Recent advances and current trends in numerical multibody dynamics
Recent advances and current trends in numerical multibody dynamics
Editor(s): A. Müller, O. Brüls, B. He, A. Jain, and A. Tasora
The development of numerical multibody system (MBS) dynamics is characterized by a steady increase of efficiency of simulationcodes and of the complexitycaptured by the MBS models. This allows for interactive real-time simulations and has established high fidelity simulations as integral partof analysis, design and control. In such a comfortable situation the fruits are hanging high, and current challenges in numerical MBS dynamics are to reach a realistic level of detail and to achieve seamless integration. Advanced numerical algorithms together with tailored mathematical models and modeling paradigms are the enabling factors to reach this goal. The unprecedented efficient large scale simulation capabilities also allow for a deeper understanding of the intrinsic dynamics of complex technical and biological systems facilitating reduced order modeling and the design of embedded model-based control systems.

This special issue of Mechanical Sciences is intended to provide a panoramic overview of recent advances and current trends in MBS dynamics. Contributions are solicited in all areas relevant to this topic including
  • MBS algorithms and modeling approaches
  • Flexible MBS, structure dynamics
  • Contact mechanics
  • Multi-disciplinary simulation
  • Low-Order Algorithms, Real-Time Methods
  • Visualization, Virtual Reality, Post Processing
  • Parallel computing, GPU and stream computing
  • Model reduction methods
  • Integration schemes for MBS, constraint reinforcement strategies
  • Optimization, optimal control
  • Nonlinear control, embedded Models
  • Applications: robotics, manipulation and machine tool, automotive engineering, aerospace systems, legged and humanoid systems, locomotion, biomechanics

Download citations of all papers

01 Aug 2013
A novel director-based Bernoulli–Euler beam finite element in absolute nodal coordinate formulation free of geometric singularities
P. G. Gruber, K. Nachbagauer, Y. Vetyukov, and J. Gerstmayr
Mech. Sci., 4, 279–289, https://doi.org/10.5194/ms-4-279-2013,https://doi.org/10.5194/ms-4-279-2013, 2013
01 Jul 2013
Gantry crane control of a double-pendulum, distributed-mass load, using mechanical wave concepts
W. O'Connor and H. Habibi
Mech. Sci., 4, 251–261, https://doi.org/10.5194/ms-4-251-2013,https://doi.org/10.5194/ms-4-251-2013, 2013
06 Jun 2013
A graph-theoretic approach to sparse matrix inversion for implicit differential algebraic equations
H. Yoshimura
Mech. Sci., 4, 243–250, https://doi.org/10.5194/ms-4-243-2013,https://doi.org/10.5194/ms-4-243-2013, 2013
28 May 2013
Internal redundancy: an approach to improve the dynamic parameters around sharp corners
S. S. Parsa, J. A. Carretero, and R. Boudreau
Mech. Sci., 4, 233–242, https://doi.org/10.5194/ms-4-233-2013,https://doi.org/10.5194/ms-4-233-2013, 2013
17 May 2013
A recursive multibody formalism for systems with small mass and inertia terms
M. Arnold
Mech. Sci., 4, 221–231, https://doi.org/10.5194/ms-4-221-2013,https://doi.org/10.5194/ms-4-221-2013, 2013
02 May 2013
ROBOTRAN: a powerful symbolic gnerator of multibody models
N. Docquier, A. Poncelet, and P. Fisette
Mech. Sci., 4, 199–219, https://doi.org/10.5194/ms-4-199-2013,https://doi.org/10.5194/ms-4-199-2013, 2013
24 Apr 2013
Dynamic modelling of a 3-CPU parallel robot via screw theory
L. Carbonari, M. Battistelli, M. Callegari, and M.-C. Palpacelli
Mech. Sci., 4, 185–197, https://doi.org/10.5194/ms-4-185-2013,https://doi.org/10.5194/ms-4-185-2013, 2013
16 Apr 2013
Prediction of railway induced ground vibration through multibody and finite element modelling
G. Kouroussis and O. Verlinden
Mech. Sci., 4, 167–183, https://doi.org/10.5194/ms-4-167-2013,https://doi.org/10.5194/ms-4-167-2013, 2013
15 Apr 2013
Multiple-task motion planning of non-holonomic systems with dynamics
A. Ratajczak and K. Tchoń
Mech. Sci., 4, 153–166, https://doi.org/10.5194/ms-4-153-2013,https://doi.org/10.5194/ms-4-153-2013, 2013
26 Feb 2013
A new variable stiffness suspension system: passive case
O. M. Anubi, D. R. Patel, and C. D. Crane III
Mech. Sci., 4, 139–151, https://doi.org/10.5194/ms-4-139-2013,https://doi.org/10.5194/ms-4-139-2013, 2013
20 Feb 2013
Earthquake dynamic response of large flexible multibody systems
E. V. Zahariev
Mech. Sci., 4, 131–137, https://doi.org/10.5194/ms-4-131-2013,https://doi.org/10.5194/ms-4-131-2013, 2013
19 Feb 2013
Analysis of servo-constraint problems for underactuated multibody systems
R. Seifried and W. Blajer
Mech. Sci., 4, 113–129, https://doi.org/10.5194/ms-4-113-2013,https://doi.org/10.5194/ms-4-113-2013, 2013
18 Feb 2013
Reaction Null Space of a multibody system with applications in robotics
D. N. Nenchev
Mech. Sci., 4, 97–112, https://doi.org/10.5194/ms-4-97-2013,https://doi.org/10.5194/ms-4-97-2013, 2013
14 Feb 2013
Geometrically exact Cosserat rods with Kelvin–Voigt type viscous damping
J. Linn, H. Lang, and A. Tuganov
Mech. Sci., 4, 79–96, https://doi.org/10.5194/ms-4-79-2013,https://doi.org/10.5194/ms-4-79-2013, 2013
13 Feb 2013
Flexible joints in structural and multibody dynamics
O. A. Bauchau and S. Han
Mech. Sci., 4, 65–77, https://doi.org/10.5194/ms-4-65-2013,https://doi.org/10.5194/ms-4-65-2013, 2013
12 Feb 2013
Algebraic analysis of kinematics of multibody systems
S. Piipponen and J. Tuomela
Mech. Sci., 4, 33–47, https://doi.org/10.5194/ms-4-33-2013,https://doi.org/10.5194/ms-4-33-2013, 2013
12 Feb 2013
CHRONO: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics
H. Mazhar, T. Heyn, A. Pazouki, D. Melanz, A. Seidl, A. Bartholomew, A. Tasora, and D. Negrut
Mech. Sci., 4, 49–64, https://doi.org/10.5194/ms-4-49-2013,https://doi.org/10.5194/ms-4-49-2013, 2013
11 Feb 2013
Sub-modeling approach for obtaining structural stress histories during dynamic analysis
T. T. Rantalainen, A. M. Mikkola, and T. J. Björk
Mech. Sci., 4, 21–31, https://doi.org/10.5194/ms-4-21-2013,https://doi.org/10.5194/ms-4-21-2013, 2013
31 Jan 2013
Evolution of the DeNOC-based dynamic modelling for multibody systems
S. K. Saha, S. V. Shah, and P. V. Nandihal
Mech. Sci., 4, 1–20, https://doi.org/10.5194/ms-4-1-2013,https://doi.org/10.5194/ms-4-1-2013, 2013
CC BY 4.0