer encoder again; one vec-
tor representation input in it is self-attention calculated with
other vectors, and the output of the last transformer encoder
is averaged and pooled by the output layer of the ViT model
through layers of screening, and it is input into a linear layer
for classification prediction. Finally, the classification is nor-
malized by the softmax function to obtain the probability dis-
tribution of the classification so as to achieve more accurate
classification of the image.
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Processing chatter state.

Continuous wavelet transform (CWT) is a method for scal-
ing analysis of a signal which can convert a one-dimensional
signal in the time domain into a two-dimensional signal in
the time—frequency domain and has the characteristics of
scale tunability, time—frequency locality, continuity, compu-
tational complexity, and reversibility. In addition, CWT ef-
fectively avoids the resolution issues inherent in STFT when
dealing with non-stationary signals. CWT can provide a vari-
able resolution in the time—frequency plane with a variable
time window, as shown in Fig. 3.

Continuous wavelet transforms include the wavelet fami-
lies such as Daubechies, Symlets, Coiflets, Haar, Morlet, and
Como (complex Morlet). Morlet wavelets have the character-
istics of good locality in the time domain and smooth moneti-

zation in the frequency domain, making these wavelets more
suitable for time domain analysis of wide-spectrum signals.
The CMOR (complex Morlet) wavelet adds a modulation
factor to the basis of the Morlet wavelet, which has good
local characteristics in both the time and frequency domains
and can better analyze the non-stationary signal. Its expres-
sion is as follows:

) (2 2 .
W(r) =7 1elM0le <2)<1—e_b2@’bw°), 1)

where wy is the center frequency of the CMOR wavelet, and
b is the modulation factor, which determines the shape of
the complex part. Furthermore, ¢ represents the time vari-
able. CMOR wavelets have good local properties in both the
time and frequency domains, which can better describe non-
stationary signals and are often used for signal compression,
feature extraction, etc.
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In this paper, the CMOR wavelet is used to process the
non-stationary and nonlinear cutting force signal, as shown
in Fig. 4, and the scale parameters can be converted by the
relationship between frequency and time during the transfor-
mation process.

2.2 Convolutional neural networks

A convolutional neural network (CNN) has an excellent abil-
ity to recognize images and process features, and it assigns
different weights and biases to each feature of the input data
to achieve efficient recognition and classification of key in-
formation. A typical CNN architecture is shown in Fig. 5.

The convolutional layer is a key part of feature extraction.
The main step is convolution, which describes the process
by which one function slides on top of another and calcu-
lates the area of the overlapping part of the two. In CNNSs,
convolution operations are used to capture local patterns and
structures in input data. In this way, the convolutional layer is
able to extract useful features from the input data, and, in the
extraction stage, the convolution kernel is used to perform
convolution operations based on the output image produced
by the previous layer or the input image of the current layer
to form a feature map.

https://doi.org/10.5194/ms-16-167-2025

The number of nodes in the CNN input layer is limited
by the image resolution or pixel value. Given this limita-
tion, grayscale images can be thought of as matrices with
single channels and pixel dimensions, while color images
can be seen as matrices with three channels (RGB), each
with a specific pixel dimension. For example, Fig. 6 shows
a5 x5 x 1 grayscale image matrix using a 3 x 3 x 1 convo-
lutional kernel. In a convolutional layer, the sliding window
(convolutional kernel) adjusts its number based on the input
image to achieve a wide coverage of the image data, ensuring
that different features of the image can be captured, resulting
in a diverse feature map.

After a certain amount and degree of convolutional-kernel
sliding processing, a fixed-size input image can generate a
feature map with a specific dimension. The matrix dimen-
sion of the output feature map can be calculated according

to Eq. (2):
() () o

where Mw and My represent the width and height of the
input image, Dy represents the size of the sliding window
(convolution kernel), S is the step size of the sliding-window
movement, P is the number used for image filling, and

[w + 1] and [w + 1] represent the integer

Mech. Sci., 16, 167-180, 2025



Convolutional neural network architecture

The name of the structure

Parameter configuration

The size of the layer image

Image input - 64 x 64 x 3
Convolutional layer 1 3 x3,stride=1, padding=1 64 x 64 x 32
Activate function layer 1 ReLu 64 x 64 x 32
Maximum-pooling layer 1 2 x 2 32x32x32
Convolutional layer 2 3 x3,stride=1, padding=1 32 x 32 x 64
Activate function layer 2 ReLu 32 x32 x 64
Maximum-pooling layer 2 2 x 2 16 x 16 x 64
Convolutional layer 3 3 x 3, stride=1, padding=1 16 x 16 x 128
Activate function layer 3 ReLu 16 x 16 x 128
Maximum-pooling layer 3 2 x 2 8 x 8 x 128
ViT parameter configuration.
The name of the model ViT base
Number of encoder layers 1
The length of the vector after passing through the embedding layer 2048
MLP layer size 128
The number of self-attention heads for long heads 4

function; together, these parameters determine the size of the
output feature map after the convolution operation.

The pooling layer in CNNs is located between the con-
volutional layers. The feature map can be downsampled,
and the values are mainly taken from the covered feature
map area through filters, with the main parameters including
the size and step length of the filter. The pooling layer has
two value methods: maximum pooling and average pooling.
Maximum pooling highlights the most significant features by
finding the largest pixel value in the selected area of the fea-
ture map, which helps to capture more significant informa-
tion. For inputs with multiple channels, maximum pooling
is performed independently for each channel. Average pool-
ing is used to extract overall features by averaging the pixel
values within a region, which also needs to be done on a per-
channel basis. Although average pooling helps smooth the
data, it can also cause image distortion. Therefore, in prac-
tice, maximum pooling is more widely used.

The role of the fully connected layer is to flatten and in-
tegrate the information after feature extraction into a one-
dimensional vector so that it can be mapped to the label space
required for the classification task. However, due to the exis-
tence of a large number of floating-point operations, its com-
putational efficiency is low. As a result, more and more stud-
ies tend to replace fully connected layers with less compu-
tationally intensive layers, such as convolutional layers and
global-average pooling layers (GAP).

The function of the classifier is to analyze the image fea-
tures processed by the multi-layer network and to assign the
input image data to the corresponding categories to achieve
the final classification of the image. In image classification,

commonly used classifiers include support vector machines
(SVMs) and the softmax function.

SVM conducts classification by maximizing the informa-
tion distance in the mapping space, which is mainly suit-
able for linearly separable binary classification problems.
In CNNs, SVM can classify feature data by minimizing
classification errors or maximizing geometric spacing to
achieve effective image recognition. The softmax function
was originally developed based on a logistic regression clas-
sifier to perform multi-class classification by processing log-
likelihood functions. It limits the output to the [0, 1] interval
so that the result can be directly interpreted as the probability.

ViT is a deep learning model whose main idea is to divide
an image into patches and convert those blocks into vector
sequences. These vectors are then fed into a transformer, and
features are extracted using a self-attention mechanism and
a multi-layer perceptron. This model reduces the explicit as-
sumptions about the local spatial structure in the traditional
convolutional neural network and establishes the interaction
and integration of spatial information through the global self-
attention mechanism so as to overcome the problems of spa-
tial invariance, parallel computing, and high requirements for
computing resources of convolutional neural networks.

ViT is a visual domain model of transformer architecture
that can be used for image classification tasks. The model has
four important parts, including the patch-embedding layer in
which the image is divided into several small pieces, the pos-



Tool parameters and material properties.

Cutting tool Workpiece

Material Tungsten steel alloy  Material TC4
Tool diameter D (mm) 10 Tensile strength (MPa) 990
Number of teeth N 4 Yield strength (MPa) 830
Helix angle 8 (°) 45 Elastic modulus (MPa) 114
Overhang (mm) 65 Hardness (HB) 312
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Model training structure.

encoding layer for position encoding, the transformer en-
coder layer, and the MLP (multilayer perceptron) head layer.
The patch-embedding layer is used to divide the input im-
age into multiple small pieces and convert the information
from each patch into a vector representation. The position-
encoded pos-encoding layer is used to add positional infor-
mation to the vector of each patch, ensuring that the trans-
former can capture the positional information of each patch
in the sequence. The encoder layer of the transformer is used
to extract and encode the patch vector sequence with position
coding to obtain a set of high-dimensional abstract feature
representations. Finally, the high-dimensional feature coding
is mapped to the target category space through the MLP head
layer to generate prediction results. This is shown in Fig. 7.

First, chatter recognition should obtain the force signal of
the processing process and then analyze it in the frequency
domain, use the continuous wavelet transform to transform
the image, use the converted image as the input of the con-
volution operation, and extract the relevant features through
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convolution and pooling. Secondly, the ViT model and en-
coder are used to process and calculate the obtained features,
and so the output results are obtained. Finally, the data are
imported into the trained CNN-ViT monitoring model, and
the faults can be directly classified.

The chatter recognition process for the entire CNN-ViT is
shown in Fig. 8.

In order to identify chatter from the milling force signal, a
fast Fourier transform (FFT) is first performed to convert the
signal into the frequency domain, separating the individual
frequency components. Next, in order to determine whether
there is chatter phenomenon in each section of the signal and
to label the signal as chatter or stability accordingly, the sig-
nal needs to be analyzed by means of the following steps:
select any frequency in the FFT diagram and compare it with
the natural frequency of the tool and the workpiece, the cut-
ting frequency of the cutter tooth, or the spindle rotation fre-
quency and its integer multiples; if the two match, the pos-
sibility of being used as the chatter frequency is excluded; if
the two do not match and the amplitude of the selected fre-
quency exceeds the amplitude of the main frequency and its
multiplier or exhibits a high amplitude near the natural fre-



176

Figure 14. Experimental platform.

Table 4. Cutting parameters for milling experiments.

C. Liu et al.: Research on online monitoring of chatter based on continuous wavelet transform

Cutter: GMMED 10

Dynamometer
Kistler-92578

No. ‘ No. No. No.
1 0.2 0.2 500 200 | 31 0.2 1.6 3750 200 | 61 0.2 2.3 3343 200 | 91 1.1 02 750 530
2 0.2 0.2 1312 200 | 32 02 1.6 4562 200 | 62 0.2 2.3 3750 200 | 92 1.3 02 750 530
3 0.2 0.2 2125 200 | 33 02 1.6 5375 200 | 63 0.2 2.3 4156 200 | 93 1.5 02 750 530
4 0.2 0.2 2937 200 | 34 02 125 1312 200 | 64 0.2 2.65 500 200 | 94 1.7 02 750 530
5 0.2 0.2 3750 200 | 35 02 125 2125 200 | 65 0.2 265 906 200 | 95 1.9 02 750 530
6 0.2 0.2 4562 200 | 36 0.2 125 2937 200 | 66 02 2.65 1312 200 | 96 20 0.1 750 500
7 0.2 0.2 5375 200 | 37 02 125 3750 200 | 67 02 265 1718 200 | 97 21 02 750 530
8 0.2 0.2 6187 200 | 38 0.2 125 4562 200 | 68 0.2 2.65 2125 200 | 98 23 02 750 530
9 0.2 0.2 7000 200 | 39 02 125 5375 200 |69 02 265 2531 240 | 99 25 02 750 530
10 02 0.9 500 200 | 40 02 195 500 200 | 70 0.2 2.65 2937 200 | 100 27 0.2 750 530
11 0.2 0.9 1312 200 | 41 02 195 906 200 | 71 0.2 2.65 3343 200 | 101 29 0.2 750 530
12 02 0.9 2125 200 | 42 02 195 1312 200 | 72 02 265 3750 200 | 102 3.1 0.2 750 500
13 02 0.9 2937 200 | 43 02 195 1718 200 | 73 0.2 2.65 4156 200 | 103 3.1 0.2 750 530
14 0.2 09 3750 200 | 44 02 195 2125 200 | 74 02 3.0 500 200 | 104 33 02 750 90
15 02 0.9 5375 200 | 45 02 195 2531 200 |75 0.2 3.0 906 200 | 105 33 02 750 130
16 02 0.9 6187 200 | 46 02 195 2937 200 | 76 0.2 3.0 1312 200 | 106 33 02 750 170
17 0.2 0.9 7000 200 | 47 02 195 3343 200 | 77 0.2 3.0 1718 200 | 107 33 02 750 210
18 0.2 0.55 500 200 [ 48 02 195 3750 200 | 78 0.2 3.0 2125 200 | 108 33 02 750 250
19 02 055 1312 200 | 49 02 195 4156 200 | 79 0.2 3.0 2531 200 | 109 33 02 750 290
20 0.2 055 2125 200 | 50 02 195 4562 200 | 80 0.2 3.0 2937 200 | 110 33 0.2 750 330
21 02 055 3750 200 | 51 0.2 2.3 500 200 | 81 0.2 3.0 3343 200 | 111 33 02 750 370
22 02 055 4562 200 | 52 0.2 2.3 500 240 | 82 0.2 3.0 3750 200 | 112 33 02 750 410
23 02 055 5375 200 | 53 0.2 2.3 906 200 | 83 0.2 3.0 4156 200 | 113 33 02 750 450
24 02 055 5375 300 | 54 0.2 2.3 906 240 | 84 0.2 3.0 4562 200 | 114 33 02 750 490
25 02 055 6187 200 |55 0.2 23 1312 200 | 85 0.3 0.2 750 530 | 115 33 02 750 530
26 02 055 7000 200 | 56 0.2 23 1312 240 | 86 0.5 0.1 750 400 | 116 33 02 750 570
27 0.2 1.6 500 200 | 57 0.2 23 1718 200 | 87 0.5 0.2 750 530 | 117 33 02 750 610
28 0.2 1.6 1312 200 | 58 0.2 2.3 2125 200 | 8 0.7 0.2 750 530 | 118 33 02 750 650
29 02 1.6 2125 200 | 59 0.2 2.3 2531 200 | 89 09 0.2 750 530 | 119 33 02 750 710
30 0.2 1.6 2937 200 | 60 0.2 23 2937 200 | 90 1.0 0.1 750 400 | 120 3.1 0.1 750 500

quency then the frequency can be considered to be a chatter
frequency. The expression of the main frequency calculation
formula is given by Eq. (3):

n n
=—7Z4+—Z =0,1,2,...
W= + 5 X k(k=0,1,2,...), 3)

Mech. Sci., 16, 167—-180, 2025

where w represents the main frequency, n represents the spin-
dle speed, and Z represents the number of teeth of the tool.
By continuously checking the other frequencies in the fast
Fourier transform diagram and repeating the above process, it
is possible to determine whether the milling signal contains

https://doi.org/10.5194/ms-16-167-2025



Software and hardware experimental platforms.

Tool Version and parameters
Python Python3.8

Deep learning framework  Pytorch1.11.0

Operating system Windows10

Memory 16.00G

Processor i5-8300 H

CPU frequency 2.3GHz

GPU chips NVIDIA GeForce GTX1050Ti

Modal parameters of tools.

Cutting tool

Modal parameter X direction Y direction
First-order natural frequency (Hz) 1190 1498
First-order stiffness Nm™1) 175 x 107 2.14 x 107
First-order damping ratio 446 x 1072 372 x 1072
Second-order natural frequency (Hz) 1856 2299
second-order stiffness (Nm™!) 5.66 x 107 9.19 x 107
Second-order damping ratio 3.97x 1072 293 x 1072

chatter. If the chatter frequency is found in the FFT plot, it
indicates that chatter has occurred during processing; if none
of the frequencies correspond to chatter, it can be judged that
the process is stable and that no chatter occurs. A schematic
diagram of this process is shown in Figs. 9 and 10.

Through the frequency domain analysis of the measured
force signal with fast Fourier transform, the measured force
signal is identified as a stable processing state and chatter
processing state, and the force signal is labeled.

The cutting force signal in the y direction is used for chat-
ter detection. Using a window size of 1028 samples to slide
along each signal, it is designed to generate huge training
and test datasets. CWT using the CMOR function has a scale
of 1028, which provides a good visualization of the signal
characteristics and is capable of presenting high temporal and
frequency resolutions at the same time; this is then applied to
each signal to convert the force signal into a time—frequency
graph image. This is shown in Figs. 11 and 12.

By using the continuous wavelet transform, the one-
dimensional time series signal is converted into a two-
dimensional time—frequency graph, and a time—frequency
graph of 64 x 64 is generated for each group of sample
data. This method not only effectively maintains the two-
dimensional characteristics of one-dimensional force signal
data but also reduces the need for preprocessing parameters

Modal parameters of workpieces.

Workpiece

Modal parameter Y direction
First-order natural frequency (Hz) 537
First-order stiffness (Nm™ 1 ) 2.21e6
First-order damping ratio 0.0381

and reduces the dependence on technical personnel. In this
process, the image data are downsampled by the CNN con-
volutional neural network, and the parameter settings of the
convolutional network are deeply optimized, as detailed in
Table 1. In addition, in order to solve the problem of dataset
division, this paper divides the dataset into the training set
and the test set according to the ratio of 6 : 4 and divides the
test set and the verification set according to the ratio of 1: 1
in the training set to improve the accuracy of the training
results as much as possible. The downsampling step of CNN
can effectively filter out the noise and interference in the orig-
inal one-dimensional force signal and extract richer feature
information from the two-dimensional time—frequency map.

The time—frequency images processed by the CNN model are
identified by using the ViT model. Table 2 lists the parame-
ters of the ViT model.

During the training process, a total of 400 rounds of train-
ing were carried out, and the stochastic gradient descent
method was used for the gradient update. The learning rate
is set to 0.001, and, after training, the effect is as shown in
Fig. 13.

As can be seen from Table 13, the accuracy of the model
reached 99.3 % after multiple rounds of training. This shows
that the model has a good resolution in terms of chatter faults.

In this experiment, milling experiments under different dry-
cutting conditions were carried out on the VMCS850 ver-
tical machining center. The machining center adopts the
Siemens operating system. The experimental setup is shown
in Fig. 14.

The cutter is GM-4E-D10, which is a four-tooth plane end
mill. The experimental workpiece is titanium alloy TC4, with
dimensions of 100 mm x 100 mm x 50 mm. The detailed ge-
ometric parameters are shown in Table 3. During the milling
process, the milling force signal is obtained by means of the
Kistler 9257B force sensor. The entire machining process is
in a dry milling state. The force transducer is fixed on the
table, and the workpiece is clamped with a vise, as shown
in the figure. The sampling frequency is set to 7000 Hz. By
changing the machining parameters, 120 milling tests were



Comparison of preprocessing effects of different wavelet basis functions.

The name of the wavelet basis function

Morlet Mexican Hat

Daubechies Symlets CMOR

Accuracy 0.912

0.922 0.935 0.966 0.992

Comparison of the recognition effects of different methods.

The name of the model CNN

ViT LSTM

SVM  CNN-ViT

Accuracy 0.943

0.934

0912  0.865 0.993

carried out. The processing parameters are shown in Table 4,
and the software and hardware platform data for experimen-
tal analysis are shown in Table 5. The modal parameters of
the tool and workpiece are shown in Tables 6 and 7.

In order to improve the accuracy of the model, different
wavelet basis functions are used to compare the effects of
data preprocessing. The results are shown in Table 8. It can
be seen that, in flutter detection, the CMOR wavelet can pro-
vide high time and frequency resolutions while processing
small changes in the signal. Therefore, it often performs best
in terms of detection accuracy and reliability.

In addition, in order to prove the effectiveness of the pro-
posed method of appeal, a comparative experiment is car-
ried out. Four models were selected for performance com-
parison: CNN, ViT, long short-term memory (LSTM), and
SVM. The inputs to all models are time—frequency plots gen-
erated by continuous wavelet transforms. The CNN model
performs feature extraction based on the structure described
in Table 1 and, additionally, adds two maximum-pooling lay-
ers and four fully connected layers. The parameter settings
of the ViT model follow the configuration in Table 5. The
LSTM model consists of two layers of LSTM, each with 128
neurons. The results of the comparative experiments are doc-
umented in Table 9.

In order to verify the accuracy of the combination of the
CNN and ViT models compared with other models, the fol-
lowing Table 10 is combined, and it is found that the combi-
nation of the CNN and ViT models has the highest accuracy.

Table 10 shows the comparison of the proposed method
with other deep learning models. The results show that the
accuracy of this method is the highest, reaching 99.3 %,
which is 4.8 %, 5 %, 5.9 %, and 8.1 % higher than that of
the LSTM-ViT model (94.5 %), the GNN-ViT ViT(Graph
Neural Network-Vision Transformer) model (94.3 %), the
ViT model (95.4 %), and the RNN-ViT (Recurrent Neural
Network-Vision Transformer) model (91.2 %), respectively.
This confirms the significant advantages of this method in
terms of accuracy. The LSTM model is advantageous for
time series recognition, but this paper studies image recog-
nition, and so the final effect is not as good as with the CNN-
ViT model.

The results show that the convolution operation of the
CNN model is advantageous for image recognition, and the
ViT model can also recognize images, although it does not
have convolution operation and belongs to the pure attention
mechanism. Although the above methods can achieve good
recognition results, when using the CNN-ViT hybrid network
model for image recognition, the accuracy of recognition is
higher than that of the single network model.

In order to verify the generalization ability of the model,
the model is applied to the flutter monitoring of different ma-
terials. Taking aluminum alloy as an example, the processing
conditions are similar to those of titanium alloy. The accu-
racy of the model obtained is shown in the following Table
11, and the accuracy of other models in aluminum alloy pro-
cessing is compared.

Table 11 shows the results of the comparison between the
method proposed in this study and other deep learning mod-
els in relation to aluminum alloys. It is shown, that compared
with other models, the accuracy of this method is the highest,
reaching 98.3 %, which confirms that this method also has
significant advantages in terms of the accuracy of other pro-
cessing materials, proving that the model is still very accurate
under different material and processing parameters and that
the model has good generalization performance.

Although the model proposed in this study is superior to
other models in terms of accuracy, it does come with large
computational requirements. However, in real-world deploy-
ments and usage, this computational burden has a relatively
small impact on overall performance and can often be ig-
nored.

In order to solve the problems of chatter identification in
the process of thin-walled parts, an online chatter-monitoring
method based on continuous wavelet transform and CNN-
VIiT is proposed. Firstly, the continuous wavelet transform
is used to convert the one-dimensional time domain force
signal into a two-dimensional time—frequency image, and
the time—frequency characteristics of the signal are captured.
Secondly, the CNN model is used to sample and process the
time—frequency images to provide the salient features related



Comparison of the recognition effects of different methods.

The name of the model

GNN-ViT ResNet-ViT RNN-ViT LSTM-ViT CNN-ViT

Accuracy 0.943 0.934

0.912 0.945 0.993

Comparison of the recognition effects of different methods.

The name of the model

CNN ViT LSTM

SVM  CNN-ViT

Accuracy 091

0.92 0.89 0.856 0.983

to stable chatter. Due to the structure of the convolutional
layer, the CNN model can effectively capture the local fea-
tures and texture information in the image, which is con-
ducive to identifying the approximate range and morphology
of chatter. Finally, the obtained features are input into the ViT
model, and the global feature integration and modeling are
carried out to accurately identify different processing states.
Through its self-attention mechanism, the ViT model is able
to process the global information in the image and capture
the long-distance dependencies between different image re-
gions.

Through the combination of the two models, the global
and local features are used for chatter monitoring at the same
time, and the complementary performance significantly en-
hances the performance of the model in chatter monitoring.
At the same time, the experimental results also show that the
chatter recognition model proposed in this paper achieves a
high accuracy rate of 99.3 %, which proves the effectiveness
of the method in chatter recognition and its potential in prac-
tical industrial applications. With this method, chatter during
processing can be effectively monitored and prevented, and
production efficiency and product quality can be improved.

The raw and processed data required
to reproduce these findings cannot be shared at this time as the data
also form part of an ongoing study.
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