He, K., Gkioxari, G., Dollár, P., and Girshick, R.: Mask R-CNN, in: IEEE International Conference on Computer Vision, 22–29 October 2017, Venice, Italy, 2980–2988, https://doi.org/10.1109/ICCV.2017.322, 2017.
Konstantinidis, F. K., Sifnaios, S., Arvanitakis, G., Tsimiklis, G., Mouroutsos, S. G., Amditis, A., and Gasteratos, A.: Multi-modal sorting in plastic and wood waste streams, Resour. Conserv. Recy., 199, 107244, https://doi.org/10.1016/j.resconrec.2023.107244, 2023.
Li, X., Lv, H., Zeng, D., and Zhang, Q.: An Improved Multi-Objective Trajectory Planning Algorithm for Kiwifruit Harvesting Manipulator, IEEE Access, 11, 65689–65699, https://doi.org/10.1109/access.2023.3289207, 2023.
Li, Z., Deng, X., Lan, Y., Liu, C., and Qing, J.: Fruit tree canopy segmentation from UAV orthophoto maps based on a lightweight improved U-net, Comput. Electron. Agr., 217, 108538, https://doi.org/10.1016/j.compag.2023.108538, 2024.
Othman, N. A., Salur, M. U., Karakose, M., and Aydin, I.: An Embedded Real-Time Object Detection and Measurement of its Size, in: 2018 International Conference on Artificial Intelligence and Data Processing, 28–30 September 2018, Malatya, Turkey 1–4, https://doi.org/10.1109/IDAP.2018.8620812, 2018.
Pan, Z., Jia, Z., Jing, K., Ding, Y., and Liang, Q.: Manipulator Package Sorting and Placing System Based on Computer Vision, in: Chinese Control And Decision Conference, 22–24 August 2020, Hefei, China, 409–414, https://doi.org/10.1109/CCDC49329.2020.9164071, 2020.
Qiao, S., Chen, L. C., and Yuille, A.: DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 20–25 June 2021, Nashville, TN, USA, 10208–10219, https://doi.org/10.1109/CVPR46437.2021.01008, 2021.
Saenphon, T., Phimoltares, S., and Lursinsap, C.: Combining new Fast Opposite Gradient Search with Ant Colony Optimization for solving travelling salesman problem, Eng. Appl. Artif. Intel., 35, 324–334, https://doi.org/10.1016/j.engappai.2014.06.026, 2014.
Shang, Y., Liu, J., Xie, T., and Yao, L.: A monocular pose mea- surement method of a translation-only one-dimensional objectwithout scene information, Optik, 125, 4051–4056, https://doi.org/10.1016/j.ijleo.2014.01.115, 2014.
Tavana, M., Li, Z., Mobin, M., Komaki, M., and Teymourian, E.: Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS, Expert. Syst. Appl., 50, 13–97, https://doi.org/10.1016/j.eswa.2015.11.007, 2016.
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q.: ECA-Net: Efficient Channel Attention for Deep Convolu- tional Neural Networks, in: IEEE/CVF Conference on Computer Vision a
nd Pattern Recognition, 13–19 June 2020, Seattle, WA, USA, 11531–11539, https://doi.org/10.1109/CVPR42600.2020.01155, 2020.
Wang, X., Wei, J., Zhou, X., Xia, Z., and Gu, X.: Dual-Objective Collision-Free Path Optimization of Arc Welding Robot, IEEE Robot. Autom. Let., 6, 6353–6360, https://doi.org/10.1109/LRA.2021.3092267, 2021.
Xiao, J., Zhu, Z., Hu, X., Zhang, G., and Liu, L.: Research on payload distribution of UAV formation with constraints, in: 15th IEEE Conference on Industrial Electronics and Applications, 9–13 November 2020, Kristiansand, Norway, 1837–1842, https://doi.org/10.1109/ICIEA48937.2020.9248214, 2020.
Xie, S. and Tu, Z.: Holistically-Nested Edge Detection, in: IEEE International Conference on Computer Vision, 7–13 December 2015, Santiago, Chile, 1395–1403, https://doi.org/10.1109/ICCV.2015.164, 2015.
Yoon, J., Han, J., and Nguyen, T. P.: Logistics box recognition in robotic industrial de-palletising procedure with systematic RGB-D image processing supported by multiple deep learning methods, Eng. Appl. Artif. Intel., 123, 106311, https://doi.org/10.1016/j.engappai.2023.106311, 2023.
Yu, Y., Zhang, K., Yang, L., and Zhang, D.: Fruit detection for strawberry harvesting robot in non-structural environme- nt based on Mask-RCNN, Comput. Electron. Agr., 163, 104846, https://doi.org/10.1016/j.compag.2019.06.001, 2019.
Zhang, T., Zheng, J., and Zou, Y.: Weighted voting ensemble method for predicting workpiece imaging dimensional deviation based on monocular vision systems, Opt. Laser Technol., 159, 109012, https://doi.org/10.1016/j.optlastec.2022.109012, 2023.
Zhao, Y., Yang, J., Wang, S., and Li, X.: Towards One Shot & Pick All: 3D-OAS, an end-to-end framework for vision guided top-down parcel bin-picking using 3D-overlapping – aware instance segmentation and GNN, Robot. Auton. Syst., 167, 104491, https://doi.org/10.1016/j.robot.2023.104491, 2023.
Zhengyou, Z.: Flexible camera calibration by viewing a plane from unknown orientations, in: Proceedings of the Seventh IEEE International Conference on Computer Vision, 20–27 September 1999, Kerkyra, Greece, 1, 666–673, https://doi.org/10.1109/ICCV.1999.791289, 1999.