Journal cover Journal topic
Mechanical Sciences An open-access journal for theoretical and applied mechanics
Journal topic

Journal metrics

IF value: 1.086
IF 5-year value: 1.369
IF 5-year
CiteScore value: 2.2
SNIP value: 0.87
IPP value: 1.38
SJR value: 0.306
Scimago H <br class='widget-line-break'>index value: 23
Scimago H
h5-index value: 15
Supported by
Logo Library of Delft University of Technology Logo NWO
Affiliated to
Logo iftomm
Articles | Volume 4, issue 1
Mech. Sci., 4, 199–219, 2013

Special issue: Recent advances and current trends in numerical multibody...

Mech. Sci., 4, 199–219, 2013

Review article 02 May 2013

Review article | 02 May 2013

ROBOTRAN: a powerful symbolic gnerator of multibody models

N. Docquier1,*, A. Poncelet1, and P. Fisette1 N. Docquier et al.
  • 1Université catholique de Louvain, Center for Research in Mechatronics, B 1348 Louvain-la-Neuve, Belgium
  • *Postdoctoral Researcher of the Fonds de la Recherche Scientifique – FNRS

Abstract. The computational efficiency of symbolic generation was at the root of the emergence of symbolic multibody programs in the eighties. At present, it remains an attractive feature of it since the exponential increase in modern computer performances naturally provides the opportunity to investigate larger systems and more sophisticated models for which real-time computation is a real asset.

Nowadays, in the context of mechatronic multibody systems, another interesting feature of the symbolic approach appears when dealing with enlarged multibody models, i.e. including electrical actuators, hydraulic devices, pneumatic suspensions, etc. and requiring specific analyses like control and optimization. Indeed, since symbolic multibody programs clearly distinguish the modeling phase from the analysis process, extracting the symbolic model, as well as some precious ingredients like analytical sensitivities, in order to export it towards any suitable environment (for control or optimization purposes) is quite straightforward. Symbolic multibody model portability is thus very attractive for the analysis of mechatronic applications.

In this context, the main features and recent developments of the ROBOTRAN software developed at the Université catholique de Louvain (Belgium) are reviewed in this paper and illustrated via three multibody applications which highlight its capabilities for dealing with very large systems and coping with multiphysics issues.

Publications Copernicus