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Abstract. A novel method is presented for efficiently analyzing the reliability of engineering components and
systems with highly nonlinear complex limit state functions. The proposed method begins by transforming the
integral of the limit state function into an integral of a highly correlated limit state function using the control
variates method. The second-order reliability method is then employed within the control variates framework to
approximate the highly correlated limit state function as a quadratic polynomial. Subsequently, the probability
of failure is obtained through the estimation of the saddle-point approximation and a small number of samples
generated by Latin hypercube sampling. To demonstrate the effectiveness of the proposed method, four exam-
ples involving mathematical functions and mechanical problems are solved. The results are compared with those
obtained using the second-order reliability method (SORM), control variates based on Monte Carlo simulation
(CVMCS) with second-order saddle-point approximation (SOSPA), importance sampling (IS) and Monte Carlo
simulation (MCS). The findings demonstrate that, while maintaining high-precision reliability results, the pro-
posed method significantly reduces the number of evaluations of the limit state function through a small number
of initial samples. The method is capable of efficiently and accurately solving complex practical engineering
reliability problems.

1 Introduction

Safety evaluation of engineering components and systems
is crucial for ensuring the economic and efficient operation
of industrial equipment. Uncertainties in geometric and ma-
terial properties of engineering structures arise due to en-
vironmental factors and operational influences. In light of
these uncertainties, reliability analysis provides a valuable
approach to quantifying the ability to fulfill specified sys-
tem functions within specified conditions and time (Helton
et al., 2006; Zhang et al., 2015; Zhao et al., 2017). The
probability of failure (PF), based on the limit state func-
tion (LSF), is typically expressed as a multidimensional inte-

gral of the joint probability density function (PDF) over the
random variables. However, directly calculating this multi-
dimensional integral for engineering reliability is challeng-
ing. Consequently, various methods for reliability analysis
have been developed in recent years. These methods can be
broadly categorized into three categories: approximate an-
alytical methods (Hasofer and Lind, 1974; Zhao and Ono,
1999; Meng et al., 2018a), simulation methods (Du, 2008a;
Zhang et al., 2018; Meng et al., 2018b) and surrogate model
methods (Zhang et al., 2017; Echard et al., 2011; Dai et
al., 2015).

In practical engineering problems, the presence of a rel-
atively large number of random variables can result in low
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computational efficiency for certain methods, such as Monte
Carlo simulation (MCS). Therefore, it is preferable to use
methods that can provide sufficiently accurate results with a
minimum number of evaluations of the limit state function
(Lemaire, 2013). In this regard, the approximate analytical
methods, such as the first-order reliability method (FORM)
and the second-order reliability method (SORM), are advan-
tageous as they can approximate the limit state function with
relatively low computational costs. The FORM is widely rec-
ognized as one of the most mainstream approximate analyti-
cal reliability methods. In recent years, significant improve-
ments have been developed, as evidenced by studies con-
ducted by Chiralaksanakul and Mahadevan (2005), Shayan-
far et al. (2017) and Keshtegar and Chakraborty (2018).
However, in highly nonlinear complex problems, SORM of-
fers a more accurate approximation of the LSF by using a
quadratic polynomial surface. Recent studies have focused
on improving SORM, with notable contributions from re-
searchers such as Breitung (1984), Tvedt (1990), Der Ki-
ureghian et al. (1987) and Zhang and Du (2010). Although
they have advantages in terms of computation, their accuracy
decreases when dealing with reliability problems that involve
non-normal random variables and nonlinear limit state func-
tions. Therefore, applying these methods may not be reason-
able in such cases. To improve accuracy, some methods based
on FORM and SORM have been developed.

Among these methods, saddle-point approximation (SPA)
stands out with its advantages of simple calculation, opera-
tional feasibility and estimation of the PF without the need
to approximate the LSF. Due to the efficiency and accu-
racy of SPA, scholars have further explored its application
in reliability engineering (Xiao et al., 2012; Du, 2008b; Guo,
2014) and integrated it into approximate analytical methods
(Du and Sudjianto, 2004; Huang and Du, 2008; Huang et
al., 2018). Du and Sudjianto (2004) proposed the first-order
saddle-point approximation (FOSA) method, which involves
expanding the cumulant-generating function of the LSF us-
ing a first-order Taylor series expansion around the most
probable point (MPP) and estimating the PF using saddle-
point approximation. Huang and Du (2008) introduced the
modified variance function-based saddle-point approxima-
tion method (MVFOSA), which transforms highly nonlinear
LSFs into approximate linear functions at the mean point of
each random variable, resulting in a more efficient approach.
Huang et al. (2018) developed a new second-order reliability
method based on saddle-point approximation, which obtains
a second-order approximation of the LSF by performing a
second-order Taylor series expansion around the MPP. How-
ever, it is important to acknowledge the existence of approx-
imation errors and the potential accuracy disparity between
approximate analytical methods and MCS in engineering ap-
plications.

Since approximate analytical methods do not introduce
any errors into probability estimation, they cannot quan-
tify the inherent approximation errors of these methods.

Therefore, there exists a difference in accuracy between ap-
proximate analytical methods and simulation methods. MCS
(Metropolis and Ulam, 1949; Zio, 2013) and its variants,
such as importance sampling (IS) (Papaioannou et al., 2019)
and subset simulation (SS) (Au and Beck, 2001), are more
robust for complex limit state functions. MCS is most ac-
curate as a standard for testing other theoretical methods.
Despite these advantages, in order to achieve an acceptable
level of accuracy, the number of random samples required by
MCS grows exponentially for practical engineering problems
with small failure probabilities. If the failure probability is
on the order of 10−k , MCS requires 10k+2–10k+3 samples to
achieve the corresponding accuracy (Binder, 1987). Because
the variance of MCS estimates is inversely proportional to
the failure probability, some studies (Melchers, 1989; Au and
Beck, 2001; Rubinstein and Kroese, 2016; Oates et al., 2016)
have explored the use of variance reduction techniques in
simulation methods to reduce the variance of MCS.

Among these variance reduction techniques, the control
variable (CV) method (Law et al., 2000) stands out for its
relatively simple operation and broad applicability, as it has
almost no restrictions on its range of application. The CV
method has been employed recently in reliability analysis.
For instance, Kawai (2020) utilized both importance sam-
pling and control variates to construct and investigate an
adaptive variance reduction framework. Portier and Segers
(2019) successfully reduced the variance of Monte Carlo in-
tegration using control variates in a multiple linear regres-
sion model. Dimarco and Pareschi (2020) introduced a mul-
tiscale control variates strategy to enhance the efficiency of
numerical calculations for kinetic equations with stochastic
parameters, particularly in high-dimensional problems. Ad-
ditionally, in engineering practice, where reliability problems
often involve high dimensionality and small failure probabil-
ities, the CV method is frequently combined with other tech-
niques. Rashki (2018) introduced a new formulation for ap-
proximating small failure probabilities, leveraging the adap-
tive cooperation of SS and the CV method. To minimize the
number of evaluations of the LSF, Ameryan et al. (2022)
proposed a novel approach that integrates an active learn-
ing kriging metamodel (AK-MCS) and the sequential space
conversion method (SESC), where the SESC formulation is
derived using the control variates method. Moreover, to en-
hance the efficiency of addressing high-dimensional prob-
lems, Mehni and Mehni (2023) presented a method for im-
proving the performance of cross-entropy-based Gaussian
mixture importance sampling, incorporating a control vari-
ates scheme to further enhance its effectiveness.

In this study, the control variates method is combined with
variance reduction sampling techniques to enhance the ef-
ficiency of probability estimation. These techniques, with
significantly smaller sample sizes compared to MCS-based
CVs, often result in a substantial reduction in the number
of evaluations of the LSF. Among these techniques, Latin
hypercube sampling (LHS), initially proposed by Mckay et
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al. (1979), is a widely used multidimensional stratified sam-
pling method in engineering practice. Zou et al. (2008) em-
ployed an optimal symmetric LHS technique to construct
the response surface of the indicator function for multi-
ple limit state and multiple design point problems. Yang et
al. (2005) utilized the optimal LHS method to uniformly
distribute sampling points across the entire design space,
thereby improving the accuracy of a real-world frontal im-
pact metamodel. Christensen et al. (2017) employed a novel
constrained nested orthogonal-maximin Latin hypercube ap-
proach for sampling to determine variable-shape mold con-
figurations used in the training and test sets. LHS exhibits
characteristics such as quick convergence and uniformly dis-
tributed samples. Therefore, using LHS to generate samples
for the control variates method can significantly improve
computational efficiency.

To address the reliability issues of engineering compo-
nents and systems characterized by high nonlinearity and
complexity with limited samples, this study proposes a
method that combines second-order saddle-point approxima-
tion (SOSPA) with control variable Latin hypercube sam-
pling (CVLHS). The proposed method leverages the benefits
of both variance reduction techniques and approximate ana-
lytical methods. By doing so, it achieves high-precision relia-
bility results while significantly reducing the number of eval-
uations of the limit state function. The remainder of the paper
is organized as follows. Section 2 discusses the method com-
bining CVLHS and SOSPA. Section 3 outlines the imple-
mentation procedure of the proposed method in real-world
applications. Section 4 presents two numerical examples and
two engineering cases to demonstrate the efficiency and ac-
curacy of the proposed method. Finally, Sect. 5 provides con-
clusions.

2 CVLHS with SOSPA

To increase the efficiency of the MCS, based on the theory
of the CV method, the index function of the highly corre-
lated limit state function (LSF) as the CV is used to convert
the original index function in the PF multidimensional inte-
gral. By incorporating LHS into the CV method, only a small
number of samples need to be generated to remove the er-
rors raised from the highly correlated LSF. Combining the
expectation of the CV estimated by SOSPA, PF is estimated
accurately without any simplification and assumptions.

2.1 CV for the failure probability function

The PF is expressed as the integral of the joint PDF
fX(x) over the n-dimensional random variable vector x =
[x1,x2, . . .,xn]:

Pf =

∫
F

fX(x)dx =
∫
X

IF (x)fX(x)dx, (1)

where F is the failure domain, F = {x : g(x)≤ 0}, g(x) is
the LSF and IF is the index function:

IF (x)=
{

1, x ∈ F,

0, x 6∈ F.
(2)

This integral can be described as an expectation of IF (x),
and with the N randomly sampled variable vector x, it is
approximated as follows:

Pf =

∫
X

IF (x)fX(x)dx = E [IF (x)]≈
1
N

N∑
i=1

IF (xi). (3)

If gc(x) is the highly correlated LSF of g(x), the correspond-
ing failure domain can be denoted as Fc = {x : gc(x)≤ 0}.
Moreover, IFc is the index function as a CV which is the
high correlation of IF , and similarly to Eq. (2), IFc (x)={

1, x ∈ Fc
0, x 6∈ Fc

. According to the CV-reduction technique

(Rubinstein and Kroese, 2016), the new index function is de-
fined by

IFCV (x)= IF (x)− ρ
[
IFc (x)−E

[
IFc (x)

]]
, (4)

where ρ is the correction coefficient.
Therefore, by substituting Eq. (4) into Eq. (2), the failure

probability integral by CV is rewritten as

PfCV =

∫
X

IFCV (x)fX(x)dx =
∫
X

IF (x)fX(x)dx

− ρ

∫
X

IFc (x)fX(x)dx+ ρE
[
IFc (x)

]
≈ ρ ·Pfc +

1
N

N∑
i=1

(
IF (xi)− ρ · IFc (xi)

)
, (5)

where Pfc is the PF of the highly correlated LSF gc(x). To
simplify the failure probability function, the posterior portion

of Eq. (5) will be zero, i.e., 1
N

N∑
i=1

(
IF (xi)− ρ · IFc (xi)

)
= 0.

In the light of Eq. (3), the correction coefficient ρ is estimated
by the ratio of the expectation of the index functions:

ρ =

N∑
i=1

IF (xi)

/
N∑
i=1

IFc (xi). (6)

Then, Eq. (5) can be simplified to

PfCV = ρ ·Pfc . (7)

2.2 Quadratic polynomial surface approximation of the
LSF

In this study, to ensure the accuracy of reliability analysis
for the high-nonlinearity reliability problems, the quadratic
polynomial is selected as the highly correlated LSF gc(x).
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By calculating the second derivative, the quadratic polyno-
mial approximation of g(x) can consider the concave direc-
tion and curvature of the limit state surface near the MPP.
The highly correlated LSF is expanded into a quadratic term
of Taylor series at the MPP x∗ as follows:

gc(x)= g(x∗)+∇g(x∗)T(x− x∗)

+
1
2

(x− x∗)T
∇

2g(x∗)(x− x∗), (8)

where ∇g(x∗) is the vector of partial derivatives at the MPP;
∇

2g(x∗) is the Hessian matrix of g(x) at the MPP; and x∗ is
the MPP, which is solved by iterative optimization using the
mean of x as the initial search point:{

min ||x||,
subject to g(x)= 0. (9)

where ||x|| is the distance from the origin to the x on the
limit state surface.

2.3 Latin hypercube sampling

The correction coefficient ρ in Eq. (6) is obtained based
on MCS generally. Nevertheless, for complicated high-
dimensional problems, MCS requires huge amounts of com-
putation for accurate estimation. To further reduce the com-
putational cost, LHS is employed to generate the initial sam-
ples based on the original LSF g(x) and the highly correlated
LSF gc(x) denoted by the Taylor expanded quadratic polyno-
mial, respectively.

To sample N initial points of x, the independent U (0, l)
(uniformly distributed on [0,1]) random variables are rep-
resented as U (i,j ) (i = 1, . . .,N,j = 1, . . .,n). The corre-
sponding scaling probability for each random numberU (i,j )
can be given by

P (i,j )=
U (i,j )+ (j − 1)

N
(i = 1, . . .,n,j = 1, . . .,N ) . (10)

Then the corresponding components xi,j (i = 1, . . .,N,j =
1, . . .,n) can be generated by inverse distribution functions.
LHS considers the total sampling range of random variables
with a small number of samples. Under the premise of en-
suring accuracy, the efficiency of the sampling is improved.
The initial correction coefficient ρ0 is obtained by the N ini-
tial samples x, and the result of ρ is optimized by Nadd by
adding samples until more than 20 failure points are reached.
The process of LHS is shown in Fig. 1.

2.4 SOSPA for the PF of the highly correlated LSF

For the computational advantage of SPA on a quadratic
polynomial, SOSPA is more accurate than the other com-
mon SORM (Huang et al., 2018). Therefore, it is utilized
to approximate the PF of the highly correlated LSF in this
study. It employs an inverse Fourier transform to obtain

the cumulative distribution function (CDF) of an exponen-
tial power series expression based on a saddle point by
the moment-generating function (MGF) and the cumulant-
generating function (CGF).

The MGF (Broda and Paolella, 2011) of the highly corre-
lated LSF gc(x), where x ∼N (µ,σ ), is given by

Mgc (t)= E
[
etgc

]
=

∫
∞

−∞

etgcfX(x)dx

= exp

{
t
(
a+ bTµ+µTcµ

)
+
t2

2

n∑
i=1

d2
i

1− 2tλi

}
n∏
i=1

(1− 2tλi)−0.5, (11)

where λ1, . . .,λn and P are the eigenvalues and eigen-
vectors of c and PcP T

= diag(λ1, . . .,λn) with P or-
thogonal, d = [d1,d2, . . .,dn]T

= P T (σ 0.5b+ 2σ 0.5cµ
)
,

a = 0.5x∗T∇2gc(x∗)x∗−∇gc(x∗)Tx∗, b =∇gc(x∗)−
∇

2gc(x∗)x∗ and c = 0.5∇2gc(x∗).
Moreover, the CGF of gc is given by

Kgc (t)= ln
(
Mgc (t)

)
= t

(
a+ bTµ+µTcµ

)
+
t2

2

n∑
i=1

d2
i ϑi +

1
2

n∑
i=1

lnϑi, (12)

where ϑi = (1− 2tλi)−1.
Then the derivatives of Kgc (t) can be determined as fol-

lows.

K (1)
gc

(t)= a+ bTµ+µTcµ

+

n∑
i=1

(
td2
i ϑi + t

2d2
i ϑ

2
i λi +ϑiλi

)
(13)

K (2)
gc

(t)=
n∑
i=1

(
d2
i ϑi + 4td2

i ϑ
2
i λi + 4t2d2

i ϑ
3
i λ

2
i + 2ϑ2

i λ
2
i

)
(14)

K (3)
gc

(t)

=

n∑
i=1

(
6d2
i ϑ

2
i λi + 24td2

i ϑ
3
i λ

2
i + 24t2d2

i ϑ
4
i λ

3
i + 8ϑ3

i λ
3
i

)
(15)

K (4)
gc

(t)=
n∑
i=1

(
48d2

i ϑ
3
i λ

2
i + 192td2

i ϑ
4
i λ

3
i

+ 192t2d2
i ϑ

5
i λ

4
i + 48ϑ4

i λ
4
i

)
(16)

By numerically integrating the PDF of SPA (Lugannani and
Rice, 1980), the CDF of gc can be approximated as

Fgc (gc0)= P {gc ≤ gc0} ≈8(w)+φ(w)
(

1
w
−

1
v

)
, (17)
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Figure 1. The procedure to generate the initial samples and optimize the correction coefficient by LHS.

where 8(·) and ϕ(·) are the CDF and PDF of the standard
normal distribution, respectively, andw and v are parameters
expressed as

w = sgn(ts)
{
2
[
tsgc0−Kgc (ts)

]}0.5
, (18)

v = ts

[
K (2)
gc

(ts)
]0.5

, (19)

where ts is the saddle point, K (2)
gc (·) are the second-order

derivatives of Kgc (·), and sgn(ts) is a symbolic function and
can be +1, −1 or 0, corresponding to ts > 0, ts < 0 and
ts = 0.

Furthermore, the second-order CDF of gc is

F̃gc (gc0)= P {gc ≤ gc0}

≈ Fgc (gc0)−φ(w)(
v−1

(
κ4

8
−

5
24
κ2

3

)
− v−3

−
κ3

2u2 +w
−3
)
, (20)

where κi =K
(i)
gc (ts)

/[
K

(2)
gc (ts)

]0.5i
.

Then, making gc0 = 0, the PF Pfc can be easily calcu-
lated from the second-order CDF F̃gc (0) corresponding to the
strongly correlated LSF gc(x)≤ 0, i.e.,

Pfc = F̃gc (0). (21)

3 Implementation procedure

To ensure the accuracy of the PF, the coefficient of variation
of the PF is calculated as the stop condition for loop oper-
ation. The new sample vector xnew is sequentially added to
the sample set until the coefficient of variation of the PF has
to be convergent.

3.1 The estimator statistical property

The expectation of PF in Eq. (7) is estimated as

E
(
PfCV

)
= E

(
ρ ·Pfc

)
= ρ ·E

(
F̃gc (0)

)
. (22)

Since the estimation PF by LHS is the unbiased estimation
(McKay et al., 1979), the expectations of the PF of the origi-
nal LSF and the highly correlated LSF are

E
(
PfLHS

)
= E (IF (x))≈

1
N

N∑
i=1

IF (xi), (23)

E
(
PfcLHS

)
= E

(
IFc (x)

)
≈

1
N

N∑
i=1

IFc (xi). (24)

Therefore, the correction coefficient ρ is estimated by LHS:

ρ = E
(
PfLHS

)/
E
(
PfcLHS

)
=

1
N

N∑
i=1

IF (xi)

/
1
N

N∑
i=1

IFc (xi) = PfLHS

/
PfcLHS

(25)
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The expectation of PF is given by

E
(
PfCV

)
=

E
(
PfLHS

)
E
(
PfcLHS

) ·E(F̃gc (0)
)
. (26)

According to the theory of control variate estimator prop-
erty, the variance of PF by the proposed approach may be
estimated as

Var
(
PfCV

)
= Var

(
PfLHS

)
+ ρ2Var

(
PfcLHS

)
− 2ρCov

(
PfLHS ,PfcLHS

)
= Var

(
PfLHS

)
+
E2 (PfLHS

)
E2
(
PfcLHS

) ·Var
(
PfcLHS

)

− 2 ·
E
(
PfLHS

)
E
(
PfcLHS

) ·Cov
(
PfLHS ,PfcLHS

)
. (27)

Due to the expectation and the variance of PfCV , the coeffi-
cient of variation δPfCV

can be estimated as

δPfCV
=

√
Var

(
PfCV

)
E
(
PfCV

)
=

√
Var

(
PfLHS

)
+

E2
(
PfLHS

)
E2
(
PfcLHS

) ·Var
(
PfcLHS

)
− 2 ·

E
(
PfLHS

)
E
(
PfcLHS

) ·Cov
(
PfLHS ,PfcLHS

)
E
(
PfLHS

)
E
(
PfcLHS

) ·E(F̃gc (0)
)

=

√√√√√E2
(
PfcLHS

)
·Var

(
PfLHS

)
E2
(
PfLHS

)
· F̃ 2

gc
(0)

+

Var
(
PfcLHS

)
F̃ 2
gc

(0)
−

2 ·E
(
PfcLHS

)
·Cov

(
PfLHS ,PfcLHS

)
E
(
PfLHS

)
· F̃ 2

gc
(0)

. (28)

Hereinto, the variances of the PF by LHS are expressed as

Var
(
PfLHS

)
= Var

(
1
N

N∑
i=1

IF (xi)

)
=

1
N

Var(IF (x))+
1
N

(N − 1)

cov
(
IF (x1,j ),IF (x2,j )

)
, j = 1,2, . . .,n. (29)



Var
(
PfcLHS

)
= Var

(
1
N

N∑
i=1

IFc (xi)

)
=

1
N

Var
(
IFc (x)

)
+

1
N

(N − 1)

cov
(
IFc (x1,j ),IFc (x2,j )

)
, j = 1,2, . . .,n (30)

Stein (1987) proved that 1
N

(N − 1)cov
(
IFc (x1,j ),IFc (x2,j )

)
is a non-positive value. Therefore, LHS has a smaller vari-
ance than MCS and is easier to converge.

Figure 2. The flowchart of the proposed method.

3.2 Procedure of CVLHS with SOSPA

To solve the reliability problem, the procedure to perform
the CVLHS with the SOSPA method is shown in Fig. 2. Ac-
cording to the convergence criteria, the threshold value of the
coefficient of variation δPfCV

is set to 0.15–0.25 for different
cases in this paper.

4 Illustrative examples

In this section, four representative examples are provided
to demonstrate the accuracy and efficiency of the proposed
method in addressing the characteristics of high nonlinear-
ity and complexity in practical engineering problems. These
examples include a highly nonlinear numerical problem,
a small failure probability problem, and two continuous-
system engineering cases. The results obtained from the
proposed method, i.e., CVLHS with SOSPA, are compared
with those acquired from other methods, including SORM,
CVMCS with SOSPA, IS, and MCS. For the IS, the impor-
tance sampling density function kX(x) is selected to have the
same form as the PDF fX(x), with equal means and n times
the standard deviation, i.e., µk = µf and σk = nσf (where
n is set to 2). In four cases, the initial sample size for both
CVLHS with SOSPA and CVMCS with the SOSPA methods
is set to 102, while, for the MCS method, the initial sample
size is 106. To eliminate computational errors, the average of
five calculations is taken.

4.1 Highly nonlinear numerical problem

To examine the applicability of the proposed method for the
highly nonlinear reliability problem, the LSF with several in-
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Table 1. Comparison of the results of Example 4.1.

Method Reliability Relative LSF call
error

Monte Carlo 0.996427 – 106

SORM 0.969426 2.710 % 482
IS 0.979474 1.701 % 49 400
CVMCS with SOSPA 0.994815 0.16181 % 482+ 8047∗

CVLHS with SOSPA 0.996543 0.01165 % 482+ 5167∗

∗ LSF call=LSF call(optimize MPP) + LSF call(sampling).

Figure 3. The PF curve by CVLHS with the SOSPA method in
Example 4.1.

dependent normal random variables is analyzed as follows:

G(x)=
10∑
i=1

xii − 108. (31)

The means and standard deviations of the random variables
Xi (i = 1,2, . . .,10) are all µi = 10, σi = 5.

The results of reliability analysis are listed in Table 1. Fig-
ure 3 presents the variation curve of the PF by the proposed
CVLHS with the SOSPA method with the sample size. Fig-
ure 4 compares the convergence procedure of the proposed
method and CVMCS with the SOSPA method, and Fig. 5
shows the CDF curves of the LSF by the proposed method
and MCS.

From Table 1, it can be observed that the number of LSF
calls is the lowest in SORM among these methods. How-
ever, there is a relatively large relative error in the reliabil-
ity results compared to MCS. IS yields satisfactory results,
but it requires a relatively high number of LSF calls. On the
other hand, the proposed CVLHS with SOSPA, compared
to the CVMCS with SOSPA, further reduces the number of
LSF calls while providing more accurate reliability results.
In Figs. 3 and 4, both the proposed CVLHS with the SOSPA
method and CVMCS with the SOSPA method demonstrate
convergence with a small number of samples, with the pro-
posed method converging more quickly and being more effi-
cient. Furthermore, as depicted in Fig. 5, the results obtained
from the proposed method closely align with those obtained
from MCS. However, the number of LSF calls for the pro-

Figure 4. The curve of the variation coefficient with sample size in
Example 4.1.

Figure 5. The CDF of the LSF in Example 4.1.

posed method is merely 0.85 % of that required by MCS.
Hence, the proposed CVLHS with the SOSPA method effec-
tively and accurately solves highly nonlinear reliability prob-
lems.

4.2 Small failure probability problem

This example illustrates the efficiency and accuracy of the
proposed method for the small failure reliability analysis
with a high-dimensional LSF. In this example, the LSF, con-
sisting of 40 independent and normally distributed random
variables xi (i = 1,2, . . .,40)∼N (1.5,1), is defined as (Bi-
chon et al., 2008)

G(x)=

(
x2

1 + 4
)

(x2− 1)
20

− cos
(

5x1

2

)
+

40∑
i=1

x2
i − 71.5. (32)

For the small failure probability problem, the results
in Table 2 show that the proposed CVLHS with SOSPA,
CVMCS with SOSPA, and IS are more accurate than the
SORM method. However, in order to achieve the corre-
sponding accuracy, the number of calls to the LSF in IS ex-
ceeds 105. Figure 6 demonstrates that the proposed CVLHS
with the SOSPA method converges when the sample size
reaches 10 000. Additionally, Fig. 7 illustrates the conver-
gence curves of the proposed method and the CVMCS with
the SOSPA method, indicating that the proposed method con-
verges at a faster rate. Consequently, the proposed method
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Table 2. Comparison of the results of Example 4.2.

Method Reliability Relative LSF call
error

Monte Carlo 0.999354 – 106

SORM 0.984627 1.474 % 596
IS 0.999179 0.01751 % 1.34× 105

CVMCS with SOSPA 0.999301 0.005291 % 596+ 23000∗

CVLHS with SOSPA 0.999324 0.003036 % 596+ 14000∗

∗ LSF call=LSF call(optimize MPP) + LSF call(sampling).

Figure 6. The PF curve by CVLHS with the SOSPA method in
Example 4.2.

significantly reduces computational consumption for high-
dimensional small failure probability reliability problems.
Furthermore, Fig. 8 exhibits strong agreement between the
results of the proposed CVLHS with the SOSPA method and
those of MCS. However, the number of calls to the LSF for
the proposed method is only 1.46 % of that required by MCS.
Therefore, it can be verified that the proposed method in this
paper significantly reduces the number of calls to the LSF
while maintaining accuracy, making it suitable for reliability
estimation of problems with small failure probabilities.

4.3 Dynamic reliability analysis of a cantilever beam

This example is to verify the accuracy of the proposed
CVLHS with the SOSPA method in an engineering structure.
The cantilever beam under a dynamic loading F (t) (Bucher,
2009) is shown in Fig. 9. The dynamic motion equation of
the cantilever beam is

ρA
∂2ω

∂t2
+EI

∂4ω

∂x4 = p(x, t), (33)

where ρ is the constant density, A is the cross-sectional area,
and EI is the bending stiffness.

According to the appropriate initial and boundary condi-
tions, the fundamental natural circular frequency ω1 is given

Figure 7. The curve of the variation coefficient with a sample size
in Example 4.2.

Figure 8. The CDF of the LSF in Example 4.2.

by

ω2
1 =

λ4
1EI
ρA
=

12.362EI
ρAL4 . (34)

The density and the length are deterministic; i.e., ρ = 1 and
L= 1. The distribution characteristics are shown in Table 3.
To avoid resonance failure of the cantilever beam, the ratio is
ω/ω1 < 0.99 or ω/ω1 > 1.01.

For an engineering structure, as shown in Table 4 and
Figs. 10–12, the reliability results of the proposed CVLHS
with the SOSPA method fit well with the MCS results, and
the relative error is minimal. When the sample size reaches
around 1000, the method starts to converge. Compared to
the SORM method, the number of calls to the LSF only in-
creased by less than 1300, but the accuracy significantly im-
proved. Compared to the IS method, in order to achieve the
corresponding accuracy, the IS requires more than 21 times
the number of LSF calls compared to CVLHS with SOSPA.

4.4 Reliability of chatter stability in turning

A simplified diagram of a single-degree-of-freedom regener-
ative chatter dynamics model of the turning process system
is shown in Fig. 13.
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Figure 9. Cantilever beam under dynamic load.

Table 3. Distribution information of the cantilever beam parame-
ters.

Parameter Mean Coefficient Distribution
of variation

ω 0.3 rad s−1 0.01 Normal
EI 0.1 N mm2 0.01 Normal
A 1 mm2 0.05 Normal
ρ 1 kg m−3 – Normal
L 1 m – Normal

According to the dynamics analysis of the turning process
system (Schmitz and Smith, 2009), the limit cutting width is
expressed as

aplim =
k
[(

1− λ2)2
+ (2ξλ)2

]
Kcu

(
λ2− 1

)
·

1− ηcos

[
2jπ + arcsin 2ξλ

η

√
(2ξλ)2

+(1−λ2)2
− arctan

(
2ξλ

1−λ2

)]

1+ η2− 2ηcos

[
2jπ + arcsin 2ξλ

η

√
(2ξλ)2

+(1−λ2)2
− arctan

(
2ξλ

1−λ2

)] , (35)

and the corresponding spindle speed can be expressed as

�=
60λωn

2jπ + arcsin 2ξλ

η

√
(2ξλ)2

+(1−λ2)2
− arctan

(
2ξλ

1−λ2

) , (36)

where ωn is the natural frequency of the vibration system
in turning, ω2

n = k/m, ξ is the damping ratio of the turn-
ing system defined as ξ = c/2mωn, u is the direction coef-
ficient defined as u= cos(ϕ−α)cosα, η is the turning pro-
cessing overlap coefficient (0≤ η ≤ 1), λ= ω/ωn (vibration
frequency ω is slightly larger than the natural frequency ωn),
i.e., λ > 1, and j = 0,1,2, . . . is the number of lobes. The
cutting force coefficient Kc consists of the tangential cutting
force coefficient Kt and the radial cutting force coefficient
Kr, and its expression is

Kc =

√
K2

t +K
2
r . (37)

Table 4. Comparison of the reliability results for the cantilever
beam dynamic system.

Method Reliability Relative LSF call
error

Monte Carlo 0.968941 – 106

SORM 0.515266 46.82 % 220
IS 0.967781 0.1197 % 32 000
CVMCS with SOSPA 0.971894 0.3047 % 220+ 1627∗

CVLHS with SOSPA 0.969301 0.03715 % 220+ 1288∗

∗ LSF call=LSF call(optimize MPP) + LSF call(sampling).

Figure 10. The PF curve by CVLHS with the SOSPA method for
the cantilever beam dynamic system.

Figure 11. The curve of the variation coefficient for the cantilever
beam dynamic system.

Figure 12. The CDF of the LSF for the cantilever beam dynamic
system.
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Figure 13. Dynamic model of cutting regenerative chatter in turn-
ing.

Table 5. Distribution information of the turning process parameters.

Parameter Mean Coefficient Distribution
of variation

k 7.34× 106 N m−1 0.01 Normal
c 1832.3 N s m−1 0.01 Normal
m 10.061 N s2 m−1 0.01 Normal
8 60◦ 0.01 Normal
α 45◦ 0.01 Normal
η 1 – Normal
Kr 1625 N mm−2 – Normal
Kt 2560 N mm−2 – Normal

The minimum aplim appears when chatter is strongest, i.e.,
η = 1, and the first partial derivative of λ in Eq. (35) is taken
to obtain the minimum aplim as

aplimmin =
2kξ (1+ ξ )
Kcu

. (38)

The turning process system would be unstable when the limit
cutting width aplim is not more than the minimum limit cut-
ting width. The distribution characteristics of the turning pro-
cess parameters are listed in Table 5.

In Fig. 14, the reliability curve of the turning process at
different spindle speeds generated by the proposed CVLHS
with the SOSPA method is compared with that by SORM,
CVMCS with SOSPA, IS and MCS. The results demonstrate
that the proposed method achieves the highest consistency
with the results obtained by MCS. Therefore, the method has

Figure 14. The reliability curve of the chatter stability in turning.

been proven to be feasible for accurately addressing complex
practical mechanical engineering reliability problems.

5 Conclusion

To improve the efficiency and accuracy of reliability analysis
for engineering systems with high nonlinearity and complex-
ity in practical applications, a novel method is proposed. The
method, CVLHS with SOSPA, utilizes CV to transform the
original LSF into a highly correlated LSF that can be ap-
proximated using SORM. Sample points are generated using
LHS, and the probability of failure for the highly correlated
LSF is estimated using SPA. The proposed method aims to
reduce the number of function calls required by simulation
method that employ variance reduction technique, by inte-
grating approximate analytical method.

Through the reliability analysis of the examples, it is ev-
ident that the proposed method achieves accurate approxi-
mation of the failure probability with a reasonable number
of samples, whereas MCS and IS require a large number
of samples to achieve the desired level of accuracy. Addi-
tionally, when the relative error of the reliability calcula-
tion results obtained by SORM is relatively high, the pro-
posed method still provides accurate estimation with a rea-
sonable sample size. The results demonstrate that, for com-
plex nonlinear problems, the proposed method requires less
than 1.5 % of the LSF calls compared to MCS while main-
taining a high level of accuracy. Moreover, the comparison
between CVLHS with SOSPA and CVMCS with SOSPA re-
sults reveals that, even in situations where a large number of
samples cannot be utilized in the modeling process, which
is often a concern in practical engineering, CVLHS with
SOSPA can accurately predict the failure probability using a
small number of initial samples generated by LHS, thus fur-
ther reducing the required number of LSF calls. Hence, the
proposed method significantly reduces the number of LSF
calls while ensuring high-precision reliability results.

While the proposed method in this study combines the ad-
vantages of an approximate analytical method and a simu-
lation method, it is suitable for engineering problems where
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an explicit limit state function can be established. To further
investigate and expand this method, the integration of sur-
rogate model methods can be considered, and the reliability
analysis results can be compared to identify the optimal inte-
gration approach.

Data availability. The data generated during this study are avail-
able from the corresponding author on reasonable request.

Author contributions. XE: Resources, Methodology, Validation,
Formal analysis, Writing-Original Draft, Writing-Review & Edit-
ing. YZ: Project administration, Funding acquisition, Supervision.
XH: Conceptualization, Investigation, Project administration, Fund-
ing acquisition, Supervision.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We would like to express our appreciation
to the R&D Program of the Beijing Municipal Education Commis-
sion, the National Key R&D Program of China, the National Natu-
ral Science Foundation of China, as well as the Beijing Municipal
Education Commission and the Beijing Natural Science Foundation
Co-financing Project for supporting this research.

Financial support. This research has been supported by the R&D
Program of the Beijing Municipal Education Commission (grant
no. KM202310015004), the National Key R&D Program of China
(grant no. 2019YFB2004400), the National Natural Science Foun-
dation of China (grant nos. 51975110 and U22B2087), as well
as the Beijing Municipal Education Commission and the Bei-
jing Natural Science Foundation Co-financing Project (grant no.
KZ202210015019) for supporting this research.

Review statement. This paper was edited by Daniel Condurache
and reviewed by three anonymous referees.

References

Ameryan, A., Ghalehnovi, M., and Rashki, M.: AK-SESC:
a novel reliability procedure based on the integration
of active learning kriging and sequential space con-
version method, Reliab. Eng. Syst. Safe, 217, 108036,
https://doi.org/10.1016/j.ress.2021.108036, 2022.

Au, S. K. and Beck, J. L.: Estimation of Small Failure Prob-
abilities in High Dimensions by Subset Simulation, Proba-

bilistic Eng. Mech., 16, 263–277, https://doi.org/10.1016/s0266-
8920(01)00019-4, 2001.

Bichon, B. J., Eldred, M. S., Swiler, L. P., Mahadevan, S., and Mc-
Farland, J. M.: Efficient Global Reliability Analysis for Nonlin-
ear Implicit Performance Functions, AIAA J., 46, 2459–2468,
https://doi.org/10.2514/1.34321, 2008.

Binder, K. (Ed.): Applications of the Monte Carlo Method in Sta-
tistical Physics, in: Topics in Current Physics, Springer Berlin
Heidelberg, ISBN: 978-3-540-17650-3, 1987.

Breitung, K.: Asymptotic Approximations for Multi-
normal Integrals, J. Eng. Mech., 110, 357–366,
https://doi.org/10.1061/(asce)0733-9399(1984)110:3(357),
1984.

Broda, S. A. and Paolella, M. S.: Saddlepoint Approximations: A
Review and Some New Applications, in: Springer Handbooks
of Computational Statistics, edited by: Gentle, J. E., Härdle,
W. K., and Mori, Y., Springer, Berlin, Heidelberg, 953–983,
https://doi.org/10.1007/978-3-642-21551-3_32, 2011.

Bucher, C.: Computational Analysis of Randomness in Structural
Mechanics, CRC Press, Leiden, ISBN 978-0-415-40354-2, 2009.

Chiralaksanakul, A. and Mahadevan, S.: First-Order Approximation
Methods in Reliability-Based Design Optimization, J. Mech. De-
sign, 127, 851–857, https://doi.org/10.1115/1.1899691, 2005.

Christensen, E. T., Lund, E., and Lindgaard, E.: Experimental
Validation of Surrogate Models for Predicting the Draping of
Physical Interpolating Surfaces, J. Mech. Design, 140, 011401,
https://doi.org/10.1115/1.4038073, 2017.

Dai, H., Zhang, B., and Wang, W.: A Multiwavelet Sup-
port Vector Regression Method for Efficient Reliabil-
ity Assessment, Reliab. Eng. Syst. Safe, 136, 132–139,
https://doi.org/10.1016/j.ress.2014.12.002, 2015.

Der Kiureghian, A., Lin, H. Z., and Hwang, S. J.: Second-Order
Reliability Approximations, J. Eng. Mech., 113, 1208–1225,
https://doi.org/10.1061/(asce)0733-9399(1987)113:8(1208),
1987.

Dimarco, G. and Pareschi, L.: Multiscale Variance Reduction
Methods Based on Multiple Control Variates for Kinetic Equa-
tions with Uncertainties, Multiscale Model. Sim., 18, 351–382,
https://doi.org/10.1137/18m1231985, 2020.

Du, X.: Unified Uncertainty Analysis by the First Or-
der Reliability Method, J. Mech. Design, 130, 091401,
https://doi.org/10.1115/1.2943295, 2008a.

Du, X.: Saddlepoint Approximation for Sequential Optimiza-
tion and Reliability Analysis, J. Mech. Design, 130, 011011,
https://doi.org/10.1115/1.2717225, 2008b.

Du, X. and Sudjianto, A.: First Order Saddlepoint Approxi-
mation for Reliability Analysis, AIAA J., 42, 1199–1207,
https://doi.org/10.2514/1.3877, 2004.

Echard, B., Gayton, N., and Lemaire, M.: AK-MCS: An
Active Learning Reliability Method Combining Kriging
and Monte Carlo Simulation, Struct. Saf., 33, 145–154,
https://doi.org/10.1016/j.strusafe.2011.01.002, 2011.

Guo, S.: An Efficient Third-Moment Saddlepoint Approxima-
tion for Probabilistic Uncertainty Analysis and Reliability
Evaluation of Structures, Appl. Math. Model., 38, 221–232,
https://doi.org/10.1016/j.apm.2013.06.026, 2014.

Hasofer, A. M. and Lind, N. C.: Exact and Invariant Second-
Moment Code Format, J. Eng. Mech. Div.-ASCE, 100, 111–121,
1974.

https://doi.org/10.5194/ms-14-439-2023 Mech. Sci., 14, 439–450, 2023

https://doi.org/10.1016/j.ress.2021.108036
https://doi.org/10.1016/s0266-8920(01)00019-4
https://doi.org/10.1016/s0266-8920(01)00019-4
https://doi.org/10.2514/1.34321
https://doi.org/10.1061/(asce)0733-9399(1984)110:3(357)
https://doi.org/10.1007/978-3-642-21551-3_32
https://doi.org/10.1115/1.1899691
https://doi.org/10.1115/1.4038073
https://doi.org/10.1016/j.ress.2014.12.002
https://doi.org/10.1061/(asce)0733-9399(1987)113:8(1208)
https://doi.org/10.1137/18m1231985
https://doi.org/10.1115/1.2943295
https://doi.org/10.1115/1.2717225
https://doi.org/10.2514/1.3877
https://doi.org/10.1016/j.strusafe.2011.01.002
https://doi.org/10.1016/j.apm.2013.06.026


450 X. En et al.: Modified control variates method based on SOSPA

Helton, J. C., Johnson, J. D., Sallaberry, C. J., and Storlie, C.
B.: Survey of Sampling-Based Methods for Uncertainty and
Sensitivity Analysis, Reliab. Eng. Syst. Safe, 91, 1175–1209,
https://doi.org/10.1016/j.ress.2005.11.017, 2006.

Huang, B. and Du, X.: Probabilistic Uncertainty Analysis by Mean-
Value First Order Saddlepoint Approximation, Reliab. Eng. Syst.
Safe, 93, 325–336, https://doi.org/10.1016/j.ress.2006.10.021,
2008.

Huang, X., Li, Y., Zhang, Y., and Zhang, X.: A New Direct Second-
Order Reliability Analysis Method, Appl. Math. Model., 55, 68–
80, https://doi.org/10.1016/j.apm.2017.10.026, 2018.

Kawai, R.: Adaptive Importance Sampling and Con-
trol Variates, J. Math. Anal. Appl., 483, 123608,
https://doi.org/10.1016/j.jmaa.2019.123608, 2020.

Keshtegar, B. and Chakraborty, S.: A Hybrid Self-Adaptive
Conjugate First Order Reliability Method for Robust Struc-
tural Reliability Analysis, Appl. Math. Model., 53, 319–332,
https://doi.org/10.1016/j.apm.2017.09.017, 2018.

Law, A. M., Kelton, W. D., and Kelton, W. D.: Simulation Modeling
and Analysis, McGraw-Hill, New York, 2000.

Lemaire, M.: Structural reliability, John Wiley & Sons, ISBN 978-
1-84821-082-0, 2013.

Lugannani, R. and Rice, S.: Saddle Point Approxima-
tion for The Distribution of the Sum of Independent
Random Variables, Adv. Appl. Probab., 12, 475–490,
https://doi.org/10.1017/s0001867800050278, 1980.

McKay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison
of Three Methods for Selecting Values of Input Variables in the
Analysis of Output from a Computer Code, Technometrics, 21,
239–245, https://doi.org/10.2307/1268522, 1979.

Mehni, M. B. and Mehni, M. B.: Reliability analysis with cross-
entropy based adaptive Markov chain importance sampling
and control variates, Reliab. Eng. Syst. Safe, 231, 109014,
https://doi.org/10.1016/j.ress.2022.109014, 2023.

Melchers, R. E.: Importance Sampling in Structural Sys-
tems, Struct. Saf., 6, 3–10, https://doi.org/10.1016/0167-
4730(89)90003-9, 1989.

Meng, Z., Zhou, H., Hu, H., and Keshtegar, B.: Enhanced Se-
quential Approximate Programming Using Second Order Reli-
ability Method for Accurate and Efficient Structural Reliability-
Based Design Optimization, Appl. Math. Model., 62, 562–579,
https://doi.org/10.1016/j.apm.2018.06.018, 2018a.

Meng, Z., Zhang, D., Liu, Z., and Li, G.: An Adaptive Direc-
tional Boundary Sampling Method for Efficient Reliability-
Based Design Optimization, J. Mech. Design., 140, 121406,
https://doi.org/10.1115/1.4040883, 2018b.

Metropolis, N. and Ulam, S.: The Monte Carlo
Method, J. Am. Stat. Assoc., 44, 335–341,
https://doi.org/10.1080/01621459.1949.10483310, 1949.

Oates, C. J., Girolami, M., and Chopin, N.: Control Functionals
for Monte Carlo Integration, J. R. Stat. Soc. B, 79, 695–718,
https://doi.org/10.1111/rssb.12185, 2016.

Papaioannou, I., Geyer, S., and Straub, D.: Improved cross
entropy-based importance sampling with a flexible mix-
ture model, Reliab. Eng. Syst. Safe., 191, 106564,
https://doi.org/10.1016/j.ress.2019.106564, 2019.

Portier, F. and Segers, J.: Monte Carlo Integration with a Growing
Number of Control Variates, J. Appl. Probab., 56, 1168–1186,
https://doi.org/10.1017/jpr.2019.78, 2019.

Rashki, M.: Hybrid control variates-based simulation method for
structural reliability analysis of some problems with low failure
probability, Appl. Math. Model., 60, 220–234, 2018.

Rubinstein, R. Y. and Kroese, D. P.: Simulation and the Monte Carlo
method, John Wiley & Sons, New York, ISBN 9781118632161,
2016.

Schmitz, L. and Smith, K.: Machining Dynamics: Frequency
Response to Improved Productivity, Springer, New York,
ISBN 978-0-387-09644-5, 2009.

Shayanfar, M. A., Barkhordari, M. A., and Roudak, M. A.: An
Efficient Reliability Algorithm for Locating Design Point Us-
ing the Combination of Importance Sampling Concepts and Re-
sponse Surface Method, Commun. Nonlinear Sci., 47, 223–237,
https://doi.org/10.1016/j.cnsns.2016.11.021, 2017.

Stein, M.: Large Sample Properties of Simulations Using
Latin Hypercube Sampling, Technometrics, 29, 143–151,
https://doi.org/10.1080/00401706.1987.10488205, 1987.

Tvedt, L.: Distribution of Quadratic Forms in Normal Space–
Application to Structural Reliability, J. Eng. Mech.,
116, 1183–1197, https://doi.org/10.1061/(asce)0733-
9399(1990)116:6(1183), 1990.

Xiao, N. C., Huang, H. Z., Wang, Z., Liu, Y., and Zhang, X. L.: Uni-
fied Uncertainty Analysis by The Mean Value First Order Sad-
dlepoint Approximation, Struct. Multidiscip. O., 46, 803–812,
https://doi.org/10.1007/s00158-012-0794-4, 2012.

Yang, R. J., Wang, N., Tho, C. H., Bobineau, J. P., and Wang,
B. P.: Metamodeling Development for Vehicle Frontal
Impact Simulation, J. Mech. Design, 127, 1014–1020,
https://doi.org/10.1115/1.1906264, 2005.

Zhang, D., Han, X., Jiang, C., Liu, J., and Li, Q.: Time-Dependent
Reliability Analysis Through Response Surface Method, J.
Mech. Design, 139, 041404, https://doi.org/10.1115/1.4035860,
2017.

Zhang, J. and Du, X.: A Second-Order Reliability Method
With First-Order Efficiency, J. Mech. Design, 132, 101006,
https://doi.org/10.1115/1.4002459, 2010.

Zhang, J., Xiao, M., Gao, L., and Chu, S.: A Combined Projection-
Outline-Based Active Learning Kriging and Adaptive Impor-
tance Sampling Method for Hybrid Reliability Analysis with
Small Failure Probabilities, Comput. Method. Appl. M., 344, 13–
33, https://doi.org/10.1016/j.cma.2018.10.003, 2018.

Zhang, L., Lu, Z., and Wang, P.: Efficient Structural
Reliability Analysis Method Based on Advanced
Kriging Model, Appl. Math. Model., 39, 781–793,
https://doi.org/10.1016/j.apm.2014.07.008, 2015.

Zhao, H., Li, S., and Ru, Z.: Adaptive Reliability Analy-
sis Based on a Support Vector Machine and Its Applica-
tion to Rock Engineering, Appl. Math. Model., 44, 508–522,
https://doi.org/10.1016/j.apm.2017.02.020, 2017.

Zhao, Y. G. and Ono, T.: A General Procedure for First/Second-
Order Reliability Method (FORM/SORM), Struct. Saf., 21, 95–
112, https://doi.org/10.1016/S0167-4730(99)00008-9, 1999.

Zio, E.: The Monte Carlo Simulation Method for System Reliability
and Risk Analysis, Springer, London, ISBN 978-1-4471-4587-5,
2013.

Zou, T., Mourelatos, Z. P., Mahadevan, S., and Tu, J.:
An Indicator Response Surface Method for Simulation-
Based Reliability Analysis, J. Mech. Design, 130, 071401,
https://doi.org/10.1115/1.2918901, 2008.

Mech. Sci., 14, 439–450, 2023 https://doi.org/10.5194/ms-14-439-2023

https://doi.org/10.1016/j.ress.2005.11.017
https://doi.org/10.1016/j.ress.2006.10.021
https://doi.org/10.1016/j.apm.2017.10.026
https://doi.org/10.1016/j.jmaa.2019.123608
https://doi.org/10.1016/j.apm.2017.09.017
https://doi.org/10.1017/s0001867800050278
https://doi.org/10.2307/1268522
https://doi.org/10.1016/j.ress.2022.109014
https://doi.org/10.1016/0167-4730(89)90003-9
https://doi.org/10.1016/0167-4730(89)90003-9
https://doi.org/10.1016/j.apm.2018.06.018
https://doi.org/10.1115/1.4040883
https://doi.org/10.1080/01621459.1949.10483310
https://doi.org/10.1111/rssb.12185
https://doi.org/10.1016/j.ress.2019.106564
https://doi.org/10.1017/jpr.2019.78
https://doi.org/10.1016/j.cnsns.2016.11.021
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.1061/(asce)0733-9399(1990)116:6(1183)
https://doi.org/10.1061/(asce)0733-9399(1990)116:6(1183)
https://doi.org/10.1007/s00158-012-0794-4
https://doi.org/10.1115/1.1906264
https://doi.org/10.1115/1.4035860
https://doi.org/10.1115/1.4002459
https://doi.org/10.1016/j.cma.2018.10.003
https://doi.org/10.1016/j.apm.2014.07.008
https://doi.org/10.1016/j.apm.2017.02.020
https://doi.org/10.1016/S0167-4730(99)00008-9
https://doi.org/10.1115/1.2918901

	Abstract
	Introduction
	CVLHS with SOSPA
	CV for the failure probability function
	Quadratic polynomial surface approximation of the LSF
	Latin hypercube sampling
	SOSPA for the PF of the highly correlated LSF

	Implementation procedure
	The estimator statistical property
	Procedure of CVLHS with SOSPA

	Illustrative examples
	Highly nonlinear numerical problem
	Small failure probability problem
	Dynamic reliability analysis of a cantilever beam
	Reliability of chatter stability in turning

	Conclusion
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

