Broda, S. A. and Paolella, M. S.: Saddlepoint Approximations: A Review and Some New Applications, in: Springer Handbooks of Computational Statistics, edited by: Gentle, J. E., Härdle, W. K., and Mori, Y., Springer, Berlin, Heidelberg, 953–983, https://doi.org/10.1007/978-3-642-21551-3_32, 2011.
Bucher, C.: Computational Analysis of Randomness in Structural Mechanics, CRC Press, Leiden, ISBN 978-0-415-40354-2, 2009.
Chiralaksanakul, A. and Mahadevan, S.: First-Order Approximation Methods in Reliability-Based Design Optimization, J. Mech. Design, 127, 851–857, https://doi.org/10.1115/1.1899691, 2005.
Christensen, E. T., Lund, E., and Lindgaard, E.: Experimental Validation of Surrogate Models for Predicting the Draping of Physical Interpolating Surfaces, J. Mech. Design, 140, 011401, https://doi.org/10.1115/1.4038073, 2017.
Dai, H., Zhang, B., and Wang, W.: A Multiwavelet Support Vector Regression Method for Efficient Reliability Assessment, Reliab. Eng. Syst. Safe, 136, 132–139, https://doi.org/10.1016/j.ress.2014.12.002, 2015.
Der Kiureghian, A., Lin, H. Z., and Hwang, S. J.: Second-Order Reliability Approximations, J. Eng. Mech., 113, 1208–1225, https://doi.org/10.1061/(asce)0733-9399(1987)113:8(1208), 1987.
Dimarco, G. and Pareschi, L.: Multiscale Variance Reduction Methods Based on Multiple Control Variates for Kinetic Equations with Uncertainties, Multiscale Model. Sim., 18, 351–382, https://doi.org/10.1137/18m1231985, 2020.
Du, X.: Unified Uncertainty Analysis by the First Order Reliability Method, J. Mech. Design, 130, 091401, https://doi.org/10.1115/1.2943295, 2008a.
Du, X.: Saddlepoint Approximation for Sequential Optimization and Reliability Analysis, J. Mech. Design, 130, 011011, https://doi.org/10.1115/1.2717225, 2008b.
Du, X. and Sudjianto, A.: First Order Saddlepoint Approximation for Reliability Analysis, AIAA J., 42, 1199–1207, https://doi.org/10.2514/1.3877, 2004.
Echard, B., Gayton, N., and Lemaire, M.: AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation, Struct. Saf., 33, 145–154, https://doi.org/10.1016/j.strusafe.2011.01.002, 2011.
Guo, S.: An Efficient Third-Moment Saddlepoint Approximation for Probabilistic Uncertainty Analysis and Reliability Evaluation of Structures, Appl. Math. Model., 38, 221–232, https://doi.org/10.1016/j.apm.2013.06.026, 2014.
Helton, J. C., Johnson, J. D., Sallaberry, C. J., and Storlie, C. B.: Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis, Reliab. Eng. Syst. Safe, 91, 1175–1209, https://doi.org/10.1016/j.ress.2005.11.017, 2006.
Huang, B. and Du, X.: Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation, Reliab. Eng. Syst. Safe, 93, 325–336, https://doi.org/10.1016/j.ress.2006.10.021, 2008.
Huang, X., Li, Y., Zhang, Y., and Zhang, X.: A New Direct Second-Order Reliability Analysis Method, Appl. Math. Model., 55, 68–80, https://doi.org/10.1016/j.apm.2017.10.026, 2018.
Kawai, R.: Adaptive Importance Sampling and Control Variates, J. Math. Anal. Appl., 483, 123608, https://doi.org/10.1016/j.jmaa.2019.123608, 2020.
Keshtegar, B. and Chakraborty, S.: A Hybrid Self-Adaptive Conjugate First Order Reliability Method for Robust Structural Reliability Analysis, Appl. Math. Model., 53, 319–332, https://doi.org/10.1016/j.apm.2017.09.017, 2018.
Lemaire, M.: Structural reliability, John Wiley & Sons, ISBN 978-1-84821-082-0, 2013.
Lugannani, R. and Rice, S.: Saddle Point Approximation for The Distribution of the Sum of Independent Random Variables, Adv. Appl. Probab., 12, 475–490, https://doi.org/10.1017/s0001867800050278, 1980.
McKay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, 21, 239–245, https://doi.org/10.2307/1268522, 1979.
Mehni, M. B. and Mehni, M. B.: Reliability analysis with cross-entropy based adaptive Markov chain importance sampling and control variates, Reliab. Eng. Syst. Safe, 231, 109014, https://doi.org/10.1016/j.ress.2022.109014, 2023.
Melchers, R. E.: Importance Sampling in Structural Systems, Struct. Saf., 6, 3–10, https://doi.org/10.1016/0167-4730(89)90003-9, 1989.
Meng, Z., Zhou, H., Hu, H., and Keshtegar, B.: Enhanced Sequential Approximate Programming Using Second Order Reliability Method for Accurate and Efficient Structural Reliability-Based Design Optimization, Appl. Math. Model., 62, 562–579, https://doi.org/10.1016/j.apm.2018.06.018, 2018a.
Meng, Z., Zhang, D., Liu, Z., and Li, G.: An Adaptive Directional Boundary Sampling Method for Efficient Reliability-Based Design Optimization, J. Mech. Design., 140, 121406, https://doi.org/10.1115/1.4040883, 2018b.
Metropolis, N. and Ulam, S.: The Monte Carlo Method, J. Am. Stat. Assoc., 44, 335–341, https://doi.org/10.1080/01621459.1949.10483310, 1949.
Oates, C. J., Girolami, M., and Chopin, N.: Control Functionals for Monte Carlo Integration, J. R. Stat. Soc. B, 79, 695–718, https://doi.org/10.1111/rssb.12185, 2016.
Papaioannou, I., Geyer, S., and Straub, D.: Improved cross entropy-based importance sampling with a flexible mixture model, Reliab. Eng. Syst. Safe., 191, 106564, https://doi.org/10.1016/j.ress.2019.106564, 2019.
Portier, F. and Segers, J.: Monte Carlo Integration with a Growing Number of Control Variates, J. Appl. Probab., 56, 1168–1186, https://doi.org/10.1017/jpr.2019.78, 2019.
Rashki, M.: Hybrid control variates-based simulation method for structural reliability analysis of some problems with low failure probability, Appl. Math. Model., 60, 220–234, 2018.
Schmitz, L. and Smith, K.: Machining Dynamics: Frequency Response to Improved Productivity, Springer, New York, ISBN 978-0-387-09644-5, 2009.
Shayanfar, M. A., Barkhordari, M. A., and Roudak, M. A.: An Efficient Reliability Algorithm for Locating Design Point Using the Combination of Importance Sampling Concepts and Response Surface Method, Commun. Nonlinear Sci., 47, 223–237, https://doi.org/10.1016/j.cnsns.2016.11.021, 2017.
Stein, M.: Large Sample Properties of Simulations Using Latin Hypercube Sampling, Technometrics, 29, 143–151, https://doi.org/10.1080/00401706.1987.10488205, 1987.
Tvedt, L.: Distribution of Quadratic Forms in Normal Space–Application to Structural Reliability, J. Eng. Mech., 116, 1183–1197, https://doi.org/10.1061/(asce)0733-9399(1990)116:6(1183), 1990.
Xiao, N. C., Huang, H. Z., Wang, Z., Liu, Y., and Zhang, X. L.: Unified Uncertainty Analysis by The Mean Value First Order Saddlepoint Approximation, Struct. Multidiscip. O., 46, 803–812, https://doi.org/10.1007/s00158-012-0794-4, 2012.
Yang, R. J., Wang, N., Tho, C. H., Bobineau, J. P., and Wang, B. P.: Metamodeling Development for Vehicle Frontal Impact Simulation, J. Mech. Design, 127, 1014–1020, https://doi.org/10.1115/1.1906264, 2005.
Zhang, D., Han, X., Jiang, C., Liu, J., and Li, Q.: Time-Dependent Reliability Analysis Through Response Surface Method, J. Mech. Design, 139, 041404, https://doi.org/10.1115/1.4035860, 2017.
Zhang, J. and Du, X.: A Second-Order Reliability Method With First-Order Efficiency, J. Mech. Design, 132, 101006, https://doi.org/10.1115/1.4002459, 2010.
Zhang, J., Xiao, M., Gao, L., and Chu, S.: A Combined Projection-Outline-Based Active Learning Kriging and Adaptive Importance Sampling Method for Hybrid Reliability Analysis with Small Failure Probabilities, Comput. Method. Appl. M., 344, 13–33, https://doi.org/10.1016/j.cma.2018.10.003, 2018.
Zhang, L., Lu, Z., and Wang, P.: Efficient Structural Reliability Analysis Method Based on Advanced Kriging Model, Appl. Math. Model., 39, 781–793, https://doi.org/10.1016/j.apm.2014.07.008, 2015.
Zhao, H., Li, S., and Ru, Z.: Adaptive Reliability Analysis Based on a Support Vector Machine and Its Application to Rock Engineering, Appl. Math. Model., 44, 508–522, https://doi.org/10.1016/j.apm.2017.02.020, 2017.
Zhao, Y. G. and Ono, T.: A General Procedure for First/Second-Order Reliability Method (FORM/SORM), Struct. Saf., 21, 95–112, https://doi.org/10.1016/S0167-4730(99)00008-9, 1999.
Zio, E.: The Monte Carlo Simulation Method for System Reliability and Risk Analysis, Springer, London, ISBN 978-1-4471-4587-5, 2013.
Zou, T., Mourelatos, Z. P., Mahadevan, S., and Tu, J.: An Indicator Response Surface Method for Simulation-Based Reliability Analysis, J. Mech. Design, 130, 071401, https://doi.org/10.1115/1.2918901, 2008.