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We present the derivation of a simple viscous damping model of Kelvin—\Voigt type for geomet-
rically exact Cosserat rods from three-dimensional continuum theory. Assuming moderate curvature of the
rod in its reference configuration, strains remaining small in its deformed configurations, strain rates that vary
slowly compared to internal relaxation processes, and a homogeneous and isotropic material, we abtain ex-
plicit formulas for the damping parameters of the model in terms of the well knofinests parameters of
the rod and the retardation time constants defined as the ratios of bulk and shear viscosities to the respective
elastic moduli. We briefly discuss the range of validity of the Kelvin—\Voigt model and illustrate its behaviour
for large bending deformations with a numerical example.

In our recent workl(ang et al, 2011), we suggested the pos-

Simulation models for computing the transient response ofibly simplest model of this kind to introdusgscous mate-
structural members to dynamic excitations should contairfial dampingin our quaternionic reformulation of Simo’s dy-
a good approach to account fdissipative gfectsin order ~ namic continuum model for Cosserat ro@sno, 1983. Fol-

to be useful in realistic applications. If the structure consid-10wing general considerations @intman (2003 about the
ered may be treated within the rangdinéar dynamics with functional form of viscoelatic constitutive laws for Cosserat
small vibration amplitudes, there is a well established set offods, we simply added viscous contributions, which we as-
standard approaches, e.g. Rayleigh damping, or a more geﬁumed to be proportional to thiatesof the material strain
eral modal damping ansatz, to add sudiees on the level ~Measured)(s,t) andV(s t) of the rod, to thematerial stress

of discretized versions of linear elastic structural models (sedesultantsF(s,t) and stress couplesVi(s,t), resulting in a
e.g.Craig and Kurdila2006. In the case ofjeometrically ~ constitutive model oKelvin—Voigttype:

exactstructure models for rods and shelsngman 2005, A S S N

such linear approaches are not applicable. Geometrically ext = CF:(V=Vo)+Ve-aV, M = Cu-(U = Uo)+Vwm-d:U. (1)
act rods, in particular, have a wide range of applications ina getailed presentation of the kinematical quantities and dy-
flexible multibody dynamicsVe refer to the brief introduc-  namic equilibrium equations of a Cosserat rod is given in
tion given in ch. 6 ofGéradin qnd Cardon@001) forasum-  ggct2 (see Figs1 and2 for a compact summary).

mary of the related work published before 2000, and .to ch. 15 | the material constitutive equationt) the elastic prop-

of Bauchau(201]) for a more recent account on this sub- erties of the rod are determined by tifective stifness pa-
ject. Here the proper way to model viscous damping requiregameterscontained in the symmetric>33 matricesCr and

the inclusion of arame-indfferent viscoelastic constitutive &, For homogeneous isotropic materials, both matrices are
modelinto the continuum formulation of the structure model gjagonal and given by:

that is capable of dealing withrge displacementandfinite ) )
rotations(seeBauchau et al2008. Cr = diag(GAGAEA), Cy = diag(El,El,,Gl3), (2)



m Configuration variables:

centerline curve: @: [0, L] xR - R’ ® Transverse shear & extensional dilation:
moving frame: R(s,t) = a®(s,t)0 e, 0S0O(3) ‘0 (k) ‘
sit) =V (st)a“ (st
curve parameter: SO[0,L], time: tOR s0(st) = Vi(s.t) ((a) )
cross section coordinates: (&,&,)0A, 0 R? transverse shearing: V, =a” (0.0, |V | < 1

t I dilatati ®
B Current (deformed) configuration: extensional dilatation: V =a msq) V =1

‘X(Ey{w st)=e(st)+&,a” (s t)‘ B Curvatures (bending & twisting):

\a a¥(st) = u(s,t) x a‘k)(st)‘

Darboux vector: U(S,t) = U, (5,)a’ (s,t) = R(s,t)U(s;t)
bending curvatures: U, = a“’) i = a®da®xa 3(3)
twisting curvature: U, = a®m =a? EBSa(” = —a‘l’EBsa(zf

a®

u Reference configuration

X(&,6,,5) = @ (S)+¢& a@ () B Reference strain measures:

059,(s) = aE)S) (s

L 6)I, 6)

Left: kinematic quantities for the (deformed) current and (undeformed) reference configurations of a Cosserat rod. Right: strain
measures of a Cosserat rod for transverse shearing, extensional dilatation, bending and twisting.

¥ 3D momentum balance: B Stress resultants & couples:
DivP + b = p 9)x f= fAlS -alV dA However, inLang et al.(2011) the damping parametefsy
PF’ = FpPT m— f ¢ a@ <P a 3 dA remained undetermined w.r.t. their specific dependence on
15 Piola-Kirchhoff stress: P 4 material and geometric prqpertieg. Considering the'special
deformation gradient: B material resultants & couples: case_of homogeneo_us and isotropic material properties, they
f=F a? —R.F certainly cannot be independent, but rather should be mutu-
2 1D force & toraue balance: ® B ally related in a similar way as the ftiess parameters of
9 . m=Ma"=R-M the rod in terms of two material parameteEs G) and the

Osf +fo = p,A 07
om+9.0xf+m, =9, (poj En)

geometrical quantitiesX, I) associated to the cross section.
Assuming moderate curvature of the rod in its reference con-
figuration, strains remaining small in its deformed configu-
rations, strain rates that vary slowly compared to internal re-

angular velocity: 9, a® (sit) = o(s,t) x a® (st)
I

rotational inertia tensor: J,I a® @ a), 1‘ = ; ) oL =1, +1, laxation processes within the material, and a homogeneous
f dA, (g) =0=(g8,), and isotropic material, we will show that they are given by
Dynamic equilibrium equations of a Cosserat rod. Ysy2 _yr _ YE _ YBL2 =(1-2v)2+ ,7(1+V)2, 4

A 13 TAT T

where¢ andn are thebulk and shear viscositiesf a vis-
coelasticKelvin—Voigt solid(Lemaitre and Chaboch&990
with elastic moduliG andE = 2G(1 + v). While the viscous
damping of the deformation modes of pure shear type is
solely &fected by shear viscosity extensional and bending
deformations are both associated to normal stresses in the di-
3) rection orthogonal to the cross section, which are damped by
a specific combination of both bulk and shear viscosity that

The set of sixeffective viscosity parametersy introduced ~ depends on the compressibilty of the material and may be
in Eq. () represents thdntegrated cross-sectional vis- interpreted agxtensional viscosityarameter

cous damping behaviowssociated to the basic deformation

modes (bending, twisting, transverse shearing and extensionje = ¢{(1-2v)* + 77(1+V)2 (5)

of the rod, in the same way as the well known set dfretiss

parameters given above determines the corresponding elastiftroducing theretardation timeconstantss = /G andrg =
response. £/K, which relate the viscositieg and ¢ to the shear and

bulk moduliG and X = E/(1- 2v), as well as the time con-
stantre :=ne/E = 3[(1-2v) 18 + 2(1+V)7s] relating ex-
tensional viscosity to Young’s modulus, the formuldsray

with stiffness parameters given by the elastic moEwdndG
and geometric parameters (ar&sgeometric moment) of
the cross section. lhang et al(2011) we assumed a similar
structure for the matrice§r andVy, which determine the
viscous response:

Ve = diag(ys1,ys2,ve) » Vi = diag(yes, ve2, y7) -



be rewritten equivalently as

Ysyz _ YT _ . YE _ YBL2 _ - ©)
GA Gz S EA Elp °*

We argue that the analogously modified damping parameters

Ysy2 = GAyets, y1 = Glrts (8)

in terms of the sffness parameters of the rod and the retarda-associated to shearing type rod deformations likewise pro-

tion time constants. Interesting special cases of are the
simplified expressionge = £+ 37, Te = 3(r5+2rs) for com-
pletely compressible materialg £ 0), andne = 35, 7 = 75
for incompressible materialy & %). The relationng/n=3

vide a corresponding improvement of the formulg)s Which
accounts for the influence of cross section warping féece
tive viscous dissipation, such that tggective viscosity ma-
trices V¢ and ¥y introduced in Eq.3) may be rewritten as

between shear and extensional viscosity is well known as

Trouton'’s ratiofor incompressible Newtonian fluid3ou-
ton, 1906 and holds more generally for viscoelastic flu-
ids in the limit of very small strain ratedétrie 2006). If
{/n=K/G & 1 = 75 holds, one obtainsg = 7g;s as exten-
sional retardation time constant (independent)of

It is well known that the sfiness parameteGA andGls
related toshearing typedeformation modes systematically
overestimate the actual Stiess of the structure for cross

Ve = Cg - diag(rs, 75, 7€), Vm = Cwm - diag(re,te,7s)  (9)

in terms of the fective stifness matrices and retardation
time constants given above.

While there is a rather large number of articles considering
various kinds of damping terms (also of Kelvin—\Voigt type)
added tdinear Euler-Bernoulli or Timoshenko beam mod-
els (usually assumed to have a straight reference geometry),

section geometries that display non-negligible warping. Inone hardly finds any work on viscous damping models for
the case of transverse shearing, this is accounted for via geometrically nonlineabeams or rods in the literature.

modification of the corresponding itiess paramet& A —
GA, := GAx, by introducing dimensionleshear correction

One notable exception is Antman’s worR003, where
a damping model as given by EdL)(with positive, but

factorsx, < 1 depending on the cross section geometry (seedtherwise undetermined paramete® is suggested from

Cowper 1966 Gruttmann and Wagng200J). Likewise, the
torsional rigidity Gr = G Jr of arod exactly equalS|; in the

a completely dierent, mathematically motivated viewpoint,
namely: as a simple possibility to introduce dissipative terms

case of (annular) circular cross sections only, but is smallefdenoted asartificial viscosity into the dynamic balance
than this value otherwise due to the presence of out-ofequations of a Cosserat rod, which constitute a nonlinear cou-

plane warping of cross sections. The replacen@pt— Cr

pled hyperbolic system of PDEs (see al§eiss 20023, and

correcting this deficieny corresponds to the introduction ofthereby achieve eegularizationeffect in view of the possible

another dimensionless correction factar= Jr/l3 <1 de-
pending on the cross section geométghich modifies the
torsional stithess according to the replacement rGlg —

formation of shock waves that might appear in tmelamped
hyperbolic equations.
The recent article oAbdel-Nasser and Shabaif2011)

GJr = Glaxs. Altogether the various shear corrections men-is another relevant work for our topic. By inserting a 3-D

tioned above vyield the corrected set offfstess parameter
valueg

Cr = diag(GA,,GAy,EA), Cy =diag(El1,El2,G¥). (7)

1In the case of arlliptic cross section with half axes and
b, the area moments are given by= %a®b and |, = Zab®, while
Cr/G=J= 7ra3b3/(a2+b2) = 4|1|2/(|1+|2), such thaﬂg =J/l3=
4l415/(11 +1,)%2 < 1 in this case. Equality = 1) holds in the case
of a circular cross section wita=b=r=1;,,= gr“ = %|3 only.
According toNikolai's inequality G < 4Gl,l,/(l1 + I,) the special

Kelvin—Voigt model into a geometrically nonlinear beam
given inabsolute nodal coordinate formulatigANCF), the
authors obtain a viscous damping model for such ANCF
beams which (by construction) is closely related, but con-
ceptually quite dferent from our approach proposed for
Cosserat rods. Later we briefly discuss the relation of both
damping models (see Sedt3). We refer othwise to the arti-
cle of Romero(2008 for a comparison of the geometrically
exact and ANCF approaches to nonlinear rods.

Mata et al.(2008 model the inelastic constitutive be-
haviour of composite beam structures under dynamic load-

case of an elliptic cross section maximes torsional rigidity amonging using a Cosserat model as kinematical basis. However

all asymmetric cross section geometries, and the valige= 2G|

valid for circular cross sections provides the absolute maximum of

torsional rigidity Berdichevsky1981).

°The stifness parameteBA andEl, are not &ected by shear
warping éfects. However, they already account fmiform lateral
contraction which is a simple specific type af planecross section
warping. This topic is discussed further in S&4 below.

they evaluate inelastic stresses fnymerical integrationof
3-D Piola—Kirchhdr stressesver 2-D discretizations of the
local cross sectionso obtain the stress resultants and cou-
ples of Simo’s model. This iers from our approach aiming
at adirect formulation of frame-inditerent inelastic consti-
tutive laws in terms of and M, as achieved e.g. b8imo



et al. (1989 for viscoplastic rods. The viscous model pro-
posed in Sect. 3.2 of their paper is likewise of Kelvin—Voigt

L
(KV) type, but formulated in terms of a vectorial strain mea- 1 T oA
sure related to th@iot strain (see also Sect#2) and de- We(t) = fdsﬁ [AV(S’D ‘Cr-AV(sY (10)
fined pointwisewithin the cross section. Moreover, they set 0
up their model using only singleviscosity parameter. + AU(s )" -Cwm ~AU(s,t)]

Although there seems to be no further work on viscoelas-
tic Cosserat rods made from solid materiagcoelastic flow of a Cosserat rod, which is a quadratic functional of the terms
in domains with rod-like geometries has been discussed in dU(s,t) = U(s t) — Ug(s) andAV(st) = V(s,t) — V() mea-
number of articles. In his work on the coiling of viscous jets, suring thechange of the strain measures.t their reference
Ribe (2004 presents a reduction of the three-dimensionalvalues, from three-dimensional continuum theory.
Navier—Stokes equations to the dynamic equilibrium equa- This sets the notational and conceptional framework for
tions of a Kirchhdf/Love rod, endowed with Maxwell type the subsequent derivation of the viscous part of our damping
constitutive equations for the viscous forces and momentgnodel given in Sect4 by an analogous procedure, which
which govern the finite resistance of the jet axis to stretch-yields thedissipation function
ing, bending and twisting. Although the derivation approach
is different from ours, it represents its fluid-mechanical coun- 1 . T o
terpart, as it likewise providesfective damping parametérs Dy = de§ [5tv Ve-aV + 0U" -V '8IU] (11)
as given in Eq. 4), in the special case of an incompress- 0

ible viscous fluid ¢ = %) with extensional viscosity given . . .
by Trouton’s relationpe = 3p, which in turn confirms our O.f a (?osserat_rod introductih Lang et al(201). The d'.s'
derivation of this special result sipation function {1), deduced from the three-dimensional
: L : . . lumetric) continuum version of the dissipation function
A systematic derivation and mathematical investigation of(V0 . ) ) e .
y g of aKelvin—\oigt solidLandau and Lifshitz1986 Lemaitre

viscous string and rod models in the context of Ribe’s work
is given byPanda et a2008 andMarheineke and Wegener fand Chachhd99(), corresponds to one half of th? V°'“T“e'
integratedriscous stress powef a rod-shaped Kelvin—\Voigt

2009. Klar et al.(2009 andArne et al.(20117) likewise use ; . ; o
I(?ibez Maxwell ty(pe C(?nstitutive law in(their])related work on solid, such that B, yields the rate at which the rod dissipates
mechanical energy.

the simulation of viscous fibers aiming at applications in the . o . .
area of textile and nonwoven productidworenz et al(2012 Having completed our _derlva_non of the K_eIV|n—V0|_gt
extend constitutive modelling for viscous strings by deriv- model, we procet_ed by a discussion of a seemingly stralg_ht-
ing anupper convected Maxwathodel using mathematical forwqrd, but, as it turns out, erroneous approach to_ derive
the viscous parts of the forces and moments as given by

methods of asymptotic analysis. : )
ymp y Eqg. (1) as resultants in analogy to the elastic counterparts.

In the same context we finally mention the discrete mod—Th. h that based h to deri i
elling approach for viscous threads presentedBbygou et IS SNOWS that our energy-based approach 1o derive viscous
damping is the proper one. After that, we briefly comment

[.(2010, which extend li k & tal(200 . . ; .
al. (2019, which extends earlier work dergou et ai(2009 on the relation of our continuum model to the Kelvin—\oigt

on discrete elastic rods that, similar to our own approach a
PP type model recently proposed Bypdel-Nasser and Shabana

briefly presented irLinn et al. (2008 (see alsalung et al. o . . .
2011, relies on geometrically exact rod kinematics based 0n(201]) within their alternative ANCF approach to geometri-

. : cally nonlinear rods, and conclude Setby a short discus-
thediscrete dfferential geometrpf framed curves. . ) . )
ai 9 » sion of the validity of the Kelvin—\oigt model w.r.t. a more

general viscoelastic model of generalized Maxwell type.
In Sect.5, we illustrate the behaviour of our viscous damp-
After collecting a few basics of Cosserat rod theory in theing model () by some simple numerical experiments with a
following Sect.2, we proceed with our derivation of the for- clamped cantilever beam subject to bending with large de-
mulas @_) inofa two-step procedure: in Se@twe start with flections. We conclude our article with a short summary.
the derivation of the elastis{ored energy function

L

The configuration variables of a Cosserat rod (&aéman
2005 are itscenterlinecurve p(s,t) = ¢k(s,t) & with carte-
alsian component functiong(s,t) w.r.t. the fixed global ONB

3In the case of viscous flow in a rod-shaped domain, the are
A(s) of the (circular) cross section as well as its geometric area mo-  “In Lang et al.(2011) we absorbed the prefactoy2 into the
mentl(s) vary along the centerline curve in accordance with massdefinition @) of the damping parameters (see Eqgs. 9 and 10 in
conservation modeled by a divergence-free velocity field of an ex-Sect. 2.2). This leads to an additional factor of 2 multiplyivig
tensional flow with uniform lateral contraction. andVy, in the constitutive equationg) of the rod model.




{e1, e, €3} of Euclidian space andnioving framé Ifz(s,t) = formulated with unit quaternions as explained in detail by
al(st)® g € SO(3) of orthonormal director vectors, both Lang et al.(2011) and investigated further iang and
smooth functions of the curve parameteand the timet, Arnold (2012 w.r.t. numerical aspects, we do not make use
with the pair{a®, a®} of directors spanning the local cross of this particular formulation here, as it is more practical
sections with normala® along the rod (see Fid). to work with the directors associated 8D(3) frames for
the vector-algebraic calculations which we have to carry out
within our derivations of one-dimensional rod functionals

. ] ) ] _ from three-dimensional continuum formulation.
The material strain measures associated to the configuration

variables are given by (i) the componeWts= a®-dgp of the
tangent vector in the local frame (i.&/:= RT - dsp = V&),
with V1,V, measuringransverse sheadeformation and/s
measuringextensional dilatationand (ii) thematerial Dar-
boux vectot) = RT-u = Uke, obtained from its spatial coun-
terpartu = U,a® governing the Fenet equationgsa® =
uxa® of the frame directors, withl;, U, measuringpending
curvaturew.r.t. the director axesa, a@}, andU; measur-
ing torsional twistaround the cross section normal.

In general, theeference configurationf the rod, given
by its centerlinep,(s) and frameRo(s) = al(s) ® &, may
have non-zero curvature and twist (i.&ly # 0). However
we may assume zero initial sheafy( = Voo = 0), such that _ (@)
all crosys sections of the reference(configurat)ion are orthogz((gl’&’st) = ¢(8h + & aAT(SY + W82, 81 (15)
onal to the centerline tangent vector, which coincides with
the cross section normal (i.elsp, = &) = Voz = 1) if we
choose thaarc—lengthof the reference centerline as curve
parametes.

Introducing cartesian coordinate,¢,) w.r.t. the director
basis{af)l)(s), af)z)(s)} of the cross section located at the cen-
terline pointg,(9), the spatial positions of material points in
the reference configuration of the rod are giveh by

X(£1.62,9) = @o(9) + &, aN(9) . (14)

The positions of the same material points in the current (de-
formed) configuration are then given by

in terms of the deformed centerline curgés,t), the rotated
orthonormal cross section basis vect¢a&)(st), a@(s 1)},

the same pair of cartesian cross section coordindtes),

and an additional displacement vector fiedg¢;,é,,S,1),
which by definition describes the (in-plane and out-of-plane)
warping deformations of the cross sections along the de-
formed rod.

The kinematic assumption that the cross sections of a rod
remainplane and rigidin a configuration is equivalent to
the assumption that the displacement figldanishes identi-

Ot + fox = (p0A) e (12)  cally. Although we will initially adhere to this very common
Asm + dspX f + Moy = & (poj .w> (13) assumption for rod models, we will later admit some specific
form of in-plane deformation of cross sections — namely: a
uniform lateral contraction- to correct a deficiency w.r.t. ar-
tificial in-plane normal stresses caused by the excessively
rigid kinematical ansatzl6) with w = 0.

For simplicity we assume the rod to Ipgismatic such
that all cross sections along the rod are identical, and the do-
main of the cartesian coordinates,¢,) coincides with one
fixed domainA c R?. As usual we choose the geometrical
center of the domaiA to coincide with the origin ofR?

The constitutive equationd)(— or more general ones of vis-
coelastic type (see ch. 8.2A&ntman 2005 — are required to
close the system of dynamic equilibrium equations

(see Fig.2) which has to be satisfied by thepatial stress
resultantsf = R- F and stress couplesi= R- M with ap-
propriate boundary conditions (s8ano, 1985. Theinertial
termsappearing on the r.h.s. of the equations oflthéance
of forces(linear momentum) 2) and thebalance of mo-
ments(angular momentum)1@) depend parametrically on
the localmass densityg(s) along the rod as well as on geo-
metrical parameters of the local cross section (dexand
area moment tensd(s,t) = R-Jo(s)-RT) and contain the ac-
celerations of the centerline positiof(s,t) as well as the  recent collaboration witSchulze et al2012. We refer to the arti-
angular velocityvector w(s,t), which is implicitely defined  cle of Zupan et al(2009 for fundamental aspects of Cosserat rods
by the the temporal evolution equatiofa® = w x a® of with rotational d.o.f. represented by unit quaternions, as well as to
the frame in close analogy to the Darboux vector, and its timethe recent work Z012B of the same authors discussing the-
derivativediw(s,t) as dynamical variables (s&maq, 1985 dampeddynamics of quaternionic Cosserat rods with various time
Antman 2005 Lang et al, 2011for details). integration approaches. Appenddcontains additional remarks re-
Although we implemented Kelvin—Voigt type viscous lated to alternative discretization approaches and model variants.

. . : Swithin this paper we make use of Einstein’s summation con-
damping given by Eq.1) for our discreté Cosserat model . L
ping 9 y Ea.1) vention — as the reader may have observed already —w.r.t. all indices

SPractical applications of our Cosserat rod model with Kelvin— occuring twice withirproductterms, with greek indices, s, ... run-
Voigt damping in Multibody System Dynamics are reported in our ning from 1 to 2 and latin ondsj,k,... from 1 to 3.




such that(,) 4 = 0 holds, where we introduced the short-
hand notatior(f) 4 := fﬂ f(&1,&2)dé1dé, for the cross sec-
tion integral of functions. In addition we choose the orienta-
tion of the orthonormal director paits{’(s), a?’(s)} as well
as{a(st),a®(s 1)} to coincide with the principle geomet-
rical axes ofA, such that¢:&) 4 = 0 holds. The quantities

ciently weak, in the sense that for the curvature radii given
by R¢ = 1/|Uql the estimate,|/Rs < 1 and|é,|/Rs < 1=
Jo~ 1 hold throughout each cross section along the rod,
such that all initial curvature radir, are large compared

to the cross section diameter. The geometric approximation
Jo(s) = 1 will occur repeatedly and therefore play an impor-

that characterize the geometric properties of the cross sedant role in the derivation of the elastic energy and dissipa-

tion in the Cosserat rod model are thmss section area
A= (1) 4, the twoarea moments; |= <§§>ﬂ, I, = <§§>ﬂ and

the polar area momentsl= (¢2+ §§>ﬂ =11 + 5. With these

definitions we obtain the centerline of the reference configu-

ration as the average positigg(s) = (X)4 /A of all material
points of the cross section located at fixed’he same rela-
tion p(st) = (X)4 /A holds for deformed configurations pro-
vided that the warping field/(¢, &2, S t) satisfiegw) 4 = 0.

tion function of a Cosserat rod. To compute the deformation
gradient we also need the basis vectgrs= a®(s;t) and

gs = a®(s 1) + &, U, (s t)a?(st) of the deformed configura-
tion (15) with vanishing gradient of the warping vector field
(6w = 0). For the dual vectorg® one obtaines analogous ex-
pressions as those for the dual vec@fsjiven above, which
we omit here.

For the special kinematical relations of a Cosserat rod,
the deformation gradierf = g, ® G* may be expressed in
terms of apseudo-polar decompositiofsee Géradin and
Cardona 200]) by a factorization of theelative rotation
Reei(st) := R(s)-R{(9) = a¥(s t)® a¥¥(s) connecting the

In order to set the notational and conceptional framework formoving frames of the reference and deformed Configurations

the derivation of the viscous part of our damping model, we
first give a brief account of the derivation of its elastic part,
i.e.: the stored energy functiob@ of a Cosserat rod. Within

this derivation we will encounter a variety of smallness as-

of the rod. The resulting formula

1

Fén.&,50)=Rre(st) [T+ ) H(é,s)0ad(9)|  (16)

sumptions w.r.t. the curvatures describing the reference ge-

ometry of the rod as well as the local strains occuring in its

depends on thebsolute valuef the curvatures of the

deformed configurations. In our subsequent derivation of thd€ference configuration1§) through Jo(s), and on the

viscous dissipation functionld) we will use the same as-

change of the strain measured the Cosserat rod given

sumptions and thereby remain consistent with the derivatioPy the diference vectord)(s,t) - Uo(s) and V(s.t) - Vo =

of the elastic part.

In the first step we compute traeformation gradienf: =
g«® GX, theright Cauchy-Green tensdC = F" - F and the
Green-Lagrange strain tensdt = 1(C - ) from the basis
vectorsGy = dxX and gk = dkx associated to the curvilinear
coordinates of the rod configurations given by E44) énd
(15), with 9y = a%k fork=1,2 anddz = dsfor &3 = s.

The dual basis vectoi@/ and g! are defined by the rela-
tionsG; -G/ = §;; andg; - g’ = i, respectively. Proceeding in
this way we obtain the basis vectors of the reference configu
ration (14) asG,, ag’)(s) andGs = a(()s)(s)+§~‘and(S)ag’)(s).

Their duals may be computed from the general formula

G' = Gj x Gy/Jo with Jy := (G1 X Gp) - Gs, where {jk) is a
cyclic permutation of the indices (123), resultin? @l =
)+ £9240, G2 = a? - &%), andG? = Lab.

The inital curvaturetJo,(s) contained in the determinan
Jo(S) = 1+ &Up1(9) — €1Ug2(S) and the initial twistUgz(s) of
the reference configuratiori4) influence the deviation of
the dual vectorss* from the frame directors{®(s) within

t

(Va(s.1), Vo(s, 1), Va(s,t) — 1)T in terms of thematerial strain
vectorH (¢1,&2,5.1) = Hi(é1, £, s.t) a(9) with components

Hi(é2,81) Vi(st) = &2[Us(s,t) = Uos(9)]
Ha(é1,8.1) Va(st) +€1[Us(s,t) = Uos(9)]
Ha(é1,62,S.1) [Va(st) — 1] + &2[Ua(s t) — Uou(s)]
—&1[Uz(st) = Uo(9)]

which can be written more compactliy the form of a carte-
sian vectoR] -H = (V-Vg)—&,6,x(U-Up) = Hcex W.rt. the
fixed global framgey, e, e3}. A

Computing the right Cauchy—Green tenébe FT - F with
the deformation gradient given by EdL6} results in the
following kinematically exact expression for the Green—
Lagrange strain tensor:

(17)

"Our derivation generalizes the one given®gradin and Car-
dona(200]) for the simpler case of a straight and untwisted ref-
erence configuration of the rod (i.&p = 0). Apart from using a
slightly different and more compact notation, the kinematically ex-
act expression of the deformation gradient given by E48) &nd
(17) is algebraically equivalent to the one givenl®gpania and Li

the cross section. Both vectors coincide if the reference conr003 in eq. (47) of their paper. We note that thefeiience terms

figuration of the rod is straight and untwisted (i.&ly =
0). We have approximate coinciden ~ al’(s) if cur-
vature and twist of the reference configuration aréisu

U-Ug andV -V, appear already in the kinematically exact expres-
sion (18) beforediscarding second order terms. This shows that our
approach is more general than the one choseWwdigs(20023.



_ 1 [H e H @ - .3 18 If we assume the rod material to behave hyperelastically with
= 2% e ® ] + Jz a0 ®% - (18) 4 stored energy density functiof,(E), a simple Taylor ex-
pansion argumehtshows that the behaviour of the energy

The approximate expressfon _density within the range of sm_aII strains may be well approx-
imated by the quadratic functiote(E) = %E “H:E, where
Hz@é‘l’e(ﬁ) is the fourth ordertHookean material tensor
known from linear elasticity. This quadratic approximation
yields a well defined frame-inflerent elastic energy den-
may be obtained from Eq18) by the geometric approxima- sty that is suitable for structure deformations at small local
tion Jo ~ 1 assumed to hold for the reference geometry andstrains, but arbitrary large displacements and rotations, and
the additional assumptidiH|| < 1 of asmall material strain  therefore serves as a proper basis for the derivation of the
vector. Later we will make use of the approximate strain ten- gtgred energy function of a Cosserat rod.
sor (19), Wh|Ch iS|inear in the vector f|e|dH and therefore The Corresponding approximation of the stress-strain re-
also in the change of the strain measures of the rod, to 0bption yields the 2ndPiola—Kirchhgf stress tensor S=—
tain the stored energy functiod@, which then becomes a 4. \ye(E) H: E for small strains. The 1<Riola—Kirchhgf
quadratic formin the change of the strain measures. Like- stresstensorP, which is used to define the stress resultants
wise we will use Eq.19) to obtain an approximation of the - and stress couples of the Cosserat rod modelSee, 1985
strain rat&?[E in terms of the ra.tétH of the strain vector. for deta”s) |S Obta|ned by the transformaﬂBﬁ: F S us|ng

the deformation gradient, and the Cauchy stress tensor as the

inverse Piola transformatiah = J-1P-FT depending also on

J = det(). If we approximate the strain tensirby Eq. (19)
For deformed configurations of a slender rod one observeand consistently discard all terms that are of second order
large displacements and rotations, but local strains remaitin ||H|| in accordance with our assumption of small strains,
small. To estimate the size of the strain tensor it is useful towe have to use the approximatiérr R (s) (which implies
compute its components;j = (') (E- ‘)) w.r.t. the tensor J = 1) for the deformation gradient in all stress tensor trans-
basisal) ® &)’ obtained from the directors of the reference formations. This means that all pull back or push forward

frameRo(s). From Egs. {8) and (L9) we obtain identically trgnsformgtions are car.ried out approx_imately as simple rel-
vanishing in-plane component& = Eg, = 0), as well as ative rotations connecting corresponding frang$s) and

e~ [Hoad+adoH] (19)

the exact and approximate expressions R(st) of the undeformed and deformed configurations of a
Cosserat rod. Alltogether we obtain the approximate expres-
i 0
Ha Ha H3 H2 Sloné
Eu.3=E3, = ~—, Egg=—+_—=H 20
3 3 230 2 33 T 2\13 3 (20) i A A A A A
S~*H:E = P~ RS, &~ Re SR (21)
of the components related to out-of-plane deformations of
the local cross section. Introducing the the quanfifyax := for the various stress tensors, which are valid for the specific

maXg, ,)en(lé1),1€2]) to estimate the maximal linear exten- type of small strain assumptions encountered for Cosserat
sion of the cross sectiorfl, one may estimate the devi- rods, as discussed above.
ation of the determinandy(s) from unity by |Jo(s) — 1| < In the case of d&aomogeneous and isotropisaterial, the
I€lmax(1/R1+1/Ry) as a coarse check of the validity of the ap- Hookean tensor acquires the speC|aI form of an isotropic
proximationJ, ~ 1. Otherwise the smallness of the compo- fourth order tensoitisyk = Al @1 +2ul depending on two
nents ofE is implied by the smallness of the componeHs constant elastic moduli: tHeamé parametera andu. Here
of the strain vector. According to EdLT) these components | andI are the second and fourth order identity tensors,
in turn become small if the change of the strain measuresvhich act on (symmetric) second order tens@ri)y dou-
of the Cosserat rod is small, i.e. if the estimaig <« 1, ble contraction ad: Q Q and i : Q Tr(Q) such that
V3—-1] < 1, |Ux— Ul < 1/|€Imax hold. For slender rods with  one obtalnsQ (I ® I) Q Tr(Q)2 and Q I: Q Q Q =
moderately curved undeformed geometry these estimates af&(Q?) = |QI2, where|...||r is the Frobenius norm. The
obviously easily satisfiable, except for extreme deformationscorresponding energy function is tBaint—Venant Kirchhp
of the rod that produce large curvatures or twists of the or-
der of the inverse cross section diameter. In this case, the °additional assumptions are the vanishing of the elastic energy
assumption of small strains obviously would be invalid. density at zero straintH(0) = 0), as well as the absence of initial
stresses in the undeformed configuration (5= 9z We(0) = 0).

8We note that Eq.19) may alternatively be interpreted as an  °An alternative interpretation of Eq2{) in terms of the Biot
approximation of the Biot strai(see SectAl of the Appendix). stress tensor is briefly discussed in S&&.of the Appendix.




potential twisted rod in ch. XVIII of his book. Following Love’s anal-
ysis, we obtain the in-plane normal strains to leading order

Yowk(E) = %E ‘Hgvk : E (22)  asE,, = d,W, = —vEs3 with the additional requirement that
1. A K . A E12 = Epp = 01Ws + dowy = 0, which determines the in-plane
= ZTr(E)? + ullEN% = =Tr(E)® + ullP:EI2, componentsy, of the the warping fieldv corresponding to
2 2 the lateral contraction in terms &ks.
whereP =1- %f@f is the orthogonal projector on the sub-  To obtain the modified value d&,, = —vEs3 one has to
space of traceless second order tensors, suchPthit= add an additional termvEszs aéa) ®aé") to the exact expres-
E - LTr(E)i yields the traceless (deviatoric) part of the strain sion (L8) of the strain tensor. Using the identity- a? @ 2,
tensor, anK = 1 + %,u is the bulk modulus. we obtain the modified expression
E, = E — vEs3 [f - a83)® ags)] (24)
The stress-strain relation obtained fro2®Yis given by for the strain tensor, witless ~ Hs as small strain approxi-

mation according to Eq.19). Inserting the modified strain
Ssvk = ATHE)T + 2uE = KTr(E)T + uP:E. (23) tensor R4) into the stress-strain equation of the Saint-

Venant-Kirchhé material with TrE’) = (1 - 2v)Ess ~ (1—
Inserting the approximate expressioiS)(and @0) of the  2,)H;, and using the relation(1-2v) = ;= E that relates the
strain tensor and its components into E2B)(yields the small [ gme parametex to Young’s modulusE, we obtain the fol-
strain approximatiosvk ~ AHsl +u[H® ay) +af) @ H] of lowing modified expression for the stress of a Cosserat rod:
the stress tens@sy for Cosserat rods. The computation of
the stress components w.r.t. the basiBg(fs) directors yields A Ey
normal stress componer, ~ AHz andSss~ (1+2u)Hs, Stk =~ T Hs alead® + G [H ®ad+a¥ e H] . (25)
and the shear stress components are giveBiby Sy; =0
andS,s = Sz, ~ uH,, respectively. By construction, we now obtain vanishing in-plane stress

As both elastic modull = 2uv/(1-2v) andA+2u = 2u(1- componentss|, = S, = S,, =0, while the transverse shear

v)/(1-2v) appearing in the expressions for the normal stressstresses remain ufiacted by the modification (i.eS/, =
components, expressed in terms of the shear moduius S5, ~ GH, with G = u). As 2G = E/(1+v), we likewise ob-
G and Poisson’s ratio given byvZ 1/(1+ ), diverge in  tain the modified expressid®i, ~ E Hz for the normal stress
the incompressible Iimit/—>% (just as the bulk modulus component orthogonal to the cross section, which corre-
K= glljzvye does), the normal stresses would become in-sponds to the familiar expression from elementary linear
finitely large whenever the normal strafia; ~ H; becomes ~ beam theory, with Young’s modulusreplacinga + 2u.
nonzero. This unphysical behaviour is a direct consequence
of the kinematical assumption of plain aridid cross sec-

tion, which prevents any lateral contraction of the cross sec—N ¢ d trate brieflv that th dified .
tion in the case of a longitudinal extension. Therefore the ext we demonstrate brietly that the modiied expressions

assumption of gerfectly rigid cross section, as well as the (24) and @5) immediately lead to the known stored energy

expressionsl8) and (L9) derived under this assumption, are function (10) mentioned in the introduction.

strictly compatible only withperfectly compressiblmateri- In the case of a _hyperelastlc _materlal_wnh an elastic
als (i.e.: in the special case= 0). (stored) energy density. the elastic potential energy of a

The standard procedure to fix this deficiency (see e.g.bOdy is given by the volume integrgfvlo dv'¥e of the energy

Weiss 20023 is based on the plausible requirement that density over the volumé&/, of the reference configuratiop
all in-plane stress componeng, (including the normal of the body. I'n the case of a rod shaped body pgramgtrlzed
stresses,., ), which for rods in practice are very small com- PY the coordinatesé{, >, s) of the reference configuration
pared to the out of plain normal and shear streSsgsand ~ (14): the volume measure &% is given by &/ = Jodsdé;déz,

Sa3, shouldvanishcompletely. This may be achieved by im- whereJp is th(_a Jacobian of tht_a referenc_e co_nﬂguratmn (see
posing auniform lateral contractionwith in-plane normal ~ S€ct:3.1). Using the geometric approximatiad ~ 1, the
strain component,, = —vEs3 upon the cross section. Al- stored energy function E)f a rod shaped body is obtained as
though this procedure seems to be rather ad hoc, it may bthe integral [, dV'¥e ~ ["ds(¥e) of the density over the
justified by an asymptotic analy$tsof the local strain field ~ cross sections and along the centerline of the reference con-
for rods, e.g. in the way as presentedlmwe (1927) in the  figuration of the rod.

paragraph §256 on theNature of the strain in a bent and In the special case of the energy densip)(this leads

. L -, .
iiSeeBerdichevsky(1981) and ch. 15 oBerdichevsky2009 for  '© € stored energy functiahe = b ds(¥sw(E )>;+_v using

amodern comprehensive analysis within Berdichevsky’s variationalthe modified strain tensde’ from Eq. @4). Applying our

asymptotic approach. previously introduced approximations of small strains and




small initial curvature, we obtain the approximate expressiondensity of the body in the reference volume, ari¥,t) =

~ 1. ~ 1
Psw(E) = 5Sow E x5 |[EHS + G(HZ + HY)|  (26)

N

for the energy density. Its cross section inteéﬂVK(E')>ﬂ
may be evaluated in terms of the integrals

(ui-h),
(H2)a
which finally yields the desired result

2(¥sw(E)), ~ EAV-1F +GAVZ+V3)
+ Ela(Ue = Ug) + Gl3(Uz — Ugg),

AV +V3) + 13(Us — Ugg)

ANVz—1F + 14(Us = Uga)

(27)

corresponding exactly to the stored energy functid) fith
effective stithess parameters given by E®).(The subse-
quent introduction o$hear correction factorfGA — GAx,)
as well as the corresponding correctieiy —» GJr = Glgxs
of torsional rigidity'? finally yields the stored energy func-
tion (10) with correspondingly modifiedffective stifnesses
as given by Eq. %) (see also Sect.1 for a more detailed
discussion of this point).

In general, the kinetic energy of a body is given by the vol-

ume integralfv0 dV 2poV?, where pg(X) is the local mass

0iX(X,1) is the velocity of the respective material point. Us-
ing the kinematic ansatzl$) with the geometric approxi-
mation Jo ~ 1, assuming a homogeneous mass density, and
neglecting the contribution of cross section warping=(0),

we obtain the integral expressiof, = fOL dspo[A@Gp)? +

<§§>ﬂ(@ta(“))2] for the kinetic energy of the rod as a
quadratic functional of the time derivatives of its kine-
matic variables. The rotatory part may be reformulated in
terms of the material componerf = w- a’ of the angu-
lar velocity vectorw = Q;al) of the rotating frame, which

is implicitely defined byd;a® = wx all), by substituting
<§§>ﬂ (@a@)? = 1,02, This finally yields the familiar ex-

pressionW = fOL ds1po[AGwp)? + 1QZ] for the kinetic en-
ergy of a Cosserat rod as given liang et al.(2011) with

Qy expressed in quaternionic formulation. Altogether we ob-
tain the approximatiog(,o dV [300V? + Wel & We + Wi =1 Wiy

of the three—dimensional mechanical energy of a rod shaped
body in terms of the corresponding sum of the kinetic and
stored energy function&l and\W, of the Cosserat rod model

as given above. In the absence of any dissipativects,

the mechanical energy must be conseresdctlyin both

the 3-D as well as the 1-D setting, such that the identities
%»K/o dV[3pov?+¥e] = 0= $W, hold identically as a conse-
guence of the respective balance equations for both the 3-D
volumetric body and the 1-D rod.

12 The correction of torsional rigidity accounts for the contribu- Now we have collected all technical prerequisites and ap-

tion of out-of-plane cross section warping in terms ofacorrespond-proximate results that enable us to derive the dissipation
ing torsional stress functio(¢;.£>) and leads to an improved ap-  fnction (11) of a Cosserat rod from a three-dimensional
proximation of the strain and stress fields as well as the resumngKelvin—Voigt model in analogy to the derivation of the stored
elastic energy given by EqlQ) compared to its 3-D volumetric . . ;

energy function10) in a consistent way.

counterpart. Similar arguments apply to an improved approximation ey I
of transverse shear strains and stresses as well as the associated parlcn Landau and Lifshitz1986 (see ch. V §34) theissipa-

of the elastic energy density by accounting for additional contribu- 0N functionfv dV 27ij &ijéu is considered as an appropriate
tions given by a Corresponding pair of stress functi/@n&:l,gz). model of diSSipativef@eCtS within a solid bOdy near thermo-
The classical results obtained by St.-Venant are given in ch. XIV ofdynamic equilibrium, with constant fourth order tensor com-
Love’s treatisel(ove, 1927) (see also ch. Il §16 ihandau and Lif-  ponentsy;j that are the viscous analogon of the components
shitz, 1986. They are contained as a special (and simplified) caseof the Hookean elasticity tensor. Transfering this ansatz to
within Berdichevsky’s more comprehensive and modern treatmenthe formalism used in our paper, the dissipation function of
in terms of his method of variational asymptotic analysis applied | gndau and Lifshit{1986 becomes that of &elvin—\oigt

to rods (sederdichevsky 1981, 1983and ch. 15 oBerdichevsky solid as given inLemaitre and Chaboch@990
2009. Apart of Timoshenko’s original treatment of shear correc-

tion factors, the article o€owper(1966 is a classical reference L L 1
on this subject, with correction factors obtained from pointwise Dy = fd = _f c .- aF

= S{Pkv(E)) = | ds=(E:V:E) , (28
(centroidal) and cross section averaged values of transverse shear"” < v (9 )>ﬂ 2 ( t ! >5‘l (28)
stressesr,s (see also the discussions in ch. Il, section 1Vibf 0 0

lagio, 1997 and section 2.1 oSimo et al, 1984. More recently L . . . . ~
an alternative approach basedeamergy balanceas utilized e.g. in which is a quadratic form in the material strain ré{g de-

(Gruttmann and Wagng2007) and likewise fits to our considera- fined as the time derivative othe G.reen—Lagrange strain ten-
tions, is considered as standard due to superior results. However, P! The constant fourth ordeiscosity tensofy may be as-

issue of correction factors for transverse shear in Timoshenko-typsumed to have the same symmetries as the Hookean tensor
rod models is still subject of discussion and research activities (seél, with its components depending arscosity parameters
e.g.Dong et al, 2010. in the same way as the componentstbflepend on elastic



moduli. The stress-strain relation of the Kelvin—Voigt model done for the derivation of the stored energyv.((é’) in the
is given byS=H : E+V : 4, with the viscous stre§given  previous subsection yield the expression
by the termS, := V : §,E = 05, £Pry (OE).

The dissipation function for a Cosserat rod results by in-2¥ikv (D) ~ ne(@Ha)? + n [(BiH1)? + (BH2)?] .
serting the raté)E’ of the modified strain tenso24) into ) _ ) _ _ )
the dissipation density functioWyy of the Kelvin—Voigt with the extensional viscositparameteme as defined in

; 2
model. We will compute this dissipation function explicitely Ed- €) appearing as the prefactbrof (3;Hs). The com--
in closed form for the special case ofh@amogeneous and putation of the cross section integrals of the squared time

5 .
isotropic material. In this special case, the viscosity tensorderivatives §Hy)? yields the expressions
assumes the form <(8IH3)2>

ABiV3) +14(0:Uq)?
A[(0V1)? + (8:V2)?| + 15(:U3)?,

View = (1@l + 2P = (g—%n)fcaf + 211, 29)  (@H)?+@H2)?),

from which we obtain the desired cross section integral of

depending on two constant parametdmsik viscosity; and o dissipation density function:

shear viscosity;.
To computed;E’ we use the expressio4) for the mod- 2(Piv (6£)>ﬂ ~ neABVa)? + nelq (B:U,)? (32)

ified Green—Lagrange strain tensor of a Cosserat rod includ- ) ) )
ing the small strain approximation), with the result + nA[@ VD +(@V2] + nls(0Us)

1 The dissipation functionl(l) of the Cosserat rod with diago-
HE'~ [8 Heal)+al ®aH|-vaHs [1-a@al’|  (30)  nal damping coficient matrices®) and damping parameters

(4) is then obtained aB, = Diy := [ ds (¥ @),

depending on the time derivativediH(£1,£2,5.1) =
OtHk(é1,62,8.1) (k)(s) of the material strain vector with

components
There is obviously a high degree of formal algebraic sim-
OH1(&2,51) = O Vai(st) — &0 Us(s 1), ilarity in the derivations of the stored energy functidrO)
OHa(€1,81) = OVa(st) +&10Us(s ), (31)  aspresented in Se@.5and the dissipation functiori{) as

presented above: both functionals result by inserting the spe-
Hs(é1,£2.81) OV3(s) +&20Ua(s)-61aU2(SY. e rain tensor24) of a Cosserat rod or respectively its
i.e.:RT-0(H = (9Hy) & = iV —£,8,%x0:U, written as a carte-  rate @0) into a volume integral over the 3-D body domain of
sian vector w.r.t. the global badis:, &, ). a density function defined as a quadratic form given by con-
Inserting Egs. 30) and @1) into the dissipation density stant isotropic fourth order material tensérsindV, making
function Wiy (BE’) = 1(9tE Vikv : E’ of the isotropic  use of the same geometric as well astall strairf approx-

Kelvin—Voigt model, analogous computational steps as thosdmations implied by the specific kinematical ansat3)(for
the configurations of a Cosserat rod. The formal analogy in

1B3Note that S, : &E = 2¥kv (&E) corresponds to theiscous  the derivation procedure leads to a dissipation den8i#y (
stress power densitguch that the integra,(t) := 2 [, dV ¥y (%E) that may be obtained from its elastic counterpan) py sub-
over the body volume yields the (time dependent) rate at whichstituting viscosity parameters for corresponding elastic mod-
a Kelvin—Voigt solid dissipates mechanical energy under approxi-y|j (G — 5, E — ng) and strain rates for strain measures.
mately isothermal conditions near thermodynamic equilibrium, (see |4 the case of the stored energy functidi©)(the efec-
ch. V' §34 and §35) ofandau and Lifshitz198§. For a thorough e giifness parameter@) of the rod model are obtained

discussion of the role of the dissipation function within the theory of ¢ o yerivation using a kinematical ansatz that completely
small fluctuations near thermodynamic equilibrium from the view- lect t-of-pl 0=9 due t
point of statistical physics we refer to the the corresponding para- neglects out-of-plane warping (i.ews = kws) due to

graphsin ch. XIl irLandau and Lifshit£1980 (in particular §121), transverse shearing and twisting, but accounts for in-plane
as well as V. Berdichevsky’s recent arti@@03 In section Vi of the ~ Warping (i.e.w, # 0) in a simplified way by assuming a uni-
latter, the author points out that a Kelvin—Voigt type constitutive re- form lateral contraction (ULC) of the cross section according
lation holds also afinite strains, with the dissipative part governed to the linear elastic theory (see Se8#). Softening &ects

by a fourth order viscosity tensdfE,3,E] depending on the local  due to out-of-plane warping are then accounted for by intro-
strain and its rate. While a dependenceVobn the invariants of  ducingshear correction factorg < xj < 1, which in the case

&E in general prevents the existence of a dissipation function, thegf g homogeneous and isotropic material enter the model as

latter doesindeed exist according to V.B.'s argumentsVit= V[E] multipliers A — A, = Ax, andls — Jr = Igx3 of the areaA
is independent of the strain rate. This holds e.g. in the case of the

Kelvin—\Voigt limit of constitutive laws belonging to the classfof UThe termK (1-2v)%+ ‘—,;G(1+v)2 = E analogously appears as the
nite linear viscoelasticitfColeman and NoJI1967) at suficiently prefactor ofHZ in the expression2g) of the stored energy function
small strain rates (i.e. fiiciently slow deformations of a body). of a Cosserat rod for the St.-Venant-Kirctihmaterial.




and polar moments of the cross section and — according connecting the spatial stress resultahts R-F and stress

to the linear theory — depermblelyon thecross section ge- couplesm= R - M to their material counterparts rotated to

ometry The modified sfiness constants) are obtained in  the local reference framieo(s) = a'g(s) Q&

combination with the elastic moduB = x4 andE, the latter Expanding the material force and moment vectors

appearing instead of + 2u due to the enforcment of van- w.r.t. the local ONB given by the reference frame

ishing in-plane stresses by allowing for ULC according to Ifzo(s) as fio(s) F(st) = Fk(st) ao(s) and Ro(s) M(s,t) =

Eq. 24). Mk(s,t) ao(s) yields their components in terms of the cross
Although the derivation of explicit formuld3for x; is car-  section integrals

ried out for static boundary value problems, the samg

as well as the kinematic ansatz accounting for ULC, mayFi = <Sjs>ﬂ » M1 = (£S33) . M2 = (-£1S33) 45

be used fordynamicproblems, due to the negligible influ- M3 = (£1S23—&S13) 4

ence of dynamic fects on the warping behaviour of cross " ) )

sections, provided that the rod geometry ifiisiently slen- of the components o6 W.r._t. this basis. To compute these_

der. Therefore the geometric modificatioAs— A, = Ax, components of the material force and moment vectors in

and I3 — Jr = Isx3, which have already been used to pro- ¢losed_form for the special cas® = Hsyk : E' + Viky :

vide modified stifness parameterd)(for an improved ap- HE’ =S + Sy With the approximate expression24f

proximation of the 3-D (volumetricklastic energyby the and @0) of the Green—Lagrange strain tensor and its rate and

stored energy function1() in the static as well as in the the constant isotropic material tenséfsvi = Ki @1 +2GP

dynamic case, remain likewise valid to achieve a compara@ndVikv = ¢ i@l +27P, we have to evaluate the cross section

ble improvement for the approximation of the 3-D integrated intégrals with the stress compone8t§ GH, +ndH, and

viscous stress powedy the dissipation functionll), with  Sis = EHs+7ediHs, with 7 := (1 2v)¢ + (1+v)3n multi-

modified damping parameters given by EB), (eading to the  Plying the strain raté;Hs ~ 6Ess.

modified expression®) for the dfective viscosity matrices. Thereforeng has to be interpreted as extensional viscos-
This completes our derivation of the Kelvin-Voigt type ity, but obviously difers from the expressione given in

dissipation function of a Cosserat rod. Although the argu-Ed. ©) and derived above by computing the dissipation func-

ments given above would certainly benefit from a mathemattion. Therefore the corresponding retardation time constant

ical confirmation by rigorous (asymptotic) analysis, the latter 7 := fie/E = §(78 + 2rs), which is independent of the value
is beyond the scope of this work. of Poisson’s ratrw likewise difers from the expression of

the extensional retardation time given in Eq. 6). Both ex-
pressiongg andne yield extensional viscosity as a combina-
tion of shear and bulk viscosity, but agree only in the special
casev = 0. The same assertion likewise holds for the cor-
responding retardation times, of course. However, oply
yields the correct incompressible limjt — 35 for v — %
while 7je tends to the smaller (and incorrect) value gfi@

The formulation of the Cosserat rod model given Riyno
(1985 introduces spatial force and moment vectbendm,

usually denoted astress resultantandstress couplesas the
cross section integrals

this case.
. &) The resulting expressions for the material force compo-
f(st) = (Pné&st)-a (S)>ﬂ ; nents are given by
— B . 5®
ey = (HIxPEesy &9, Fa = GAIV, + 7500V, . Fa = EA[(Va=1) + FealVi]

of the traction forces of the 1st Piola—Kirchhstress tensor and the material moment components correspondingly by
acting on the cross section area and the corresponding mo-

ments generated by the Piola—Kirclhtractions w.r.t. the M, = El,[(Uy—Ug) + TediU,] .
cross section centroid, Wh|c(:r)1 are obtained by means of thay, Gl3[(Us—Ugg) + 5 8iU3] .
“lever arm” vectoré(s) = £,a;” (). Both integrants may be
expressed in terms of the 2nd Piola—Kirchhetress by A comparison with the sfiness and damping paramete2} (
means of the transformatidd= F - S with the deformation ~ and €) entering the constitutive equatiory 6hows that the
grad|ent In V|ew of the small strain approxmaﬂlm Rrel .S derivation approach sketched above correctly yialtlef the

with S~ H : E discussed in Secs.3we obtain the relations  stiffness parameters as well as the damping parameters asso-
ciated to transverse and torsional shear deformations. How-

Ro(s)-F(st) = <é(§1,§2,s,t) aj"(s)) ever, the demping parameters governed by normal stresses
. N ® and extensional viscosity do not agree due to the appearance
Ro(s)-M(st) =~ (f(s) X 61.62.81) 8 (S)>y( of 7e instead of the correct time constarmt

The discrepancy between the results of both derivation ap-
Swe refer to footnotd 2 for a discussion of this issue. proaches can be traced back to the fact that the integration




of the traction forces and their associated moments over théhe element sfiness matrix (see Eq. 25 of the paper) indi-
cross section fails to account for the non-vanishing contribu-cates that the formulation chosenAbdel-Nasser and Sha-
tions of the in-plane strain ratégE,,, = —vd;H3 associated bana(2011) may have problems in the case of incompressible
to uniform lateral contraction to the total energy dissipation materials ¢ — %). A clarifying investigation of this issue as
of the rod. Paired with the corresponding viscous stress comwell as a detailed comparison of both models remains to be
ponentsS’,, = [(1-2v)¢—(1+v)n]diHs these result in the (in - done in future work.

aa

general non-vanishing) contribution
S, (BE,,) = —2v[(1-2v)¢ - (1+v)n](dHa)?
= (ne—7je) (BiHa)? As remarked already ihandau and Lifshit£1986), the mod-

to the dissipation function. As the cross section integralseIIing of viscous dissipation for solids by a dissipation func-

given above involve only the stress componesjtisandSy,, tion of Kelvin-Voigt type is va|_|d only_ _for_ relat|ve_ly slow
¢ processes near thermodynamic equilibrium, which means

hi itional f ing i finiti - I . .
this additional source of damping is, by definition, not con that the temperature within the solid should be approximately

tained in the resulting formulas for the material force and tant. and th ; lociti fth terial
moment components; andM; obtained via this approach. constant, and the Macroscopic velocities of the material par-
ticles of the solid should be ficiently slow w.r.t. the time

However, this deficiencyfBects only theviscouspart of le of all int | relaxati
the constitutive equations. The elastic part does not show an?cie '(I)I at |r: erna(lj re axzi_lorlhproctes;ses. ¢ briefly di
discrepancy, as the modified strain tensdt) (by construc- 0 flustrate and quan ify this sta ement, we brietly dis-
uss the one-dimensional example of a linear viscoelastic

tion provides vanishing in-plane elastic stress component . : o0 .
(see Sect3.4), such that the stored energy function does notstress-straln relationr(t) = fo drG(r)é(t - 7) governed by

; ; N Do
contain any contributions from non-vanishing in-plane elas-the relaxation functio®(r) = G + X, Gjexp(-7/7)) (i.e.:
tic stresses to the elastic energy, and the cross section intéProny seriepof ageneralized Maxwell modeBy Fourier

grals of the traction forces and their moments yiglldstift- ~ transformation we obtain the relatian(w)) = G(w)&(w) in
ness parameters correctly. the frequency domain, where the real and imaginary parts

In summary, the considerations above suggest that, alséf the complex modulus functidB(w) = Goo+2?'=1Gj%
in the case of more general viscoelastic constitutive lawsmodel the frequency dependentistess and damping prop-
our approach to deriveffiective constitutive equations for erties of the material.
Cosserat rods by computing the stored energy and dissipa- Using a 1-D Kelvin—Voigt modeby (t) = Ge(t)+n&(t) we
tion functions is superior to the alternative approach basedbtain the simple expressiorky (w) = [G +inw]&(w), which
on a direct computation of the forces and moments as resulapproximates the generalized Maxwell model dfisiently
tant cross section integrals of the traction forces and assdow frequencies witlG = G, andn = ZE\LIGJ‘T]’. The devia-
ciated moments, as the latter yields dfeetive extensional tion between the generalized Maxwell model and its Kelvin—
viscosity which is systematically too small for partially com- Voigt approximation may be estimated as
pressible and incompressible solids (i.e< 0< %).

lo(t) — kv ()] < ! ZN:G fmdw ) ()
— UKV > — j —

mi : J V1+(tjw)?
In the recent article oAbdel-Nasser and Shabaii2011),
a damp|ng mode| for geometrica“y non"near beams givenThiS deViation may indeed become Sma”, prOVided that the
in the ANCF (absolute nodal coordinates) formulation hasmodulus|é(w)| of the strain spectrum, which appears as a
been proposed. The authors obtained their model by insertweighting factor for the terms of the sum on the r.h.s., takes
ing the 3-D isotropic Kelvin—Voigt model as described above 0N non-vanishing values only at frequencies much smaller
into their ANCF element ansatz. They used the Eapa- than those given by the discrete spectrum of the inverse relax-
rametersd and u as elastic moduli, and introduced corre- ation timesw; = 1/7;. The estimate given above also shows
sponding Viscosity parametem and Iy, which they re- that in this case the KelVin—VOigt model proVideiDW fre-
lated to the elastic moduli byissipation factorsy,; and  duency approximationf second order accuracy.
vv2. From the context it seems clear that in our notation
Y2 = Ts, such thaj, = Grs = . Likewise we may identify
yu = 7g, such thatl, = Krg—3Grs = {— 4p, and the viscosi-
ties are related by the same relation as the elastic moduli (i.eTo illustrate the behaviour of our damping model, we show
A= K—%G). If the ANCF ansatz chosen Abdel-Nasser and the results of numerical simulations of nonlinear vibrations
Shabang2011) handles lateral contractiorffects correctly, of a cantilever beam in Fig3 obtained with the discrete
both models should behave similar and yield similar simula-Cosserat rod model presented_ing et al.(2011).
tion results. However, the appearance of the unmodified elas- The parameters of the beam are: lendth=30cm,
tic modulid = 2uv/(1-2v) andA+2u = 2u(1-v)/(1-2v) in quadratic cross-section aréa= 1x 1cn?, mass density =
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Damped non-linear bending vibrations of a clamped cantilever beam (see text for further details).

1gcnT3, Young's modulusE = 1MPa, and Poisson’s ratio present. During the vibrations the beam remains in the plane
v =0.3. We assume that/n = K/G holds for the viscosity of its initial deformation, such that all deformations are of

parameters, such that according to our modgltlle val-  plane bending type, and the extensional viscosity= Ete

ues of all retardation time constants are equgK s = 7). becomes the main influence for damping.

The tests were performed with thredfdrent values (02s, As expected, the plots of the transverse oscillation ampli-
0.04s, and M8s) ofrg = 7g;s. No gravitation is present. tude x(t) = e; - p(L,t) recorded at the free end of the beam

The beam is fully clamped at one end, the other end is ini-show an exponential dying out in the range of small ampli-
tially pulled sideways by applying a fordg = Fe; of mag-  tudes (linear regime). The deviations from the exponential
nitude F = 0.05N to the other end. The resulting initial de- envelope adapted to the linear regime that are observed dur-
formation state in static equilibriuth deviates far from the ing the initial phase clearly show the influence of geometric
linear range of deformations governed by (infinitesimally) nonlinearity. The plots also suggest that damping becomes
small displacements and rotations w.r.t. the reference conweaker in the nonlinear range. However, linear behaviour
figuration, while local strains are small in accordance with seems to start already with the fifth oscillation period, where
the constitutive assumptions. Starting from this initial equi- the amplitude still has a large value=oi. /3.
librium configuration, the beam is then released to vibrate This may be further analyzed by evaluating tbgarith-
transversally. The deformations of the beam shown in the in-mic decrementsy = In(x(t)/X(tx.1)) recorded between suc-
set of Fig.3 are snapshots taken during the first half period cesive maximax(ts) of the amplitude as well as the corre-
of the oscillations which illustrate that in the initial phase spondingdamping ratios¢y implicitely defined (seeCraig

of the oscillations substantial geometric nonlinearities are;p, Kurdila 2006 ch. 3.5, p. 75) by = 2n¢x/ /1_45_ The
plots for the values afx determined in this way are shown in
ration may be obtained as the curse» ¢, (s) and adapted frame thel '”S?‘t OLFI?_S' As expected,r;[_hi ratlols appro.ach constant
Rer = (€2%05p,)®€1+ 206+ Asp.®e; Of aninextensible Euler elas- values in the linear regime, which scale as 1_. 2:4 propor-
tica, which may be computed analytically in closed form in terms tional to the values of the time constant used in the sim-

of Jacobian elliptic functions and elliptic integrals (dewe, 1927, ulations. The simulations also show that the decrements be-
ch. XIX §260-263 ot.andau and Lifshitz1986 ch. Il §19). come lower in the range of large amplitudes, which confirms

16A highly accurate approximation of this equilibrium configu-



the observation that the dampinffext of our Kelvin—\oigt
model is extenuated by the presence of geometrical non-
linearity. Nevertheless; still scales approximately propor- Inour paper we presented the derivation of a viscous Kelvin—
tional tore also in the nonlinear range. Voigt type damping model for geometrically exact Cosserat
To investigate the influence of a variation of the bendingrods. For homogeneous and isotropic materials, we ob-
stiffness on the damping behaviour, an additional test withtained explicit formulas for the damping parameters given
quadrupled Young’s modulug = 4MPa was performed. In in terms of the sfiness parameters and retardation time
the corresponding amplitude plot shown in Figthe time constants, assuming moderate reference curvatures, small
axis of the plot with quadruplel was streched twofold, such strains and siiiciently low strain rates. In numerical simu-
that the oscillations could be compared directly. After time lations of vibrations of a clamped cantilever beam we ob-
stretching the E = 4 MPa g = 0.025s) plot coincides with ~ served a slightly weakening influence of geometric nonlin-
the E = 1MPatg = 0.045s) plot, surprisingly even through- earities on the damping of the oscillation amplitudes. We
out the whole nonlinear range. Since the oscillation pe_a|SO found that the variation of retardation time and bend-
riod T of the four times sfter (E = 4MPa) beam is twice ing stifness has a similarfiect on the damping ratio as in
smaller than that of the softeE( 1 MPa) beam, this sug- the linear regime. In view of the limitations of the Kelvin—
gests that the damping ratio varies proportional to the ratioVoigt model w.r.t. higher frequencies it would be worthwile
7e/T. Again this would be the expected behaviour in the lin- to develop more complex viscoelastic models (e.g. of gen-
ear regime, but is observed here in the nonlinear range agralized Maxwell type) for Cosserat rods. Our approach to
well. derive Kelvin—Voigt damping for Cosserat rods may be help-
For small amplitudes, the oscillation period may be esti- ful to obtain such models from three-dimensional continuum
mated asT ~ (27/3.561)L2+/pA/EIl using the well known theory in an analogous way.
formula for the fundamental transverse vibration frequency
of a cantilever beam obtained froEuler—Bernoullitheory
(seeCraig and Kurdila2006 ch. 13.2, Ex. 13.3, eq. 8). In-
serting the parameters assumed above, wa gefl.81s as
an estimate, which correponds well to the time intervals of
approximately B8 's between successive maxima shown inFrom a mathematical point of view, the tengbmay be re-
Fig. 3that are also observed throughout the range of geometgarded as the fundamental quantity to decribediapeof
rically nonlinear deformations. For linear vibrations, damp- a body, as it corresponds to theetricwhich determines the
ing ratio values{ ~ 1 correspond to aritical damping of  shape up to rigid body motions, provided that certain integra-
the vibrating system, while values<0¢ < 1 indicate aveak  bility conditions (i.e.: the vanishing of the Riemann curvature
damping. According to that, the valugsobserved in our ex-  tensor) are satisfied. Other strain measures may be obtained
periments are in the range of weak to moderate damping, ands invertible functions of via its spectral decomposition
are well approximated by the empirical formula: 27e/T.  As a supplement to the brief discussion given in S8,
This provides a rough guideline for estimating the strenghtwe mention a few alternatives to measure 3-D strains and
of damping, or likewise an adjustment of the the retardationstresses used elsewhere in connection with geometrically ex-
time 7¢ relative to the fundamental peridd if the Kelvin— act rod theory.
Voigt model is utilized to provide artificial viscous damping
in the sense oAntman (2003. According to this, a critical
damping of transverse bending vibrations would be observed
at a value ofrg ~ #T. In the case of small strains, tiBiot strain tensor defined as
Corresponding experiments for axial or torsional vibra- Eg := U~ 1, with theright stretch tensoU | givenimplicitely
tions are limited to the range of small vibrations amplitudes, either by the polar decompostuﬁn: de U of the deforma-
similar to the ones shown bpbdel-Nasser and Shabana tion gradient, or ad) = C¥2 in terms of the right Cauchy—
(2011), as for large amplitudes one would inevitably induce Green tensor, is likewise an appropriate alternative choice of
buckling to bending deformations, such that all deformationa frame-indfferent material strain measure. Due to the alge-
modes would occur simultaneously, which greatly hampersbraic identityE = 1(0?-1) = 1(+U)-Eg the Biot and Green—
a systematic investigation offtierent dampingféects in the  Lagrange strains agree up to leading order for small strains,
geometrically nonlinear range. Nevertheless, experiments dte.: E ~ Eg holds whenevet ~ 1.
small amplitudes are helpful to determine the ranges of weak, One might argue that for small strains itis preferable to use
moderate and critical damping for the respective deformatiorEg as a strain measure, as itireear in U and therefore a first
modes, quantifyable by explicit formulas similar to the one order quantity in terms of in the principal stretchesfetient
given above for the case of transverse vibrations. These coulftom E, which is quadratic irJ). However, while 18) pro-
then be used e.g. to adjust damping dfetient deformation vides akinematically exacexpression foil +2E = C = 02,
modes to experimental obervations. a comparably simple closed form expression bitself is



not available. In general the teqsarhas to be constructed thatU ~ 1+ z—ﬁo [H ® agg) + a§> ® H | provides arapproximate

via the spectral decomposition 6f which in 3-D cannotbe  expression for the right stretch tensor of leading order in

expressed easfyin closed form. H/Jo, as its square agrees with the exact expressiorcfor
For special simplified problems, like thanedeforma-  up to terms of ordeO(H?/J3). Therefore, we obtailg ~

tion of an extensible Kirchh® rod as discussed hyschik % [H ® a(()3) 4 l5‘83)(8 HJ as arapproximateexpression for the

. . s

and Gerstmay(2009 andHumer and Irschi201]), itis  Bijot strain, which reduces to Eql9) for Jy ~ 1 and in this

possible to derive simple, kinematically exact closed formyay provides an alternative interpretation of Etp)( Within

expression$ for U and Ryq by inspection of the deforma-  the same order we may u%d@l,&,s’t) ~Rel(S 1) to ap-

tion gradient. Also in the more general casebiven by proximate the rotational part of the polar decompositiof.of

Eq. (18) an analytical solution of the spectral problem is pos-

sible: by inspectiomNs := H xag3)/(Hf+ H2)Y/2is found to be

one of its eigenvectors, with eigenvalgg= 1. The remain-

ing 2-D spectral problem may then be solved analytically by Following Kapania and L2003, Mata et al.(2007, 2008

aJacobi rotationwhich diagonalizes the matrix representing use the spatial vector quantity

C w.r.t. the ONB in the plane orthogonal té x al” given

A A 1. 1
by & and the unit vector along the direction of the projec- (F — Rrel) - ) = 3 Reet-H = 3-H a®
tion 8 x (H x ) = H, & of the material strain vecta 0 0
onto the local reference cross section. The resulting analytwith £ given by a kinematically exact expression for the de-

ical formulas® for the two eigenvalues? and orthonormal  formation gradient of a Cosserat rod equivalent to E6) {0
eigenvectordN,, of C, which we present below without pro-  measure the strain at the individual points of a cross section.

viding further details of their derivation, are given by: Its material counterpaﬂgl F}g .H= Jaler« as well as ob-
5 o ~ = s 2 e jective rates of both vector quantities are then used by these
-1 = Hz+[H[7/2+ \/(H3 +IHI2/2) + (H] + H3) » authors to formulate inelastic constitutive laws for their rod
N, = cosg) H, ag“)/(Hf i H§)1/2 + sin() agS) ) model_on the 3-D_Ieve|, which are required for a subsequent
B i @) 1142\ L2 3 numerical evaluation of the spatial stress resultants and cou-
N2 = -sin@)H.a,"/(H]+H3)™ + cos@)a,”, ples of the rod in its deformed configurations by numerical
with H := H/Jo, and the angle given implicitely by integration over the cross section areas.
Following our discussion of the Biot strain and its approx-
/Hf + |-|§ cos(?) + (|5|3+ |||3|||2/2) sin(2) = 0. imation given above, one recognizes that the strain measure

. used byMata et al.(2008 likewise may be interpreted in

They provide the spectral decomposition- Zﬁzl/lﬁ Nk®Ng terms of an approximation of the Biot strain via
of the right CG tensor (seéBurtin, 1981 ch. land Il), andthe A
closed form expressidg = Y5_, (—-1)Nk®Ny of the Biot ~ F—Rrel ® F=Rpg = RpaEs ~ Rrel-Esg.
strain tensor, ag = C1/2, P, , o

These considerations confirm that, although a kinemati-USINg F —Rpd @s a strain measure is directly related to the
cally exact closed form expression B for deformed con- geometrlc ideato quant|fy the strains Caused_ by the de_forma-
figurations of a Cosserat rodH(+ 0) may be derived in this 10N of a body by the deviation of a deformation mapping to
way, it consists of algebraically rather complicated expres-& 119id body motion, as discussed 6yao et al(2010. For a
sions in terms of the vectdd /J, and its components, com- 9IVen Qeformauon gradieri with posmve determinant, this
pared to the relatively simple formuld8) for the Green—  deviation may be measured by the distance &f the group

Lagrange strain. Otherwise, it is straightforward to show SO(3) Of proper rotations defined as MR IF - RllF,
where||- || denotes the Frobenius norm. It can be shown

“"Whereas analytical expressions for thigenvaluef a 3-D  that the minimum is actually reached for the unique rotation

symmetric mat_rix are provided by Cardano’s formulas, we are notg _ FAde provided implicitely by the polar decomposition of
aware of any simple closed form expression forefgenvectors £ such that mi ”r: _ f2|| _ |||i ) (0 _ f)|| _ ||I§ I
18|n this special case, or likewise for spatial deformations of | ’ Reso(g) I F pd F -BIIF
extensibleElasticawithout twisting, H, = 0 = H = Hs a§,3) holds, holds due to the invariance of the norm undgr rotations. AI-_
such that the exact expressicRig = Reel and 0 = | + H2a9 @ o toge_the[ these con5|d_erat|ons, combl_ned with t_he approxi-
may be read @ directly from Eq. (6) due to the uniquoeness of the mat!oand ~ Rerel, proy|de a geometric mterpretatpn for the
polar decomposition. strain measure considered blata et al.(2008 and its rela-
19The spectral problem for the modified ten€r= i + 2E given  tion to the Biot strain.
by Eq. 4), which accounts for uniform lateral contraction and van-
ishing in-plane stresses, may also be solved analytically in the same
way. The corresponding formulas, which we omit here, are very
similar to the ones given above, with the terdi & [|H12/2) multi- In some works dealing with geometrically exact rods, e.g. in
plied by factors (1 v). the articles ofirschik and Gerstmay2009 andHumer and



Irschik (2011, 3-D stress distributions within cross sections In addition, other model variants for geometrically nonlinear
are analyzed in terms of the (unsymmetBit stresdensor  rods or beams exist, like the already mentioned ANCF ap-
Tg:=RI,-P=U-8§, which is related to thetiue) Cauchy  proach used bjbdel-Nasser and Shaba(201J), or the re-
stressé via the co-rotational stress tensBf,-6-Rpg= ~ Centapproach alynamic splinesvestigated byfheetten et
al. (2008 andValentini and Pennestt2011), where geomet-

rically exact extensible Kirchifbrods, which require only a
) 37, S a9l e single angle variable to account for twisting, are desribed us-
related to the Biot strailes, as|Tg - Tg L 0Eg =0 holds, g computer-aided geometrical design functions, very simi-
such that both yield identical virtual work expressions. lar to the usage of cubic Hermite splines on the element level

Small strain appro?qrpangn_s of t_hesg stress quantities are,g employed byVeiss(20028.
obtained by substituting ~ | (implying F ~ Rpq andJ ~ 1) In view of the great variety of discretization approaches
mto the various t_rangformatlon identities for _the stresse_s aSpplied to diferent geometrically exact rod models, a corre-
given above. This A)zgelds: the set of approximate relationsgyonging discussion afiscreteversions of our Kelvin—Voigt
Te~Rpy & Rpa~Tg ~ S, which are valid to leading or-  aqel (1) for each variant is clearly beyond the scope of this
der, analogous to the approximate relatidfis~ E for the article. In general, any implementation may be obtained most
corresponding strain quantities. The approximate stress reeasily by asemidiscret@pproach in terms ahaterial strain
lations @1) are obtained by the additional approximation quantities as used in EdL)( In this way one circumvents the
F-U™ = Rpa ~ Rre), likewise valid to the same order, which technically rather complicated issue of constructing (and im-
effectively amounts to applying the approximatibn: Rye plementing) objective strain rates, which for the discretized
(implying J ~ 1) within all transformations of stress tensors. material strain measured);, and Vy, of a Cosserat rod are

In summary, due to the assumption of small strains, thegiven by simple partial time derivativesUy, andd,V},. An
Biot and 2 Piola—Kichhdf stress tensors approximately co- adaption of Eq. 1) for the dynamic spline model mentioned
incide to leading order (i.eT ~ S), such that both stresses above is obtained by setting the transverse shear strains and
approximately correspond to the co-rotational stress tensofheir rates to zero\(, = 0 = 4;V,), such that/s = ||dsp(s )|l
given by the components of the Cauchy stress (Tg.~»  remains as the measure for elongational strain.
RT|~6--Rre| ~ S) w.r.t. the approximate material basis (i.e.:

G ~ ¥ ~ G¥) given by the reference framé(s).

J1Tg- 0. The Biot stress tensdig as well as itssymmet-
ric partTS‘) = %(TB +T}) are both work—conjugate stresses
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