Articles | Volume 4, issue 1
https://doi.org/10.5194/ms-4-79-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/ms-4-79-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Geometrically exact Cosserat rods with Kelvin–Voigt type viscous damping
J. Linn
Fraunhofer Institute for Industrial Mathematics, Fraunhofer Platz 1, 67633 Kaiserslautern, Germany
H. Lang
Chair of Applied Dynamics, Univ. Erlangen-Nürnberg, Konrad-Zuse-Str. 3–5, 91052 Erlangen, Germany
A. Tuganov
Fraunhofer Institute for Industrial Mathematics, Fraunhofer Platz 1, 67633 Kaiserslautern, Germany
Viewed
Total article views: 3,673 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,644 | 1,842 | 187 | 3,673 | 157 | 109 |
- HTML: 1,644
- PDF: 1,842
- XML: 187
- Total: 3,673
- BibTeX: 157
- EndNote: 109
Cited
40 citations as recorded by crossref.
- Modeling viscoelastic behavior in flexible multibody systems O. Bauchau & N. Nemani 10.1007/s11044-020-09767-5
- Generalized Maxwell viscoelasticity for geometrically exact strings: Nonlinear port-Hamiltonian formulation and structure-preserving discretization P. Kinon et al. 10.1016/j.ifacol.2024.08.264
- Mutual interaction of a collapsing bubble and a nearby viscoelastic solid J. Moon et al. 10.1103/PhysRevFluids.9.043603
- Isogeometric collocation for nonlinear dynamic analysis of Cosserat rods with frictional contact O. Weeger et al. 10.1007/s11071-017-3940-0
- Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff–Love Theory Versus Simo–Reissner Theory C. Meier et al. 10.1007/s11831-017-9232-5
- Discrete adjoint method for variational integration of constrained ODEs and its application to optimal control of geometrically exact beam dynamics M. Schubert et al. 10.1007/s11044-023-09934-4
- Piecewise Linear Strain Cosserat Model for Soft Slender Manipulator H. Li et al. 10.1109/TRO.2023.3236942
- Viscoelastic ribbons I. Hewitt & N. Balmforth 10.1017/jfm.2020.870
- Comparative study of two geometrically non-linear beam models with different strain measures A. Panteli & K. Spiliopoulos 10.1016/j.ijnonlinmec.2020.103480
- A non-linear Cosserat rod model for drill-string dynamics in arbitrary borehole geometries with contact and friction H. Goicoechea et al. 10.1016/j.ijmecsci.2019.04.023
- Quaternion-based finite-element computation of nonlinear modes and frequency responses of geometrically exact beam structures in three dimensions M. Debeurre et al. 10.1007/s11044-024-09999-9
- On the Mathematical Modeling of Slender Biomedical Continuum Robots H. Gilbert 10.3389/frobt.2021.732643
- Mixed isogeometric collocation for geometrically exact 3D beams with elasto-visco-plastic material behavior and softening effects O. Weeger et al. 10.1016/j.cma.2022.115456
- Cosserat Rod-Based Dynamic Modeling of a Hybrid-Actuated Soft Robot for Robot-Assisted Cardiac Ablation M. Roshanfar et al. 10.3390/act13010008
- An isogemetric analysis formulation for the dynamics of geometrically exact viscoelastic beams and beam systems with arbitrarily curved initial geometry G. Ferri & E. Marino 10.1016/j.cma.2024.117261
- Experimentation Evaluation of Dynamics of Steel Wire Rope B. Bhashi et al. 10.4028/p-wtr6TA
- Modeling of Flexible Beam Networks and Morphing Structures by Geometrically Exact Discrete Beams C. Lestringant & D. Kochmann 10.1115/1.4046895
- A discrete, geometrically exact method for simulating nonlinear, elastic and inelastic beams C. Lestringant et al. 10.1016/j.cma.2019.112741
- Special Cosserat rods with rate-dependent evolving natural configurations K. Rajagopal & C. Rodriguez 10.1016/j.ijengsci.2023.103890
- A comprehensive numerical study on the current-induced fluid–structure interaction of flexible submerged vegetation I. Prüter et al. 10.1016/j.jfluidstructs.2024.104232
- 3D Finite-Deformation Beam Model with Viscous Damping: Computational Aspects and Applications N. Oliveto & M. Sivaselvan 10.1061/(ASCE)EM.1943-7889.0000822
- Discrete Cosserat Rod Kinematics Constructed on the Basis of the Difference Geometry of Framed Curves—Part I: Discrete Cosserat Curves on a Staggered Grid J. Linn 10.1007/s10659-019-09744-w
- Micropolar dissipative models for the analysis of 2D dispersive waves in periodic lattices H. Reda et al. 10.1016/j.jsv.2016.12.007
- A unified multi-soft-body dynamic model for underwater soft robots F. Renda et al. 10.1177/0278364918769992
- Relative-kinematic formulation of geometrically exact beam dynamics based on Lie group variational integrators M. Herrmann & P. Kotyczka 10.1016/j.cma.2024.117367
- Spherical oscillations of encapsulated microbubbles: Effect of shell compressibility and anisotropy G. Chabouh et al. 10.1121/10.0003500
- Real-time dynamics of soft and continuum robots based on Cosserat rod models J. Till et al. 10.1177/0278364919842269
- A viscoelastic beam theory of polymer jets with application to rotary jet spinning Q. Liu & K. Parker 10.1016/j.eml.2018.10.005
- Energy-Based Modeling and Control of a Piezotube Actuated Optical Fiber E. Ayala et al. 10.1109/TMECH.2022.3199566
- A Dynamic Model for Concentric Tube Robots J. Till et al. 10.1109/TRO.2020.3000290
- Structural Dynamics of a Pulsed-Jet Propulsion System for Underwater Soft Robots F. Renda et al. 10.5772/60143
- Optimal Control of Dielectric Elastomer Actuated Multibody Dynamical Systems D. Huang & S. Leyendecker 10.1089/soro.2022.0162
- 3D small strain large deflection beam shape sensing including poisson effect P. Schaefer et al. 10.1016/j.engstruct.2019.109948
- Underwater Dynamic Modeling for a Cable-Driven Soft Robot Arm F. Xu et al. 10.1109/TMECH.2018.2872972
- A thermoelastoplastic theory for special Cosserat rods . Smriti et al. 10.1177/1081286517754132
- Dynamic Model of a Multibending Soft Robot Arm Driven by Cables F. Renda et al. 10.1109/TRO.2014.2325992
- Soft Robotics: Morphology and Morphology-inspired Motion Strategy F. Xu & H. Wang 10.1109/JAS.2021.1004105
- An efficient displacement-based isogeometric formulation for geometrically exact viscoelastic beams G. Ferri et al. 10.1016/j.cma.2023.116413
- Efficient bending and lifting patterns in snake locomotion S. Alben 10.1098/rspa.2022.0312
- Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots F. Renda et al. 10.1088/1748-3190/10/5/055005
Latest update: 13 Dec 2024