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Abstract. Manipulators often face challenges of reliable trajectory planning under limited visibility. This pa-
per proposes an obstacle avoidance grasping path planning method based on monocular vision. A multi-layer
neural network model is to recognize target features, enabling rapid environmental perception. The environ-
ment topology is segmented using convex hulls, and multi-objective optimization is applied to achieve agile
obstacle avoidance for the robot. The main contributions include the following: (1) an improved mask region
convolutional neural network architecture is constructed to predict features under limited information, and (2) an
innovative path planning strategy that combines Gaussian sampling with Hopfield neural networks is developed
to improve the non-dominated sorting genetic algorithm. The algorithm achieves an identification accuracy of
99.50 % in complex scenarios, and the optimized trajectory shows improvements in smoothness and motion ef-
ficiency by approximately 60 % and 10 %, respectively. Through simulations and experiments, the significant
effects on enhancing the robot’s operability in complex environments have been validated.

1 Introduction

Vision servo-based robotic arm grasping systems are widely
used in many industrial and agricultural fields, including lo-
gistics sorting, object grasping and fruit picking (Konstan-
tinidis et al., 2023). Obstacles in randomly occluded scenes,
such as naturally growing branches and leaves, and randomly
placed packages bring challenges to the accurate grasping of
target objects (Othman et al., 2018).

In visual recognition, Shang et al. (2014) proposed a
monocular method for measuring the position of a trans-
lationally one-dimensional object containing at least two
known feature points only. Zhang et al. (2023) developed a
weighted voting integrated regression algorithm for predict-
ing the dimensional deviation of the workpiece imaging. Pan
et al. (2020) implemented object height measurement using
a depth camera based on the Sobel operator and a low-pass
filter, but it requires high hardware cost and computational
overhead. The above studies mainly focus on single object

geometric feature recognition. To further improve the recog-
nition ability in complex scenes, Li et al. (2024) presented a
canopy labeling method for U-Net and lightweight segmen-
tation networks. The method introduces a lightweight back-
bone network. It greatly reduced the computational complex-
ity required for large-scale canopy segmentation. For this
purpose, Yoon and Han (2023) pointed out a box object
detection method, which can realize depth information ex-
traction in occluded scenes but with lower accuracy. Zhao
et al. (2023) developed a 3D novel end-to-end parcel picking
model designed to segment stacked objects hierarchically.
Yu et al. (2019) constructed a strawberry fruit auto-detection
model based on Mask R-CNN, demonstrating better gener-
ality and robustness when handling overlapping and hidden
fruits. Ge et al. (2023) designed a visual strategy for grasping
occluded objects, fusing color information and recoded depth
information to improve accuracy in object segmentation.

In vision servo grasping and planning, Auh et al. (2024)
applied a sequence planning method based on A* search al-
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Figure 1. Monocular imaging schematic.

gorithm applied to unload randomly stacked different boxes
from a logistics container. Fan et al. (2022) established a
PF-RRT* algorithm based on target bias strategy for UAV
trajectory planning in cluttered environments. In Cong et al.
(2020), based on the second generation of the non-dominated
genetic algorithm (NSGA-II), the new population obtained
from taboo search was added to the elite retention strategy
to achieve the optimization of the solution efficiency. As the
scenes of robotic applications become increasingly complex
and unstructured, the demand for simultaneous optimization
of multiple objectives (≥ 3) is increasing, while algorithms
such as A* and RRT* are currently mostly used for single-
objective solving, so path planning methods based on op-
timization strategies such as ant colony (Saenphon et al.,
2014), genetic (Elhoseny et al., 2018), or particle swarm (Ta-
vana et al., 2016) have been widely used.

In these methods, the third-generation non-dominated ge-
netic algorithm (NSGA-III) is based on reference point se-
lection by optimizing the selection and update mechanism of
the population. The convergence efficiency of the algorithm
and the global optimization solution search ability are im-
proved. In the field of agriculture, Li et al. (2023) solved the
path optimization problem based on the NSGA-III algorithm
to achieve the goal of harvesting kiwi fruit. In the industrial
field, Wang et al. (2021) employed the RRT* algorithm to
search for collision-free paths and optimized the problem us-
ing the NSGA-III algorithm to solve a bi-objective path plan-
ning problem for arc welding. Xiao et al. (2020) combined
the NSGA-III algorithm with a penalty function to solve a
multi-objective optimization problem with constraints.

In conclusion, complex scene grasping under visual oc-
clusion requires the integrated use of image recognition
and motion planning. A deep neural network model is con-

Figure 2. ECA module structure diagram.

Figure 3. RFP add feature structure diagram.

structed for feature prediction with visual occlusion to re-
alize accurate target localization. The Hopfield neural net-
work and Gaussian sampling strategy are designed to opti-
mize and improve the Non-dominated Sorting Genetic Algo-
rithm (NSGA-III), enhancing the efficiency of path planning
and the global optimization solving ability, which can real-
ize autonomous target recognition and intelligent grasping in
complex scenes.

2 Complex scene perception based on machine
vision

Two monocular industrial cameras were used with an Im-
proved Mask R-CNN to identify the geometric features of
obstacles. The goal is to enhance machine vision’s ability to
perceive complex scenes.

2.1 Recognize and extract geometric features of
obstacles

2.1.1 Extracting geometric features of obstacles

Features of obstacles are extracted using the holistically
nested edge detection (HED) (Xie and Tu (2015)) instead
of the traditional Canny edge detection algorithm due to the
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Figure 4. Improved Mask R-CNN framework.

Figure 5. Schematic diagram of robotic arm running path.

Figure 6. Collision risk diagram of a robotic arm.

better efficiency and accuracy. The contour of a rectangular
body consists of scattered discrete points, and Hough trans-
form is also used. The circle on the upper surface of the cylin-

der is generally elliptical in the image plane of the monocu-
lar camera. Ellipse fitting consists of two processes: one is
the detection of the ellipse’s edge points, and the other is el-
lipse fitting to the edge points to determine the center of the
ellipse.

2.1.2 Monocular imaging principle

The geometric relationship of monocular industrial camera
imaging is shown in Fig. 1, assuming that there exists any
P2 in the space and its projected position in the image is P1.
According to the similarity theorem of the right triangle, the
following formula can be obtained:

x =
xc

zc
f , y =

yc

zc
f, (1)

where f is the focal length, x and y are the image coordinates
of P1, and xc, yc, and zc are the coordinates of space P2 under
the coordinate system of the industrial video camera.

According to the camera imaging model, the projection
transformation from the world coordinate system to the im-
age coordinate system can be expressed by Eq. (2), where the
image coordinates [u,v,1]T are obtained by linear transfor-
mation of the inner reference matrix A and the outer refer-
ence matrix [R t]. The input is the [X,Y,Z,1]T of the world
coordinates and s is the scale factor.

s
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Table 1. Geometric information of the cuboid.

Cuboid Actual (cm) Measured (cm) Error (%)

Length 10.00 10.01 0.1 %
Width 8.50 8.38 1.3 %
Height 12.03 11.97 0.4 %

Table 2. Geometric information of the cylinder.

Cylinder Actual (cm) Measured (cm) Error (%)

Height 8.20 8.36 1.9 %
Diameter 12.10 11.88 1.8 %

The matrix A is then calibrated according to Zhengyou
(1999).

2.2 Recognition of object visual occlusion

Mask R-CNN (He et al., 2017) is an instance segmentation
algorithm. In this study, we proposed an Improved Mask R-
CNN based on ECA-Net50 (Wang et al., 2020) and the Re-
cursive Feature Pyramid (RFP) (Qiao et al., 2021), as shown
in Fig. 4.

2.2.1 Backbone network ECA-Net50

ECA-Net50 uses ResNet50 as the backbone network frame-
work and adds the Efficient Channel Attention (ECA) mod-
ule after each residual block, as shown in Fig. 2.

Aggregated features are obtained by global average pool-
ing (GAP). Channel weights are generated using a one-
dimensional convolution operation with kernel size k, and
weights are mapped to 0–1 intervals by the sigmoid function.
The calculation can be represented in Eq. (3).

k = |t |odd =

∣∣∣∣ log2(C)
γ
+
b

γ

∣∣∣∣
odd
, (3)

where |t |odd denotes the closest odd number to t , γ and b are
set to 2 and 1, and C represents the number of channels of
input features.

2.2.2 Recursive feature pyramid

RFP adds feedback connections that can be better adapted
to the detection or segmentation tasks. The RFP adds the
transformed features to the first block of each stage of ECA-
Net50, as shown in Fig. 3.

The calculation process can be formulated as

fi = Fi(fi+1,xi)xi = Bi(xi−1,Ri(fi)), (4)

where fi is the feature map output from the current stage i, Fi
denotes the top-down FPN operation, Bi represents the stage
i of the bottom-up backbone network, and Ri(fi) indicates
the feedback processing.

Table 3. Improved Mask R-CNN, U-Net and YOLOv8 comparison.

Algorithms Precision Recall F1 score

Improved Mask R-CNN 99.50 % 97.00 % 98.23 %
U-Net 97.34 % 96.63 % 96.98 %
YOLOv8 89.73 % 85.48 % 87.55 %

3 NSGA-III algorithm based on Hopfield neural
network with Gaussian sampling improvement
(HG-NSGAIII)

This paper proposes an improved algorithm, HG-NSGAIII,
based on the NSGA-III. The algorithm combines Hopfield
neural network and Gaussian sampling to achieve global path
planning and multi-objective optimization with more than
three objectives, which improves the efficiency and accuracy
of manipulator trajectory planning.

3.1 Construction of the optimization objective function

The safe operation of manipulators needs to take into account
the mechanical performance, environmental characteristics
and application requirements, but the increase of constraints
and their mutual conflicts will increase the computational dif-
ficulty. For this reason, it is necessary to transform the envi-
ronmental information and operation goals into executable
objective functions to construct the optimization space. In
this paper, we focus on three constraints: path length, obsta-
cle threat and path smoothness.

3.1.1 Path length

The path length is a key factor that affects the indexes
of robotic arm operation efficiency and energy consump-
tion. The j th point on the ith path is denoted as Pi,j =
(xi,j ,yi,j ,zi,j ), as shown in Fig. 5.

The sum of the lengths of all discrete path points is defined
as the path cost function:

f1 =

n−1∑
j=0
‖Pi,j → Pi,j+1‖, (5)

where ‖Pi,j → Pi,j+1‖ denotes the Euclidean distance be-
tween two neighboring path points Pi,j and Pi,j+1, calcu-
lated as

‖Pij → Pij+1‖ =√
(xi,j+1− xi,j )2

+ (yi,j+1− yi,j )2
+ (zi,j+1− zi,j )2.

(6)

3.1.2 Threats of obstacles

To measure the risk of collision, the obstacle is enclosed in
a circle using the envelope method, with the center and ra-
dius of the circle denoted as ck and rk , as shown in Fig. 6.
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Figure 7. Feature extraction of the cylinder and cuboid.

Figure 8. Comparison of Improved Mask R-CNN and U-Net.

The region with a radius of rk + d is defined as the danger-
ous region. When the trajectory of the manipulator moving
from Pi,j to the next path point Pi,j+1 traverses through the
hazardous region, the manipulator is in possible danger, so
obstacle threat cost can be described as

f2 =

n−1∑
j=0

m∑
k=1

Tk(Pi,j → Pi,j+1), (7)

where k is the number of obstacles and Tk is a segmented
function on the distance dk between the obstacles and local
path Pi,j → Pi,j+1 with the following expression:

Tk =


0 (dk > d + rk)

γc((d + rk)− dk) (rk < dk ≤ d + rk)
+∞ (dk ≤ rk),

(8)

where γc = 25 represents the penalty coefficient.

3.1.3 Path smoothness

The degree of smoothing of the robotic arm path affects the
operating efficiency of the robotic arm and the stability of the
robotic arm. The combined force calculation function is

F a+1,a =
Pi,a+1−Pi,a

‖Pi,a+1−Pi,a‖
(9)

f3 =

n−1∑
j=1

(F j+1,j +F j−1,j ), (10)

where F a+1,a is the result of normalizing the forces at the
path point Pi,a to the direction of the path point Pi,a+1.

3.2 HG-NSGAIII algorithm

This paper adopts Gaussian sampling strategy to generate
initial paths. The sampling points are concentrated near the
expansion points to reduce uncertainty and avoid local opti-
mization. This optimizes the initial population of NSGA-III
and improves efficiency of the algorithm.

3.2.1 Specific flow of the HG-NSGA-III algorithm

Step 1: A monocular industrial camera is used to extract ge-
ometric features of obstacles to build a map of the work-
ing environment of the robotic arm.

Step 2: Establish the starting position of the robotic arm as
the QS and the end as QE.

Step 3: A path planning algorithm based on Hopfield neu-
ral network algorithm is used to obtain a collision-free
initial path Pinit.

Step 4: The initial path is equally divided intoN path points
based on equal step length T and path length Linit.

https://doi.org/10.5194/ms-16-445-2025 Mech. Sci., 16, 445–455, 2025



450 J. Wang et al.: Trajectory planning for manipulator grasping

Figure 9. Image prediction with complex occlusion.

Figure 10. 3D view of robotic arm trajectory planning in different scenes.

Step 5: A Gaussian sampling algorithm is used to generate
N × num candidate points near N path points to form a
candidate region.

Step 6: Randomly select the path points from each candi-
date region to generate an initial population Pt contain-
ing dim paths.

Step 7: The NSGA-III is used to perform multi-objective
optimization on the initial population Pt in Step 6.

3.2.2 Nonlinear interpolation based on five-times
B-splines

With the advantages of a high degree of freedom and
good local modifiability, B-splines are widely used in robot
path planning. The initial trajectory Poptimize is interpo-
lated by fifth-order B-splines. Given n+ 1 control points

CP0,CP1, · · ·,CPn and node sequence u= {u0,u1, · · ·,um},
the five-times B-spline function for the ith path can be con-
structed as follows:

Pi,j =

n∑
j=0

Nj,5(u)CPj u ∈ [0,1], (11)

where Pi,j is the path point and Nj,5(u) is the B-spline basis
function, which can be obtained by the Cox–de Boor recur-
sive method.

At the start and end points, the velocity and acceleration
are all 0, vt0 = 0 and vtn = 0. The velocity is the first-order
derivative of the position, and according to the B-spline the-
ory, the first-order derivatives of the p-times B-spline curves
are still p-1-times B-spline curves:

vi,j =
dPi,j

du
=

n−1∑
j=0

Nj+1,4(u)Dj , (12)
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Figure 11. Top view of robotic arm trajectory planning in different scenes.

Table 4. Solving path length and time and number of nodes.

Scenes Methods Lt_i/(mm) ϕl Rt_i/(s) ϕt Nt_i ϕn

Scene 1 A* 570.73 3.18 % 10.5251 8.13 % 4 60 %
RRT* 589.50 benchmark 5.9759 47.84 % 10 benchmark
NSGA-II 584.50 0.84 % 11.4573 benchmark 4 60 %
HG-NSGAIII 565.92 4.00 % 4.8901 57.32 % 2 80 %

Scene 2 A* 653.22 6.81 % 11.2631 benchmark 5 44.4 %
RRT* 631.25 9.94 % 8.1350 27.77 % 9 benchmark
NSGA-II 700.92 benchmark 8.9645 20.41 % 4 55.6 %
HG-NSGAIII 585.40 16.48 % 5.6526 49.81 % 3 66.7 %

Scene 3 A* 617.99 benchmark 15.5786 benchmark 5 benchmark
RRT* 568.39 8.03 % 7.1214 54.29 % 5 0 %
NSGA-II 609.58 1.36 % 9.9561 36.09 % 5 0 %
HG-NSGAIII 566.40 8.35 % 6.2613 59.81 % 3 40 %

Average HG-NSGAIII 572.57 9.61 % 5.60 55.65 % 2.67 62.23 %

where Dj denotes the new control point, and the expression
can be described as

Dj =
p

uj+6− uj+1
(CPj+1−CPj ). (13)

Similarly, its acceleration γi,j can be further derived.

4 Simulation and experiment

4.1 Gripping simulation and emulation

4.1.1 Extraction of spatial features of obstacles

The contour features of the object are extracted, and the re-
sults are shown in Fig. 7. The geometric features of the object
obtained by monocular measurement and vernier calipers are
listed in Tables 1 and 2, respectively.

According to Tables 1 and 2, the error between the actual
measurement value and the monocular measurement value is
less than 2 %.

4.1.2 Training and prediction simulation under occlusion

The data in this experiment contain 874 images, divided into
training and validation sets according to 8 : 2. The image ex-
tension dataset is expanded by adding noise, increasing or
decreasing brightness, rotating the image, etc. We use Au-
toDL, PyTorch 1.10 and Python 3.7 for training. After 300
rounds, the initial learning rate is 0.008, decreasing to 0.0008
and 0.00008 at the 60th and 200th rounds.

To validate the accuracy of the Improved Mask R-CNN,
we compared it with U-Net and YOLOv8. Precision, recall
and F1 score were used as evaluation metrics.

precision=
TP

TP+FP
(14)

recall=
TP

TP+FN
(15)

F1 score=
2× precision× recall

precision+ recall
(16)
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Figure 12. Further optimized trajectory.

Figure 13. Trajectory planning experiment platform.

where TP, FP and FN denote the sample size of true posi-
tive, false positive and false negative cases. The F1 score of

the Improved Mask R-CNN is 1.25 % higher than U-Net and
10.68 % higher than YOLOv8, as listed in Table 3.

In the area of computer vision, IoU is an important evalu-
ation metric commonly used in the task of image segmenta-
tion to measure the degree of overlap between the predicted
results and the actual annotations.

IoU=
area(Up ∩Ugt)
area(Up ∪Ugt)

, (17)

where area(Up ∩Ugt) denotes the area of the intersection of
the predicted mask and the real mask, and area(Up ∪Ugt)
denotes the region of intersection. The results are shown in
Fig. 8.

Three different scenarios are simulated. Taking scene 2
as an example, the predictions are compared using three vi-
sual recognition methods, and the results are shown in Fig. 9.
Compared with U-Net and YOLOv8, the Improved Mask R-
CNN has better adaptation to occlusion and higher accuracy
with complete occlusion.

4.1.3 Autonomous generation of obstacle avoidance
paths

The HG-NSGAIII algorithm is comprehensively compared
with the A*, RRT* and NSGA-II to validate the algorithm’s
convergence efficiency and accuracy. Three different scenes
are simulated, as shown in Figs. 10 and 11. In order to fur-
ther evaluate the performance of each algorithm in terms of
computational efficiency and accuracy, the optimization per-
centages of iteration time, path length and number of nodes
are computed, respectively.
ϕl =

Lt_max−Lti
Lt_max

× 100%

ϕt =
Rt_max−Rti
Rt_max

× 100% (i = 1,2, . . .,4)

ϕn =
Nt_max−Nti
Nt_max

× 100%,

(18)
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Figure 14. Obstacle avoidance trajectory planning.

where Lt_i, Rt_i and Nt_i represent path length, iteration time
and the number of nodes optimized by the algorithms of this
category. Lt_max, Rt_max andNt_max symbolize the maximum
value (benchmark of comparison) in which ϕl , ϕt and ϕn rep-
resent the percentage-related comparison data optimized by
different algorithms, respectively, as listed in Table 4.

It can be seen that in the process of finding the global op-
timal solution, the HG-NSGAIII algorithm shortens the path
length by 10 % on average compared with other algorithms
and improves the computational efficiency by 55.65 %. The
minimum number of inflection points is generated, which in-
dicates that the HG-NSGAIII algorithm generates smoother
and more continuous paths.

The initial optimal path generated under the constraints
is characterized by poor geometric properties, and the tra-
jectory often has sharp points that make it difficult to sat-
isfy the C3 continuity. To improve the smoothness, the initial
optimized path based on HG-NSGAIII is nonlinearly fitted
with five-times B-splines, and the trajectory through the sec-
ondary optimization is shown in Fig. 12.

4.2 Experiment analysis

4.2.1 Construction of the experimental platform

In this paper, experiments were conducted based on a 6 DoF
manipulator. The algorithm was programmed and operated
on a computer, and the control systems of the manipulator
arm and the computer were connected through the Internet.
The air pump, AC2010 duplex and solenoid valve are con-
nected to the pneumatic hand gripper. The solenoid valve is
controlled by the computer to open and close the pneumatic
hand gripper. The information is transmitted between the in-
dustrial camera and the computer, and the experimental plat-
form is shown in Fig. 13a and b.

4.2.2 Autonomous capture of complex scenes

The experimental process of autonomous grasping by a
robotic arm in a complex scene is shown in Fig. 14. The blue
dashed line indicates the path not traveled by the robotic arm,
and the yellow solid line indicates the path traveled by the
robotic arm.

5 Conclusions

For target grasping scenarios with multiple occlusions, this
paper proposes a trajectory planning method that combines
the Improved Mask R-CNN and the HG-NSGAIII, and the
main conclusions are as follows:

1. The monocular industrial camera extracts features of
objects with different shapes. The error in the measured
length is within 2 %, meeting the production require-
ments.

2. With the Improved Mask R-CNN algorithm, the accu-
racy of recognizing occluded objects in complex scenes
is as high as 99.5 %, and the average accuracy of seg-
mentation of various types of objects is 99 % (IoU=
0.5), which shows good accuracy and precision.

3. HG-NSGAIII has a strong global optimization solution
search capability in complex scenes. Compared with
RRT*, A* and NSGA-II, the NSGA-III algorithm based
on the Gaussian sampling-improved Hopfield neural
network is able to guarantee global convergence and ob-
tain better optimized solutions. The motion efficiency
and trajectory smoothness can be improved by about
9.61 % and 62.23 %, respectively.
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