Articles | Volume 16, issue 2
https://doi.org/10.5194/ms-16-771-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ms-16-771-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Review article: Plant-inspired robotics: a comprehensive review based on on-/off-plant behaviours and future perspectives
College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
Chenting Zhou
College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
Yutong Wu
College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
Shuzhi Wang
College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
Ruihan Liu
College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
Shunmei Wang
College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
Yongjing Hu
College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
Junyi Li
College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
Guangbo Hao
School of Engineering and Architecture, University College Cork, Cork, T12 K8AF, Ireland
Related authors
Haitong Liang, Hailing Fu, and Guangbo Hao
Mech. Sci., 15, 159–168, https://doi.org/10.5194/ms-15-159-2024, https://doi.org/10.5194/ms-15-159-2024, 2024
Short summary
Short summary
A miniaturized statically balanced compliant mechanism is proposed as a structural solution to effectively lower the working frequencies of vibrational energy harvesters to ultralow levels across a wide bandwidth for practical applications. This mechanism exhibits zero stiffness and zero force within a specific displacement range and stiffness nonlinearity in the overall range. It overcomes the working frequency limit imposed by the size effect, showing great potential application value.
Haitong Liang, Hailing Fu, and Guangbo Hao
Mech. Sci., 15, 159–168, https://doi.org/10.5194/ms-15-159-2024, https://doi.org/10.5194/ms-15-159-2024, 2024
Short summary
Short summary
A miniaturized statically balanced compliant mechanism is proposed as a structural solution to effectively lower the working frequencies of vibrational energy harvesters to ultralow levels across a wide bandwidth for practical applications. This mechanism exhibits zero stiffness and zero force within a specific displacement range and stiffness nonlinearity in the overall range. It overcomes the working frequency limit imposed by the size effect, showing great potential application value.
Cited articles
Agostinelli, D., Lucantonio, A., Noselli, G., and DeSimone, A.: Nutations in growing plant shoots: The role of elastic deformations due to gravity loading, J. Mech. Phys. Solids, 136, 103702, https://doi.org/10.1016/j.jmps.2019.103702, 2020.
Ahmad, H., Sehgal, S., Mishra, A., and Gupta, R.: Mimosa pudica L. (Laajvanti): An overview, Pharmacogn Rev., 6, 115, https://doi.org/10.4103/0973-7847.99945, 2012.
Ahmed, E. M.: Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res., 6, 105–121, https://doi.org/10.1016/j.jare.2013.07.006, 2015.
Aishan, Y., Funano, S.-I., Sato, A., Ito, Y., Ota, N., Yalikun, Y., and Tanaka, Y.: Bio-actuated microvalve in microfluidics using sensing and actuating function of mimosa pudica, Sci. Rep., 12, 7653, https://doi.org/10.1038/s41598-022-11637-3, 2022.
Ameduri, S. and Concilio, A.: Morphing wings review: Aims, challenges, and current open issues of a technology, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 237, 4112–4130, https://doi.org/10.1177/0954406220944423, 2023.
Andersen, M. C.: Diaspore morphology and seed dispersal in several wind–dispersed asteraceae, Am. J. Bot., 80, 487–492, https://doi.org/10.1002/j.1537-2197.1993.tb13830.x, 1993.
Armon, S., Efrati, E., Kupferman, R., and Sharon, E.: Geometry and mechanics in the opening of chiral seed pods, Science, 333, 1726–1730, https://doi.org/10.1126/science.1203874, 2011.
Atamian, H. S., Creux, N. M., Brown, R. I., Garner, A. G., Blackman, B. K., and Harmer, S. L.: Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits, Science, 353, 587–590, https://doi.org/10.1126/science.aaf9793, 2016.
Athas, J. C., Nguyen, C. P., Zarket, B. C., Gargava, A., Nie, Z., and Raghavan, S. R.: Enzyme-triggered folding of hydrogels: Toward a mimic of the venus flytrap, ACS Appl. Mater. Interfaces, 8, 19066–19074, https://doi.org/10.1021/acsami.6b05024, 2016.
Azuma, A.: Flight of seeds, flying fish, squid, mammals, amphibians and reptiles, in: Flow Phenomena in Nature–Volume 1: A Challenge to Engineering Design, edited by: Liebe, R., WIT Press, Southampton, UK, 88–103, ISBN 978-1-84564-001-9, 2007.
Bai, S., He, Q., and Chirarattananon, P.: A bioinspired revolving-wing drone with passive attitude stability and efficient hovering flight, Sci. Robot., 7, eabg5913, https://doi.org/10.1126/scirobotics.abg5913, 2022.
Bar-On, Y. M., Phillips, R., and Milo, R.: The biomass distribution on earth, P. Natl. Acad. Sci. USA, 115, 6506–6511, https://doi.org/10.1073/pnas.1711842115, 2018.
Bastola, A. K., Rodriguez, N., Behl, M., Soffiatti, P., Rowe, N. P., and Lendlein, A.: Cactus-inspired design principles for soft robotics based on 3d printed hydrogel-elastomer systems, Mater. Des., 202, 109515, https://doi.org/10.1016/j.matdes.2021.109515, 2021.
Bauer, U., Paulin, M., Robert, D., and Sutton, G. P.: Mechanism for rapid passive-dynamic prey capture in a pitcher plant, P. Natl. Acad. Sci. USA, 112, 13384–13389, https://doi.org/10.1073/pnas.1510060112, 2015.
Berthet-Rayne, P., Sadati, S. H., Petrou, G., Patel, N., Giannarou, S., Leff, D. R., and Bergeles, C.: Mammobot: A miniature steerable soft growing robot for early breast cancer detection, IEEE Robot. Autom. Lett., 6, 5056–5063, https://doi.org/10.1109/LRA.2021.3068676, 2021.
Bianchi, G., Agoni, A., and Cinquemani, S.: A bioinspired robot growing like plant roots, J. Bionic. Eng., 20, 2044–2058, https://doi.org/10.1007/s42235-023-00369-3, 2023.
Birnbaum, K. D. and Alvarado, A. S.: Slicing across kingdoms: Regeneration in plants and animals, Cell, 132, 697–710, https://doi.org/10.1016/j.cell.2008.01.040, 2008.
Blumenschein, L. H., Coad, M. M., Haggerty, D. A., Okamura, A. M., and Hawkes, E. W.: Design, modeling, control, and application of everting vine robots, Front. Robot. AI, 7, https://doi.org/10.3389/frobt.2020.548266, 2020.
Bolnick, D. I., Barrett, R. D., Oke, K. B., Rennison, D. J., Stuart, Y. E., and Futuyma, D.: Annual review of ecology, evolution, and systematics, Annu. Rev., 49, 303–330, https://doi.org/10.1146/annurev-ecolsys-110617-062240, 2018.
Braam, J.: In touch: Plant responses to mechanical stimuli, New Phytol., 165, 373–389, https://doi.org/10.1111/j.1469-8137.2004.01263.x, 2005.
Burri, J. T., Saikia, E., Läubli, N. F., Vogler, H., Wittel, F. K., Rüggeberg, M., Herrmann, H. J., Burgert, I., Nelson, B. J., and Grossniklaus, U.: A single touch can provide sufficient mechanical stimulation to trigger venus flytrap closure, PLOS Biol., 18, e3000740, https://doi.org/10.1371/journal.pbio.3000740, 2020.
Cavalier-Smith, T.: A revised six-kingdom system of life, Biol. Rev., 73, 203–266, https://doi.org/10.1017/s0006323198005167, 1998.
Chapin III, F. S., Matson, P. A., and Vitousek, P.: Principles of terrestrial ecosystem ecology, Springer New York, New York, USA, https://doi.org/10.1007/b97397, 2011.
Cecchini, L., Mariani, S., Ronzan, M., Mondini, A., Pugno, N. M., and Mazzolai, B.: 4D printing of humidity-driven seed inspired soft robots, Adv. Sci., 10, 2205146, https://doi.org/10.1002/advs.202205146, 2023.
Cezan, S. D., Baytekin, H. T., and Baytekin, B.: Self-regulating plant robots: Bioinspired heliotropism and nyctinasty, Soft Robot., 7, 444–450, https://doi.org/10.1089/soro.2019.0036, 2020.
Chen, G., Gou, Y., and Zhang, A.: Synthesis of compliant multistable mechanisms through use of a single bistable mechanism, J. Mech. Des., 133, 081007, https://doi.org/10.1115/1.4004543, 2011.
Chen, G., Ma, B., Chen, Y., Chen, Y., Zhang, J., and Liu, H.: Soft robots with plant-inspired gravitropism based on fluidic liquid metal, Adv. Sci., 11, 2306129, https://doi.org/10.1002/advs.202306129, 2024.
Chen, H., Zhang, P., Zhang, L., Liu, H., Jiang, Y., Zhang, D., Han, Z., and Jiang, L.: Continuous directional water transport on the peristome surface of nepenthes alata, Nature, 532, 85–89, https://doi.org/10.1038/nature17189, 2016.
Chen, H., Ran, T., Gan, Y., Zhou, J., Zhang, Y., Zhang, L., Zhang, D., and Jiang, L.: Ultrafast water harvesting and transport in hierarchical microchannels, Nat. Mater., 17, 935–942, https://doi.org/10.1038/s41563-018-0171-9, 2018.
Chen, Y., Valenzuela, C., Zhang, X., Yang, X., Wang, L., and Feng, W.: Light-driven dandelion-inspired microfliers, Nat. Commun., 14, 3036, https://doi.org/10.1038/s41467-023-38792-z, 2023a.
Chen, Y., Jiao, Z., Jiao, S., Quan, Z., Zhang, C., Li, B., Niu, S., Han, Z., and Ren, L.: Bio-inspired anti-glare and self-cleaning surface for optical/tissue residue pollution treatment of medical device surface, Chem. Eng. J., 506, 160041, https://doi.org/10.1016/j.cej.2025.160041, 2025a.
Chen, Z., Wang, H., Cao, Y., Chen, Y., Akkus, O., Liu, H., and Cao, C.: Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots, Matter, 6, 3803–3837, https://doi.org/10.1016/j.matt.2023.08.011, 2023b.
Chen, Z., Chen, J., Jung, S., Kim, H.-Y., Preti, M. L., Laschi, C., Ren, Z., Sitti, M., Full, R. J., and Yang, G.-Z.: Bioinspired and biohybrid soft robots: Principles and emerging technologies, Matter, 8, 102045, https://doi.org/10.1016/j.matt.2025.102045, 2025b.
Cheng, T., Thielen, M., Poppinga, S., Tahouni, Y., Wood, D., Steinberg, T., Menges, A., and Speck, T.: Bio-inspired motion mechanisms: Computational design and material programming of self-adjusting 4d-printed wearable systems, Adv. Sci., 8, 2100411, https://doi.org/10.1002/advs.202100411, 2021.
Cikalleshi, K., Nexha, A., Kister, T., Ronzan, M., Mondini, A., Mariani, S., Kraus, T., and Mazzolai, B.: A printed luminescent flier inspired by plant seeds for eco-friendly physical sensing, Sci. Adv., 9, eadi8492, https://doi.org/10.1126/sciadv.adi8492, 2023.
Coad, M. M., Blumenschein, L. H., Cutler, S., Zepeda, J. A. R., Naclerio, N. D., El-Hussieny, H., Mehmood, U., Ryu, J. H., Hawkes, E. W., and Okamura, A. M.: Vine robots, IEEE Robot. Autom. Mag., 27, 120–132, https://doi.org/10.1109/MRA.2019.2947538, 2020.
Cosgrove, D. J.: Growth of the plant cell wall, Nat. Rev. Mol. Cell Biol., 6, 850–861, https://doi.org/10.1038/nrm1746, 2005.
Cullen, E. and Hay, A.: Creating an explosion: Form and function in explosive fruit, Curr. Opin. Plant Biol., 79, 102543, https://doi.org/10.1016/j.pbi.2024.102543, 2024.
Cummins, C., Seale, M., Macente, A., Certini, D., Mastropaolo, E., Viola, I. M., and Nakayama, N.: A separated vortex ring underlies the flight of the dandelion, Nature, 562, 414–418, https://doi.org/10.1038/s41586-018-0604-2, 2018.
Darwin, C.: The movements and habits of climbing plants, Cambridge University Press, UK, ISBN 9781108003599, 1875a.
Darwin, C.: Insectivorous plants, John Murray, London, UK, 1875b.
Del Dottore, E., Mondini, A., Sadeghi, A., Mattoli, V., and Mazzolai, B.: An efficient soil penetration strategy for explorative robots inspired by plant root circumnutation movements, Bioinspiration Biomim., 13, 015003, https://doi.org/10.1088/1748-3190/aa9998, 2018.
Del Dottore, E., Mondini, A., Rowe, N., and Mazzolai, B.: A growing soft robot with climbing plant–inspired adaptive behaviors for navigation in unstructured environments, Sci. Robot., 9, eadi5908, https://doi.org/10.1126/scirobotics.adi5908, 2024.
Dixit, S. and Stefańska, A.: Bio-logic, a review on the biomimetic application in architectural and structural design, Ain Shams Eng. J., 14, 101822, https://doi.org/10.1016/j.asej.2022.101822, 2023.
Do, B. H., Banashek, V., and Okamura, A. M.: Dynamically reconfigurable discrete distributed stiffness for inflated beam robots, in: 2020 IEEE International Conference on Robotics and Automation (ICRA), 31 May-31 August 2020, https://doi.org/10.1109/ICRA40945.2020.9197237, 9050–9056, 2020.
Dorcheh, A. S. and Abbasi, M.: Silica aerogel; synthesis, properties and characterization, J. Mater. Process. Technol., 199, 10–26, https://doi.org/10.1016/j.jmatprotec.2007.10.060, 2008.
Duan, S., Wei, X., Weng, M., Zhao, F., Chen, P., Hong, J., Xiang, S., Shi, Q., Sun, L., Shen, G., and Wu, J.: Venus flytrap-inspired data-center-free fast-responsive soft robots enabled by 2D Ni3(HITP)2 MOF and graphite, Adv. Mater., 36, 2313089, https://doi.org/10.1002/adma.202313089, 2024.
Duanmu, D., Wen, R., Li, X., Huang, W., and Hu, Y.: Development of assistive donning device of robotic hand glove inspired by the venus flytrap, Mech. Based Des. Struct. Mach., 53, 1–15, https://doi.org/10.1080/15397734.2025.2487171, 2025.
Durak, G. M., Thierer, R., Sachse, R., Bischoff, M., Speck, T., and Poppinga, S.: Smooth or with a snap! Biomechanics of trap reopening in the venus flytrap (dionaea muscipula), Adv. Sci., 9, 2201362, https://doi.org/10.1002/advs.202201362, 2022.
Elbaum, R. and Abraham, Y.: Insights into the microstructures of hygroscopic movement in plant seed dispersal, Plant Sci., 223, 124–133, https://doi.org/10.1016/j.plantsci.2014.03.014, 2014.
Elbaum, R., Zaltzman, L., Burgert, I., and Fratzl, P.: The role of wheat awns in the seed dispersal unit, Science, 316, 884–886, https://doi.org/10.1126/science.1140097, 2007.
El-Hussieny, H., Hameed, I. A., and Ryu, J.-H.: Nonlinear model predictive growth control of a class of plant-inspired soft growing robots, IEEE Access, 8, 214495–214503, https://doi.org/10.1109/ACCESS.2020.3041616, 2020.
Esser, F. J., Auth, P., and Speck, T.: Artificial venus flytraps: A research review and outlook on their importance for novel bioinspired materials systems, Front. Robot. AI, 7, 75, https://doi.org/10.3389/frobt.2020.00075, 2020.
Etale, A., Onyianta, A. J., Turner, S. R., and Eichhorn, S. J.: Cellulose: A review of water interactions, applications in composites, and water treatment, Chem. Rev., 123, 2016–2048, https://doi.org/10.1021/acs.chemrev.2c00477, 2023.
Evangelista, D., Hotton, S., and Dumais, J.: The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae), J. Exp. Biol., 214, 521–529, https://doi.org/10.1242/jeb.050567, 2011.
Farhan, M., Hartstein, D. S., Pieper, Y., Behl, M., Lendlein, A., and Neffe, A. T.: Bio-inspired magnetically controlled reversibly actuating multimaterial fibers, Polymers, 15, 2233, https://doi.org/10.3390/polym15092233, 2023.
Feng, L., Li, S., Li, Y., Zhang, L., Zhai, J., and Song, B.: Super-hydrophobic surfaces: From natural to artificial, Adv. Mater., 14, 1857–1860, https://doi.org/10.1002/adma.200290020, 2002.
Feng, W., He, Q., and Zhang, L.: Embedded physical intelligence in liquid crystalline polymer actuators and robots, Adv. Mater., 37, 2312313, https://doi.org/10.1002/adma.202312313, 2025.
Fenner, M.: Seeds: The ecology of regeneration in plant communities, CABI Publishing, Wallingford, UK, https://doi.org/10.1079/9780851994321.0000, 2000.
Findlay, G. and Findlay, N.: Anatomy and movement of the column in Stylidium, Funct. Plant Biol., 2, 597–621, https://doi.org/10.1071/PP9750597, 1975.
Fiorello, I., Tricinci, O., Naselli, G. A., Mondini, A., Filippeschi, C., Tramacere, F., Mishra, A. K., and Mazzolai, B.: Climbing plant-inspired micropatterned devices for reversible attachment, Adv. Funct. Mater., 30, 2003380, https://doi.org/10.1002/adfm.202003380, 2020.
Fiorello, I., Meder, F., Mondini, A., Sinibaldi, E., Filippeschi, C., Tricinci, O., and Mazzolai, B.: Plant-like hooked miniature machines for on-leaf sensing and delivery, Commun. Mater., 2, 103, https://doi.org/10.1038/s43246-021-00208-0, 2021.
Fiorello, I., Ronzan, M., Speck, T., Sinibaldi, E., and Mazzolai, B.: A biohybrid self-dispersing miniature machine using wild oat fruit awns for reforestation and precision agriculture, Adv. Mater., 36, 2313906, https://doi.org/10.1002/adma.202313906, 2024.
Forterre, Y.: Slow, fast and furious: Understanding the physics of plant movements, J. Exp. Bot., 64, 4745–4760, https://www.jstor.org/stable/24041828 (last access: 20 October 2025), 2013.
Forterre, Y., Skotheim, J. M., Dumais, J., and Mahadevan, L.: How the venus flytrap snaps, Nature, 433, 421–425, https://doi.org/10.1038/nature03185, 2005.
Fu, L., Zhao, W., Ma, J., Yang, M., Liu, X., Zhang, L., and Chen, Y.: A humidity-powered soft robot with fast rolling locomotion, Research, https://doi.org/10.34133/2022/9832901, 2022.
Galstyan, A. and Hay, A.: Snap, crack and pop of explosive fruit, Curr. Opin. Genet. Dev., 51, 31–36, https://doi.org/10.1016/j.gde.2018.04.007, 2018.
Gao, W., Wang, L., Wang, X., and Liu, H.: Magnetic driving flowerlike soft platform: Biomimetic fabrication and external regulation, ACS Appl. Mater. Interfaces, 8, 14182–14189, https://doi.org/10.1021/acsami.6b03218, 2016.
Gao, X., Zhu, D., Fan, S., Rahman, M. Z., Guo, S., and Chen, F.: Structural and mechanical properties of bamboo fiber bundle and fiber/bundle reinforced composites: A review, J. Mater. Res. Technol., 19, 1162–1190, https://doi.org/10.1016/j.jmrt.2022.05.077, 2022.
Geim, A. K. and Novoselov, K. S.: The rise of graphene, Nat. Mater., 6, 183–191, https://doi.org/10.1038/nmat1849, 2007.
Geitmann, A.: Actuators acting without actin, Cell, 166, 15–17, https://doi.org/10.1016/j.cell.2016.06.030, 2016.
Gerbode, S. J., Puzey, J. R., McCormick, A. G., and Mahadevan, L.: How the cucumber tendril coils and overwinds, Science, 337, 1087–1091, https://doi.org/10.1126/science.1223304, 2012.
Gibson, L. J.: The hierarchical structure and mechanics of plant materials, J. R. Soc. Interface, 9, 2749–2766, https://doi.org/10.1098/rsif.2012.0341, 2012.
Godin, C. and Caraglio, Y.: A multiscale model of plant topological structures, J. Theor. Biol., 191, 1–46, https://doi.org/10.1006/jtbi.1997.0561, 1998.
Gong, M., Feng, L., Yang, H., Geng, Z., Weng, T., and Zhang, D.: Venus flytrap-inspired actuator: Recent developments and prospects, Sens. Actuators A Phys., 394, 116920, https://doi.org/10.1016/j.sna.2025.116920, 2025.
Goriely, A. and Tabor, M.: Spontaneous helix hand reversal and tendril perversion in climbing plants, Phys. Rev. Lett., 80, 1564, https://doi.org/10.1103/PhysRevLett.80.1564, 1998.
Greenberg, H. C., Gong, M. L., Magleby, S. P., and Howell, L. L.: Identifying links between origami and compliant mechanisms, Mech. Sci., 2, 217–225, https://doi.org/10.5194/ms-2-217-2011, 2011.
Greene, D. F.: The role of abscission in long-distance seed dispersal by the wind, Ecology, 86, 3105–3110, https://doi.org/10.1890/04-1430, 2005.
Greer, J. D., Morimoto, T. K., Okamura, A. M., and Hawkes, E. W.: A soft, steerable continuum robot that grows via tip extension, Soft Robot., 6, 95–108, https://doi.org/10.1089/soro.2018.0034, 2018.
Greer, J. D., Morimoto, T. K., Okamura, A. M., and Hawkes, E. W.: A soft, steerable continuum robot that grows via tip extension, Soft Robot., 6, 95–108, https://doi.org/10.1089/soro.2018.0034, 2019.
Greer, J. D., Blumenschein, L. H., Alterovitz, R., Hawkes, E. W., and Okamura, A. M.: Robust navigation of a soft growing robot by exploiting contact with the environment, Int. J. Robot. Res., 39, 1724–1738, https://doi.org/10.1177/0278364920903774, 2020.
Griz, L. M. S. and Machado, I. C. S.: Fruiting phenology and seed dispersal syndromes in caatinga, a tropical dry forest in the northeast of brazil, J. Trop. Ecol., 17, 303–321, https://doi.org/10.1017/S0266467401001201, 2001.
Gu, F. and Nielsen, E.: Targeting and regulation of cell wall synthesis during tip growth in plants, J. Integr. Plant Biol., 55, 835–846, https://doi.org/10.1111/jipb.12077, 2013.
Guerrieri, E. and Rasmann, S.: Exposing belowground plant communication, Science, 384, 272–273, https://doi.org/10.1126/science.adk1412, 2024.
Guo, X., Tang, W., Qin, K., Zhong, Y., Xu, H., Qu, Y., Li, Z., Sheng, Q., Gao, Y., and Yang, H.: Powerful uav manipulation via bioinspired self-adaptive soft self-contained gripper, Sci. Adv., 10, eadn6642, https://doi.org/10.1126/sciadv.adn6642, 2024.
Ha, J., Choi, S. M., Shin, B., Lee, M., Jung, W., and Kim, H.-Y.: Hygroresponsive coiling of seed awns and soft actuators, Extreme Mech. Lett., 38, 100746, https://doi.org/10.1016/j.eml.2020.100746, 2020.
Hale, A. N., Imfeld, S. M., Hart, C. E., Gribbins, K. M., Yoder, J. A., and Collier, M. H.: Reduced seed germination after pappus removal in the north american dandelion (Taraxacum officinale; Asteraceae), Weed Sci., 58, 420–425, https://doi.org/10.1614/WS-D-10-00036.1, 2010.
Hausladen, M. M., Zhao, B., Kubala, M. S., Francis, L. F., Kowalewski, T. M., and Ellison, C. J.: Synthetic growth by self-lubricated photopolymerization and extrusion inspired by plants and fungi, P. Natl. Acad. Sci. USA, 119, e2201776119, https://doi.org/10.1073/pnas.2201776119, 2022.
Hawkes, E. W., Blumenschein, L. H., Greer, J. D., and Okamura, A. M.: A soft robot that navigates its environment through growth, Sci. Robot., 2, eaan3028, https://doi.org/10.1126/scirobotics.aan3028, 2017.
Hayashi, M., Feilich, K. L., and Ellerby, D. J.: The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis), J. Exp. Bot., 60, 2045–2053, https://doi.org/10.1093/jxb/erp070, 2009.
Hedley, E.: How the natural world is inspiring the robot eyes of the future, Nature, https://doi.org/10.1038/d41586-025-01660-5, 2025.
Hegenauer, V., Fürst, U., Kaiser, B., Smoker, M., Zipfel, C., Felix, G., Stahl, M., and Albert, M.: Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor, Science, 353, 478–481, https://doi.org/10.1126/science.aaf3919, 2016.
Higashiyama, T.: Pollen tube navigation can inspire microrobot design, Sci. Robot., 2, eaao1891, https://doi.org/10.1126/scirobotics.aao1891, 2017.
Hinds, T. E., Hawksworth, F. G., and McGinnies, W. J.: Seed discharge in Arceuthobium: A photographic study, Science, 140, 1236–1238, https://doi.org/10.1126/science.140.3572.1236, 1963.
Hong, Y., Zhao, Y., Berman, J., Chi, Y., Li, Y., Huang, H., and Yin, J.: Angle-programmed tendril-like trajectories enable a multifunctional gripper with ultradelicacy, ultrastrength, and ultraprecision, Nat. Commun., 14, 4625, https://doi.org/10.1038/s41467-023-39741-6, 2023.
Howell, L. L.: Compliant mechanisms, in: Encyclopedia of Nanotechnology, Springer, Dordrecht, Netherlands, ISBN047138478X, 2012.
Hyslop, J. and Trowsdale, S.: A review of hydrochory (seed dispersal by water) with implications for riparian rehabilitation, J. Hydrol. N. Z., 51, 137–152, https://www.jstor.org/stable/43945038 (last access: 20 October 2025), 2012.
Iluz, D.: Zoochory: The dispersal of plants by animals, in: All flesh is grass: Plant-animal interrelationships, Springer, https://doi.org/10.1007/978-90-481-9316-5_9, 2010.
Iyer, V., Gaensbauer, H., Daniel, T. L., and Gollakota, S.: Wind dispersal of battery-free wireless devices, Nature, 603, 427–433, https://doi.org/10.1038/s41586-021-04363-9, 2022.
Jalali, S., Aliabadi, M., and Mahdavinejad, M.: Learning from plants: A new framework to approach water-harvesting design concepts, Int. J. Build. Pathol. Adapt., 40, 405–421, https://doi.org/10.1108/IJBPA-01-2021-0007, 2022.
Jeong, S.-G., Kim, J., Son, H., Kim, J. S., Kim, J.-H., Kim, B.-G., and Lee, C.-S.: Fully autonomous water monitoring by plant-inspired robots, J. Hazard. Mater., 479, 135641, https://doi.org/10.1016/j.jhazmat.2024.135641, 2024.
Jiang, Y., Li, Y., Liu, K., Zhang, H., Tong, X., Chen, D., Wang, L., and Paik, J.: Ultra-tunable bistable structures for universal robotic applications, Cell Rep. Phys. Sci., 4, 101365, https://doi.org/10.1016/j.xcrp.2023.101365, 2023.
Johnson, K., Arroyos, V., Ferran, A., Villanueva, R., Yin, D., Elberier, T., Aliseda, A., Fuller, S., Iyer, V., and Gollakota, S.: Solar-powered shape-changing origami microfliers, Sci. Robot., 8, eadg4276, https://doi.org/10.1126/scirobotics.adg4276, 2023.
Joyeux, M.: At the conjunction of biology, chemistry and physics: The fast movements of dionaea, aldrovanda, utricularia and stylidium, Front. Life Sci., 5, 71–79, https://doi.org/10.1080/21553769.2012.708907, 2011.
Kaiser, B., Vogg, G., Fürst, U. B., and Albert, M.: Parasitic plants of the genus cuscuta and their interaction with susceptible and resistant host plants, Front. Plant Sci., 6, 45, https://doi.org/10.3389/fpls.2015.00045, 2015.
Kay, R., Nitièma, K., and Correa, D.: The bio-inspired design of a self-propelling robot driven by changes in humidity, in: Proceedings of the 38th eCAADe Conference, Berlin, Germany, 2, 233–242, ISBN: 978-9-49120-721-1, 2020.
Kayahan, N.: Assessment of some physical and mechanical properties of Ecballium Elaterium (L.) seeds grown in natural environment, Int. J. Life Sci. Agric. Res., 100, 3, https://doi.org/10.55677/ijlsar/V03I6Y2024-08, 2024.
Kayser, M., Cai, L., Falcone, S., Bader, C., Inglessis, N., Darweesh, B., and Oxman, N.: Fiberbots: An autonomous swarm-based robotic system for digital fabrication of fiber-based composites, Constr. Robot., 2, 67–79, https://doi.org/10.1007/s41693-018-0013-y, 2018.
Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A. F., Buckland, S. T., Canelles, Q., and Clarke, M. F.: Fire and biodiversity in the anthropocene, Science, 370, eabb0355, https://doi.org/10.1126/science.abb0355, 2020.
Khalil, A. S. and Collins, J. J.: Synthetic biology: Applications come of age, Nat. Rev. Genet., 11, 367–379, https://doi.org/10.1038/nrg2775, 2010.
Khuller, A. R., Christensen, P. R., Harrison, T. N., and Diniega, S.: The distribution of frosts on mars: Links to present-day gully activity, J. Geophys. Res.-Planets, 126, e2020JE006577, https://doi.org/10.1029/2020JE006577, 2021.
Kim, B. H., Li, K., Kim, J.-T., Park, Y., Jang, H., Wang, X., Xie, Z., Won, S. M., Yoon, H.-J., and Lee, G.: Three-dimensional electronic microfliers inspired by wind-dispersed seeds, Nature, 597, 503–510, https://doi.org/10.1038/s41586-021-03847-y, 2021.
Kim, J.-T., Yoon, H.-J., Cheng, S., Liu, F., Kang, S., Paudel, S., Cho, D., Luan, H., Lee, M., and Jeong, G.: Functional bio-inspired hybrid fliers with separated ring and leading edge vortices, PNAS nexus, 3, pgae110, https://doi.org/10.1093/pnasnexus/pgae110, 2024.
Kim, S.-W., Koh, J.-S., Cho, M., and Cho, K.-J.: Design & analysis a flytrap robot using bi-stable composite, in: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011, https://doi.org/10.1109/TRO.2012.2198510, 215–220, 2011.
Kim, S.-W., Koh, J.-S., Lee, J.-G., Ryu, J., Cho, M., and Cho, K.-J.: Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface, Bioinspir. Biomim., 9, 036004, https://doi.org/10.1088/1748-3182/9/3/036004, 2014.
Klimm, F., Thielen, M., Homburger, J., Modert, M., and Speck, T.: Natural coil springs: Biomechanics and morphology of the coiled tendrils of the climbing passion flower passiflora discophora, Acta Biomater., 189, 478–490, https://doi.org/10.1016/j.actbio.2024.10.002, 2024.
Knospler, J., Pagliocca, N., Xue, W., and Trkov, M.: Tendrilbot: Modular soft robot with versatile radial grasping and locomotion capabilities, Sens. Actuators A Phys., 378, 115835, https://doi.org/10.1016/j.sna.2024.115835, 2024.
Koch, K., Bhushan, B., and Barthlott, W.: Multifunctional surface structures of plants: An inspiration for biomimetics, Prog. Mater. Sci., 54, 137–178, https://doi.org/10.1016/j.pmatsci.2008.07.003, 2009.
Kretschmann, D.: Mechanical properties of wood, in: Wood handbook: Wood as an engineering material, US Dept. of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, USA, https://doi.org/10.2737/FPL-GTR-190, 5.1–5.46, 2010.
Kübler, A. M., du Pasquier, C., Low, A., Djambazi, B., Aymon, N., Förster, J., Agharese, N., Siegwart, R., and Okamura, A. M.: A comparison of pneumatic actuators for soft growing vine robots, Soft Robot., 11, 857–868, https://doi.org/10.1089/soro.2023.0169, 2024.
Lapotre, M. G., Ewing, R. C., Lamb, M., Fischer, W., Grotzinger, J., Rubin, D. M., Lewis, K., Ballard, M., Day, M., and Gupta, S.: Large wind ripples on mars: A record of atmospheric evolution, Science, 353, 55–58, https://doi.org/10.1126/science.aaf3206, 2016.
Le, Q., Bu, J., Qu, Y., Zhu, B., and Du, T.: Computational biomimetics of winged seeds, ACM Trans. Graph., 43, 1–13, https://doi.org/10.1145/3687899, 2024.
Lee, Y. W., Kim, J. K., Bozuyuk, U., Dogan, N. O., Khan, M. T. A., Shiva, A., Wild, A. M., and Sitti, M.: Multifunctional 3d-printed pollen grain-inspired hydrogel microrobots for on-demand anchoring and cargo delivery, Adv. Mater., 35, 2209812, https://doi.org/10.1002/adma.202209812, 2023.
Leighton, R. B. and Murray, B. C.: Behavior of carbon dioxide and other volatiles on mars, Science, 153, 136–144, https://doi.org/10.1126/science.153.3732.136, 1966.
Leovy, C.: Weather and climate on mars, Nature, 412, 245–249, https://doi.org/10.1038/35084192, 2001.
Li, J., Yan, J., Huang, M., and Wang, Y.: Design and feasibility tests of a gas-driven bionic flytrap soft robot, Research Square [Preprint], https://doi.org/10.21203/rs.3.rs-1113013/v1, 8 December 2021a.
Li, J., Tian, A., Sun, Y., Feng, B., Wang, H., and Zhang, X.: The development of a venus flytrap inspired soft robot driven by IPMC, J. Bionic. Eng., 20, 406–415, https://doi.org/10.1007/s42235-022-00250-9, 2023a.
Li, L., Wei, J., Zhang, J., Li, B., Yang, Y., and Zhang, J.: Challenges and strategies for commercialization and widespread practical applications of superhydrophobic surfaces, Sci. Adv., 9, eadj1554, https://doi.org/10.1126/sciadv.adj1554, 2023b.
Li, P., Zhang, Y., Zhang, G., Zhou, D., and Li, L.: A bioinspired soft robot combining the growth adaptability of vine plants with a coordinated control system, Research, 2021, https://doi.org/10.34133/2021/9843859, 2021b.
Li, S., Zhang, Y., and Liu, J.: Seed ejection mechanism in an oxalis species, Sci. Rep., 10, 8855, https://doi.org/10.1038/s41598-020-65885-2, 2020.
Li, W., Lou, C., Liu, S., Ma, Q., Liao, G., Leung, K. C. F., Gong, X., Ma, H., and Xuan, S.: Climbing plant-inspired multi-responsive biomimetic actuator with transitioning complex surfaces, Adv. Funct. Mater., 35, 2414733, https://doi.org/10.1002/adfm.202414733, 2025.
Liang, H., Hao, G., and Olszewski, O. Z.: A review on vibration-based piezoelectric energy harvesting from the aspect of compliant mechanisms, Sens. Actuators A Phys., 331, 112743, https://doi.org/10.1016/j.sna.2021.112743, 2021.
Liang, H., Hao, G., Olszewski, O. Z., and Pakrashi, V.: Ultra-low wide bandwidth vibrational energy harvesting using a statically balanced compliant mechanism, Int. J. Mech. Sci., 219, 107130, https://doi.org/10.1016/j.ijmecsci.2022.107130, 2022.
Liang, H., Yang, Z., Zhang, L., Luo, B., Liu, H., Li, L., Hopkins, J. B., and Hao, G.: The design of spatial compliant mechanisms with distributed multi-stability based on post-buckled cylindrical compliant beams, Mech. Syst. Signal Process., 228, 112365, https://doi.org/10.1016/j.ymssp.2025.112365, 2025.
Lim, H., Park, T., Na, J., Park, C., Kim, B., and Kim, E.: Construction of a photothermal venus flytrap from conductive polymer bimorphs, NPG Asia Mater., 9, e399–e399, https://doi.org/10.1038/am.2017.101, 2017.
Lin, Y., Zhang, C., Tang, W., Jiao, Z., Wang, J., Wang, W., Zhong, Y., Zhu, P., Hu, Y., and Yang, H.: A bioinspired stress-response strategy for high-speed soft grippers, Adv. Sci., 8, 2102539, https://doi.org/10.1002/advs.202102539, 2021.
Lindtner, T., Uzan, A. Y., Eder, M., Bar-On, B., and Elbaum, R.: Repetitive hygroscopic snapping movements in awns of wild oats, Acta Biomater., 135, 483–492, https://doi.org/10.1016/j.actbio.2021.08.048, 2021.
Liu, C., Zeng, L., Li, J., and Shao, X.: Effects of wings number on the flight performance of autorotating seeds, Phys. Fluids, 37, https://doi.org/10.1063/5.0244050, 2025.
Liu, J., Zhang, Y., Jiang, Y., Sun, H., Duan, R., Qu, J., Yao, D., Liu, S., and Guan, S.: Formation mechanism and occurrence law of pod shattering in soybean: A review, Phyton, 91, 1327, https://doi.org/10.32604/phyton.2022.019870, 2022a.
Liu, J., Zhao, P., Chen, K., Zhang, X., and Zhang, X.: 1U-sized deployable space manipulator for future on-orbit servicing, assembly, and manufacturing, Space Sci. Technol., 2022, https://doi.org/10.34133/2022/9894604, 2022b.
Liu, L., Wang, W., Ju, X.-J., Xie, R., and Chu, L.-Y.: Smart thermo-triggered squirting capsules for nanoparticle delivery, Soft Matter, 6, 3759–3763, https://doi.org/10.1039/C002231D, 2010.
Lucarotti, C., Totaro, M., Sadeghi, A., Mazzolai, B., and Beccai, L.: Revealing bending and force in a soft body through a plant root inspired approach, Sci. Rep., 5, 1–10, https://doi.org/10.1038/srep08788, 2015.
Luo, D., Gu, J., Qin, F., Wang, G., and Yao, L.: E-seed: Shape-changing interfaces that self drill, in: Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, https://doi.org/10.1145/3379337.3415855, 45–57, 2020.
Luo, D., Maheshwari, A., Danielescu, A., Li, J., Yang, Y., Tao, Y., Sun, L., Patel, D. K., Wang, G., and Yang, S.: Autonomous self-burying seed carriers for aerial seeding, Nature, 614, 463–470, https://doi.org/10.1038/s41586-022-05656-3, 2023.
Luong, J., Glick, P., Ong, A., DeVries, M. S., Sandin, S., Hawkes, E. W., and Tolley, M. T.: Eversion and retraction of a soft robot towards the exploration of coral reefs, in: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea, 14–18 April 2019, https://doi.org/10.1109/ROBOSOFT.2019.8722730, 801–807, 2019.
Lv, J., Song, Y., Jiang, L., and Wang, J.: Bio-inspired strategies for anti-icing, ACS nano, 8, 3152–3169, https://doi.org/10.1021/nn406522n, 2014.
Ma, Z., Song, K., Ju, J., Wang, Y., Jia, H., and Zhou, X.: Design and analysis of the thick-wall cylindrical origami metamaterials based on tessellation principles, Compos. Struct., 366, 119182, https://doi.org/10.1016/j.compstruct.2025.119182, 2025.
Mader, A., Langer, M., Knippers, J., and Speck, O.: Learning from plant movements triggered by bulliform cells: The biomimetic cellular actuator, J. R. Soc. Interface, 17, 20200358, https://doi.org/10.1098/rsif.2020.0358, 2020.
Mandelbrot, B. B.: The fractal geometry of nature/revised and enlarged edition, W. H. Freeman, New York, San Francisco, USA, ISBN0716711869, 1983.
Mao, L., Yang, P., Tian, C., Shen, X., Wang, F., Zhang, H., Meng, X., and Xie, H.: Magnetic steering continuum robot for transluminal procedures with programmable shape and functionalities, Nat. Commun., 15, 3759, https://doi.org/10.1038/s41467-024-48058-x, 2024.
Mariani, S., Cikalleshi, K., Ronzan, M., Filippeschi, C., Naselli, G. A., and Mazzolai, B.: A biodegradable, porous flier inspired by a parachute-like tragopogon fruit for environmental preservation, Small, 21, 2403582, https://doi.org/10.1002/smll.202403582, 2024.
Maric, T., Nasir, M. Z. M., Rosli, N. F., Budanović, M., Webster, R. D., Cho, N. J., and Pumera, M.: Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti-cancer drug carrier, Adv. Funct. Mater., 30, 2000112, https://doi.org/10.1002/adfm.202000112, 2020.
Mathiasen, R. L., Nickrent, D. L., Shaw, D. C., and Watson, D. M.: Mistletoes: Pathology, systematics, ecology, and management, Plant Dis., 92, 988–1006, https://doi.org/10.1094/PDIS-92-7-0988, 2008.
Maur, P. A. d., Djambazi, B., Haberthür, Y., Hörmann, P., Kübler, A., Lustenberger, M., Sigrist, S., Vigen, O., Förster, J., Achermann, F., Hampp, E., Katzschmann, R. K., and Siegwart, R.: Roboa: Construction and evaluation of a steerable vine robot for search and rescue applications, in: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 12–16 April 2021, https://doi.org/10.1109/RoboSoft51838.2021.9479192, 15–20, 2021.
Mazzolai, B.: Plant-inspired growing robots, in: Soft robotics: Trends, applications and challenges, Proceedings of the soft robotics week, Livorno, Italy, 25–30 April 2016, Springer, Cham, 57–36, https://doi.org/10.1007/978-3-319-46460-2, 2016.
Mazzolai, B., Tramacere, F., Fiorello, I., and Margheri, L.: The bio-engineering approach for plant investigations and growing robots. A mini-review, Front. Robot. AI, 7–2020, https://doi.org/10.3389/frobt.2020.573014, 2020.
Mazzolai, B., Mariani, S., Ronzan, M., Cecchini, L., Fiorello, I., Cikalleshi, K., and Margheri, L.: Morphological computation in plant seeds for a new generation of self-burial and flying soft robots, Front. Robot. AI, 8, 797556, https://doi.org/10.3389/frobt.2021.797556, 2021.
Meder, F., Babu, S. P. M., and Mazzolai, B.: A plant tendril-like soft robot that grasps and anchors by exploiting its material arrangement, IEEE Robot. Autom. Lett., 7, 5191–5197, https://doi.org/10.1109/LRA.2022.3153713, 2022.
Meng, Q., Wang, Q., Liu, H., and Jiang, L.: A bio-inspired flexible fiber array with an open radial geometry for highly efficient liquid transfer, NPG Asia Mater., 6, e125-e125, https://doi.org/10.1038/am.2014.70, 2014.
Minami, S. and Azuma, A.: Various flying modes of wind-dispersal seeds, J. Theor. Biol., 225, 1–14, https://doi.org/10.1016/S0022-5193(03)00216-9, 2003.
Minorsky, P. V.: The functions of foliar nyctinasty: A review and hypothesis, Biol. Rev., 94, 216–229, https://doi.org/10.1111/brv.12444, 2019.
Miranda, V. F., Silva, S. R., Reut, M. S., Dolsan, H., Stolarczyk, P., Rutishauser, R., and Płachno, B. J.: A historical perspective of bladderworts (utricularia): Traps, carnivory and body architecture, Plants, 10, 2656, https://doi.org/10.3390/plants10122656, 2021.
Mithöfer, A.: Carnivorous plants and their biotic interactions, J. Plant Interact., 17, 333–343, https://doi.org/10.1080/17429145.2022.2038710, 2022.
Mundargi, R. C., Potroz, M. G., Park, S., Shirahama, H., Lee, J. H., Seo, J., and Cho, N.-J.: Natural sunflower pollen as a drug delivery vehicle, Small, 12, 1167–1173, https://doi.org/10.1002/smll.201500860, 2015.
Murakami, K., Sato, M., Kubota, M., and Shintake, J.: Plant robots: Harnessing growth actuation of plants for locomotion and object manipulation, Adv. Sci., 11, 2405549, https://doi.org/10.1002/advs.202405549, 2024.
Muraoka, Y. and Ueda, M.: Nyctinasty, Current Biology, 34, R307–R308, https://doi.org/10.1016/j.cub.2024.02.047, 2024.
Must, I., Sinibaldi, E., and Mazzolai, B.: A variable-stiffness tendril-like soft robot based on reversible osmotic actuation, Nat. Commun., 10, 344, https://doi.org/10.1038/s41467-018-08173-y, 2019.
Naclerio, N. D., Karsai, A., Murray-Cooper, M., Ozkan-Aydin, Y., Aydin, E., Goldman, D. I., and Hawkes, E. W.: Controlling subterranean forces enables a fast, steerable, burrowing soft robot, Sci. Robot., 6, eabe2922, https://doi.org/10.1126/scirobotics.abe2922, 2021.
Naglich, A. and LeDuc, P.: Plant movement response to environmental mechanical stimulation toward understanding predator defense, Adv. Sci., 11, 2404578, https://doi.org/10.1002/advs.202404578, 2024.
Naselli, G. A., Scharff, R. B., Thielen, M., Visentin, F., Speck, T., and Mazzolai, B.: A soft continuum robotic arm with a climbing plant-inspired adaptive behavior for minimal sensing, actuation, and control effort, Adv. Intell. Syst., 6, 2300537, https://doi.org/10.1002/aisy.202300537, 2024.
Nathan, R., Katul, G. G., Bohrer, G., Kuparinen, A., Soons, M. B., Thompson, S. E., Trakhtenbrot, A., and Horn, H. S.: Mechanistic models of seed dispersal by wind, Theor. Ecol., 4, 113–132, https://doi.org/10.1007/s12080-011-0115-3, 2011.
Netto, A. G., Christoffoleti, P., VanGessel, M., Carvalho, S. J. P., Nicolai, M., and Brunharo, C.: Seed production, dissemination, and weed seedbanks, in: Persistence strategies of weeds, John Wiley & Sons Ltd., https://doi.org/10.1002/9781119525622.ch2, 2022.
Nexha, A., Mariani, S., Cikalleshi, K., Kister, T., Mazzolai, B., and Kraus, T.: Sensing relative humidity with a fluorescent seed-like biodegradable flier, Nanoscale, 17, 18143–18152, https://doi.org/10.1039/D5NR01318F, 2025.
Nietzel, T., Mostertz, J., Ruberti, C., Née, G., Fuchs, P., Wagner, S., Moseler, A., Müller-Schüssele, S. J., Benamar, A., and Poschet, G.: Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination, P. Natl. Acad. Sci. USA, 117, 741–751, https://doi.org/10.1073/pnas.1910501117, 2020.
Niklas, K. J.: Plant biomechanics: An engineering approach to plant form and function, University of Chicago Press, Chicago, USA, ISBN9780226586410, 1992.
Niwa, H.: Estimation of potential seed dispersal regions based on floating and ballochory of euphorbia adenochlora capsules, Ecol. Solut. Evid., 5, e70000, https://doi.org/10.1002/2688-8319.70000, 2024.
Ochola, J., Coyne, D., Cortada, L., Haukeland, S., Ng'ang'a, M., Hassanali, A., Opperman, C., and Torto, B.: Cyst nematode bio-communication with plants: Implications for novel management approaches, Pest Manag. Sci., 77, 1150–1159, https://doi.org/10.1002/ps.6105, 2021.
Oh, Y. S. and Kota, S.: Synthesis of multistable equilibrium compliant mechanisms using combinations of bistable mechanisms, J. Mech. Des., 131, 021002, https://doi.org/10.1115/1.3013316, 2009.
Pan, C. H., Lin, C. H., and Pan, H.-Y.: Development of novel actuating mechanisms for smart artificial flowers, in: Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering, Madrid, Spain, 16–18 August 2018, https://doi.org/10.11159/icmie18.116, 2018.
Pan, Y., Lee, L. H., Yang, Z., Hassan, S. U., and Shum, H. C.: Co-doping optimized hydrogel-elastomer micro-actuators for versatile biomimetic motions, Nanoscale, 13, 18967–18976, https://doi.org/10.1039/D1NR05757J, 2021.
Pan, Z., Pitt, W. G., Zhang, Y., Wu, N., Tao, Y., and Truscott, T. T.: The upside-down water collection system of Syntrichia caninervis, Nat. Plants, 2, 1–5, https://doi.org/10.1038/nplants.2016.76, 2016.
Park, C. S., Kang, Y.-W., Na, H., and Sun, J.-Y.: Hydrogels for bioinspired soft robots, Prog. Polym. Sci., 150, 101791, https://doi.org/10.1016/j.progpolymsci.2024.101791, 2024.
Peeketi, A. R., Sol, J. A., Swaminathan, N., Schenning, A. P., Debije, M. G., and Annabattula, R. K.: Calla lily flower inspired morphing of flat films to conical tubes, J. Polym. Sci., 61, 1065–1073, https://doi.org/10.1002/pol.20220492, 2023.
Pérez-Antón, M., Schneider, I., Kroll, P., Hofhuis, H., Metzger, S., Pauly, M., and Hay, A.: Explosive seed dispersal depends on spl7 to ensure sufficient copper for localized lignin deposition via laccases, P. Natl. Acad. Sci. USA, 119, e2202287119, https://doi.org/10.1073/pnas.2202287119, 2022.
Pimpale, P., Merlin, E., Adwaith, P., and Soni, K.: Natural nano-systems and their biomimetic applications: A comprehensive review, J. Adv. Biol. Biotechnol., 28, 553–563, https://doi.org/10.9734/jabb/2025/v28i52318, 2025.
Poppinga, S. and Joyeux, M.: Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa, Phys. Rev. E, 84, 041928, https://doi.org/10.1103/PhysRevE.84.041928, 2011.
Poppinga, S., Körner, A., Sachse, R., Born, L., Westermeier, A., Hesse, L., Knippers, J., Bischoff, M., Gresser, G. T., and Speck, T.: Compliant mechanisms in plants and architecture, in: Biomimetic research for architecture and building construction, Springer, Cham, Switerland, https://doi.org/10.1007/978-3-319-46374-2, 2016.
Poppinga, S., Böse, A.-S., Seidel, R., Hesse, L., Leupold, J., Caliaro, S., and Speck, T.: A seed flying like a bullet: Ballistic seed dispersal in chinese witch-hazel (Hamamelis mollis OLIV., Hamamelidaceae), J. R. Soc. Interface, 16, 20190327, https://doi.org/10.1098/rsif.2019.0327, 2019.
Poppinga, S., Correa, D., Bruchmann, B., Menges, A., and Speck, T.: Plant movements as concept generators for the development of biomimetic compliant mechanisms, Integr. Comp. Biol., 60, 886–895, https://doi.org/10.1093/icb/icaa028, 2020.
Qing, H., Chi, Y., Hong, Y., Zhao, Y., Qi, F., Li, Y., and Yin, J.: Fully 3d-printed miniature soft hydraulic actuators with shape memory effect for morphing and manipulation, Adv. Mater., 36, 2402517, https://doi.org/10.1002/adma.202402517, 2024.
Qing, H., Zhou, C., Qi, F., and Yin, J.: Programmable seconds-to-days-long delayed snapping in jumping metashells, P. Natl. Acad. Sci. USA, 122, e2503313122, https://doi.org/10.1073/pnas.2503313122, 2025.
Rabaux, O. and Jérôme, C.: Bioinspired morphing mechanisms for soft systems: A review, Adv. Intell. Syst., 7, 2400331, https://doi.org/10.1002/aisy.202400331, 2025.
Rafsanjani, A., Brulé, V., Western, T. L., and Pasini, D.: Hydro-responsive curling of the resurrection plant Selaginella lepidophylla, Sci. Rep., 5, 8064, https://doi.org/10.1038/srep08064, 2015.
Raja, V., Silva, P. L., Holghoomi, R., and Calvo, P.: The dynamics of plant nutation, Sci. Rep., 10, 19465, https://doi.org/10.1038/s41598-020-76588-z, 2020.
Ren, L., Li, B., Wang, K., Zhou, X., Song, Z., Ren, L., and Liu, Q.: Plant-morphing strategies and plant-inspired soft actuators fabricated by biomimetic four-dimensional printing: A review, Front. Mater., 8, 651521, https://doi.org/10.3389/fmats.2021.651521, 2021.
Ronzan, M., Mariani, S., Cecchini, L., Filippeschi, C., Dante, S., Pugno, N. M., and Mazzolai, B.: Structural and mechanical properties of humidity-responsive geraniaceae awns, Sci. Rep., 15, 21289, https://doi.org/10.1038/s41598-025-09186-6, 2025.
Sachse, R., Westermeier, A., Mylo, M., Nadasdi, J., Bischoff, M., Speck, T., and Poppinga, S.: Snapping mechanics of the venus flytrap (Dionaea muscipula), P. Natl. Acad. Sci. USA, 117, 16035–16042, https://doi.org/10.1073/pnas.2002707117, 2020.
Sadeghi, A., Mondini, A., Del Dottore, E., Mattoli, V., Beccai, L., Taccola, S., Lucarotti, C., Totaro, M., and Mazzolai, B.: A plant-inspired robot with soft differential bending capabilities, Bioinspir. Biomim., 12, 015001, https://doi.org/10.1088/1748-3190/12/1/015001, 2016.
Sadeghi, A., Mondini, A., and Mazzolai, B.: Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies, Soft Robot., 4, 211–223, https://doi.org/10.1089/soro.2016.0080, 2017.
Sagan, C. and Mullen, G.: Earth and mars: Evolution of atmospheres and surface temperatures, Science, 177, 52–56, https://doi.org/10.1126/science.177.4043.52, 1972.
Segundo-Ortin, M. and Calvo, P.: Consciousness and cognition in plants, WIREs Cogn. Sci., 13, e1578, https://doi.org/10.1002/wcs.1578, 2022.
Shahinpoor, M.: Biomimetic robotic venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites, Bioinspir. Biomim., 6, 046004, https://doi.org/10.1088/1748-3182/6/4/046004, 2011.
Sharifi, R. and Ryu, C. M.: Social networking in crop plants: Wired and wireless cross-plant communications, Plant Cell Environ., 44, 1095–1110, https://doi.org/10.1111/pce.13966, 2021.
Shen, G., Zhang, J., Lei, Y., Xu, Y., and Wu, J.: Between-plant signaling, Annu. Rev. Plant. Biol., 74, 367–386, https://doi.org/10.1146/annurev-arplant-070122-015430, 2023.
Shi, D., Zu, K., Nong, J., Yang, W., Zhang, Y., Liao, S., Zhu, G., and Sun, J.: How new plant species have been discovered in china: Collection gaps and preferences over the past century, Front. Plant Sci., 16, 1605431, https://doi.org/10.3389/fpls.2025.1605431, 2025.
Shin, B., Jung, S., Choi, M., Park, K., and Kim, H.-Y.: Plant-inspired soft actuators powered by water, MRS Bull., 49, 159–172, https://doi.org/10.1557/s43577-024-00663-3, 2024.
Speck, T., Poppinga, S., Speck, O., and Tauber, F.: Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the anthropocene, Anthropocene Rev., 9, 237–256, https://doi.org/10.1177/20530196211039275, 2022.
Speck, T., Cheng, T., Klimm, F., Menges, A., Poppinga, S., Speck, O., Tahouni, Y., Tauber, F., and Thielen, M.: Plants as inspiration for material-based sensing and actuation in soft robots and machines, MRS Bull., 48, 730–745, https://doi.org/10.1557/s43577-022-00470-8, 2023.
Suda, H., Mano, H., Toyota, M., Fukushima, K., Mimura, T., Tsutsui, I., Hedrich, R., Tamada, Y., and Hasebe, M.: Calcium dynamics during trap closure visualized in transgenic venus flytrap, Nat. Plants, 6, 1219–1224, https://doi.org/10.1038/s41477-020-00773-1, 2020.
Sun, M., Liu, Q., Fan, X., Wang, Y., Chen, W., Tian, C., Sun, L., and Xie, H.: Autonomous biohybrid urchin-like microperforator for intracellular payload delivery, Small, 16, 1906701, https://doi.org/10.1002/smll.201906701, 2020.
Swaine, M. D. and Beer, T.: Explosive seed dispersal in Hura crepitans L. (Euphorbiaceae), New Phytol., 78, 695–708, https://doi.org/10.1111/j.1469-8137.1977.tb02174.x, 1977.
Tauber, F. J., Auth, P., Teichmann, J., Scherag, F. D., and Speck, T.: Novel motion sequences in plant-inspired robotics: Combining inspirations from snap-trapping in two plant species into an artificial venus flytrap demonstrator, Biomimetics, 7, 99, https://doi.org/10.3390/biomimetics7030099, 2022.
Vander Wall, S. B., Kuhn, K. M., and Beck, M. J.: Seed removal, seed predation, and secondary dispersal, Ecology, 86, 801–806, https://doi.org/10.1890/04-0847, 2005.
Vanneste, S., Pei, Y., and Friml, J.: Mechanisms of auxin action in plant growth and development, Nat. Rev. Mol. Cell Biol., 26, 648–666, https://doi.org/10.1038/s41580-025-00851-2, 2025.
Viola, I. M. and Nakayama, N.: Flying seeds, Curr. Biol., 32, R204–R205, https://doi.org/10.1016/j.cub.2022.02.029, 2022.
Vittoz, P. and Engler, R.: Seed dispersal distances: A typology based on dispersal modes and plant traits, Bot. Helv., 117, 109–124, https://doi.org/10.1007/s00035-007-0797-8, 2007.
Volkov, A. G., Foster, J. C., Ashby, T. A., Walker, R. K., Johnson, J. A., and Markin, V. S.: Mimosa pudica: Electrical and mechanical stimulation of plant movements, Plant Cell Environ., 33, 163–173, https://doi.org/10.1111/j.1365-3040.2009.02066.x, 2010.
Walbot, V. and Evans, M. M.: Unique features of the plant life cycle and their consequences, Nat. Rev. Genet., 4, 369–379, https://doi.org/10.1038/nrg1064, 2003.
Wang, B., Hou, Y., Zhong, S., Zhu, J., and Guan, C.: Biomimetic venus flytrap structures using smart composites: A review, Materials, 16, 6702, https://doi.org/10.3390/ma16206702, 2023.
Wang, J., Hu, W., Tian, Y., Caro, S., and Zhao, Y.: Design and analysis of an origami-inspired gripper with passive bistable grasping capability, in: International Conference on Intelligent Robotics and Applications, Xi'an, China, 31 July–2 August 2024, 266–277, https://doi.org/10.1007/978-981-96-0771-6_20, 2024a.
Wang, M., Lin, B.-P., and Yang, H.: A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes, Nat. Commun., 7, 13981, https://doi.org/10.1038/ncomms13981, 2016.
Wang, X., Khara, A., and Chen, C.: A soft pneumatic bistable reinforced actuator bioinspired by venus flytrap with enhanced grasping capability, Bioinspir. Biomim., 15, 056017, https://doi.org/10.1088/1748-3190/aba091, 2020.
Wang, X., Pan, C., Xia, N., Zhang, C., Hao, B., Jin, D., Su, L., Zhao, J., Majidi, C., and Zhang, L.: Fracture-driven power amplification in a hydrogel launcher, Nat. Mater., 23, 1428–1435, https://doi.org/10.1038/s41563-024-01955-4, 2024b.
Wani, O. M., Zeng, H., and Priimagi, A.: A light-driven artificial flytrap, Nat. Commun., 8, 15546, https://doi.org/10.1038/ncomms15546, 2017.
Wei, J., Li, R., Li, L., Wang, W., and Chen, T.: Touch-responsive hydrogel for biomimetic flytrap-like soft actuator, Nano-Micro Lett., 14, 182, https://doi.org/10.1007/s40820-022-00931-4, 2022.
Wen, L., Tian, Y., and Jiang, L.: Bioinspired super-wettability from fundamental research to practical applications, Angew. Chem. Int. Ed., 54, 3387–3399, https://doi.org/10.1002/anie.201409911, 2015.
White, B. R.: Soil transport by winds on mars, J. Geophys. Res.-Solid Earth, 84, 4643–4651, https://doi.org/10.1029/JB084iB09p04643, 1979.
Wijerathne, B., Liao, T., Jiang, X., Zhou, J., and Sun, Z.: Plant-inspired surfaces and interfaces for sustainable technologies, Mater. Futures, 4, 012301, https://doi.org/10.1088/2752-5724/ad93ea, 2025.
Wooten, M. B. and Walker, I. D.: Vine-inspired continuum tendril robots and circumnutations, Robotics, 7, 58, https://doi.org/10.3390/robotics7030058, 2018.
Wu, C., Zhao, P., Chang, Z., Li, L., and Zhang, D.: An experimental and numerical investigation of ballistic penetration behaviors of deployable composite shells, Acta Astronaut., 224, 533–545, https://doi.org/10.1016/j.actaastro.2024.08.043, 2024.
Xu, J., Hofhuis, H., Heidstra, R., Sauer, M., Friml, J. i., and Scheres, B.: A molecular framework for plant regeneration, Science, 311, 385–388, https://doi.org/10.1126/science.1121790, 2006.
Xu, Z., Zhou, Y., Zhang, B., Zhang, C., Wang, J., and Wang, Z.: Recent progress on plant-inspired soft robotics with hydrogel building blocks: Fabrication, actuation and application, Micromachines, 12, 608, https://doi.org/10.3390/mi12060608, 2021.
Yan, H., Liu, Z., and Qi, R.: A review of humidity gradient-based power generator: Devices, materials and mechanisms, Nano Energy, 101, 107591, https://doi.org/10.1016/j.nanoen.2022.107591, 2022.
Yan, T., Teshigawara, S., and Asada, H. H.: Design of a growing robot inspired by plant growth, in: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019, https://doi.org/10.1109/IROS40897.2019.8968200, 8006–8011, 2019.
Yang, J., Zhang, H., Berdin, A., Hu, W., and Zeng, H.: Dandelion-inspired, wind-dispersed polymer-assembly controlled by light, Adv. Sci., 10, 2206752, https://doi.org/10.1002/advs.202206752, 2023a.
Yang, J., Wang, F., and Lu, Y.: Design of a bistable artificial venus flytrap actuated by low pressure with larger capture range and faster responsiveness, Biomimetics, 8, 181, https://doi.org/10.3390/biomimetics8020181, 2023b.
Yang, J., Shankar, M. R., and Zeng, H.: Photochemically responsive polymer films enable tunable gliding flights, Nat. Commun., 15, 4684, https://doi.org/10.1038/s41467-024-49108-0, 2024.
Yang, M., Cooper, L. P., Liu, N., Wang, X., and Fok, M. P.: Twining plant inspired pneumatic soft robotic spiral gripper with a fiber optic twisting sensor, Opt. Express, 28, 35158–35167, https://doi.org/10.1364/OE.408910, 2020.
Yoo, D., Kim, S. J., Joung, Y., Jang, S., Choi, D., and Kim, D. S.: Lotus leaf-inspired droplet-based electricity generator with low-adhesive superhydrophobicity for a wide operational droplet volume range and boosted electricity output, Nano Energy, 99, 107361, https://doi.org/10.1016/j.nanoen.2022.107361, 2022.
Yoon, H.-J., Lee, G., Kim, J.-T., Yoo, J.-Y., Luan, H., Cheng, S., Kang, S., Huynh, H. L. T., Kim, H., and Park, J.: Biodegradable, three-dimensional colorimetric fliers for environmental monitoring, Sci. Adv., 8, eade3201, https://doi.org/10.1126/sciadv.ade3201, 2022.
Zeng, X., Wang, Y., and Morishima, K.: Asymmetric-bifurcation snapping, all-or-none motion of venus flytrap, Sci. Rep., 15, 4805, https://doi.org/10.1038/s41598-024-82156-6, 2025.
Zhang, J., Yang, H., Zhao, Y., Yang, J., Aydin, Y. O., Li, S., Rajabi, H., Peng, H., and Wu, J.: Adaptive, rapid, and stable trident robotic gripper: A bistable tensegrity structure implementation, IEEE/ASME Trans. Mechatron., 1–11, https://doi.org/10.1109/tmech.2024.3516948, 2024a.
Zhang, J., Yang, H., He, C., Ma, H., Zhao, Y., Zhang, Z., Li, S., Wang, W., Yang, J., Wu, J., and Peng, H.: Instant energy barrier modulation in bistable robotic grippers for compliant triggering and powerful grasping, Research, 8, 0737, https://doi.org/10.34133/research.0737, 2025.
Zhang, M., Wang, B., Wang, S., Xin, T., Ye, K., Huang, S., and Yang, X.: Transcriptomic analysis on cucumber tendril reveals glrs play important roles in thigmotropism and thigmomorphogenesis, Hortic. Plant J., 10, 1177–1186, https://doi.org/10.1016/j.hpj.2022.11.011, 2024b.
Zhang, X., Wang, Y., Tian, Z., Samri, M., Moh, K., McMeeking, R. M., Hensel, R., and Arzt, E.: A bioinspired snap-through metastructure for manipulating micro-objects, Sci. Adv., 8, eadd4768, https://doi.org/10.1126/sciadv.add4768, 2022a.
Zhang, Y., Quan, J., Li, P., Song, W., Zhang, G., Li, L., and Zhou, D.: A flytrap-inspired bistable origami-based gripper for rapid active debris removal, Adv. Intell. Syst., 5, 2200468, https://doi.org/10.1002/aisy.202200468, 2023.
Zhang, Z., Chen, D., Wu, H., Bao, Y., and Chai, G.: Non-contact magnetic driving bioinspired venus flytrap robot based on bistable anti-symmetric cfrp structure, Compos. Struct., 135, 17–22, https://doi.org/10.1016/j.compstruct.2015.09.015, 2016.
Zhang, Z., Ni, X., Gao, W., Shen, H., Sun, M., Guo, G., Wu, H., and Jiang, S.: Pneumatically controlled reconfigurable bistable bionic flower for robotic gripper, Soft Robot., 9, 657–668, https://doi.org/10.1089/soro.2020.0200, 2022b.
Zhang, Z., Ni, X., Wu, H., Sun, M., Bao, G., Wu, H., and Jiang, S.: Pneumatically actuated soft gripper with bistable structures, Soft Robot., 9, 57–71, https://doi.org/10.1089/soro.2019.0195, 2022c.
Short summary
This review proposes a new framework which categorizes plant-inspired robots into two groups: robots inspired by on- and off-plant behaviors, regarding typical plant life cycle. This expandable framework can theoretically cover all plant-inspired robots. Two long-term conceptual research directions are suggested for plant-inspired robots: 1) natural plant optimization re-inspired by robotics based on synthetic biology and 2) development of exoplanet robots inspired by plant survival strategies.
This review proposes a new framework which categorizes plant-inspired robots into two groups:...