Addabbo, T., Marco, M. D., Fort, A., Landi, E., Mugnaini, M., Vignoli, V.,
and Ferretti, G.: Instantaneous Rotation Speed Measurement System Based on
Variable Reluctance Sensors for Torsional Vibration Monitoring, IEEE Trans.
Instrum. Meas., 68, 2363–2373, https://doi.org/10.1109/TIM.2018.2877808,
2019.

Ambarisha, V. K. and Parker, R. G.: Nonlinear dynamics of planetary gears
using analytical and finite element models, J. Sound Vibr., 302, 577–595,
https://doi.org/10.1016/j.jsv.2006.11.028, 2007.

Chaari, F., Fakhfakh, T., Hbaieb, R., Louati, J., and Haddar, M.: Influence
of manufacturing errors on the dynamic behavior of planetary gears,
Int. J. Adv. Manuf. Tech., 27, 738–746,
https://doi.org/10.1007/s00170-004-2240-2, 2006.

Chen, K., Huangfu, Y., Ma, H., Xu, Z., Li, X., and Wen, B.: Calculation of
mesh stiffness of spur gears considering complex foundation types and crack
propagation paths, Mech. Syst. Signal Pr., 130, 273–292,
https://doi.org/10.1016/j.ymssp.2019.05.014, 2019.

Feng, Z. and Zuo, M. J.: Fault diagnosis of planetary gearboxes via
torsional vibration signal analysis, Mech. Syst. Signal Pr., 36, 401–421,
https://doi.org/10.1016/j.ymssp.2012.11.004, 2013.

Hibbeler, R. C.: Dynamics, 3rd Edn., Pearson Prentice Hall, Upper Saddle River, New Jersey, USA, 2004.

Howard, I. M.: An investigation of vibration signal averaging of individual
components in an epicyclic gearbox (No. ARL-PROP-R-185), Aeronautical
Research Labs Melbourne, Australia, 1991.

Inalpolat, M. and Kahraman, A.: A theoretical and experimental investigation
of modulation sidebands of planetary gear sets, J. Sound Vibr., 323,
677–696, https://doi.org/10.1016/j.jsv.2009.01.004, 2009.

Inalpolat, M. and Kahraman, A.: A dynamic model to predict modulation
sidebands of a planetary gear set having manufacturing errors, J. Sound
Vibr., 329, 371–393, https://doi.org/10.1016/j.jsv.2009.09.022, 2010.

Kahraman, A.: Load sharing characteristics of planetary transmissions, Mech.
Mach. Theory, 29, 1151–1165, https://doi.org/10.1016/0094-114X(94)90006-X,
1994.

Kazienko, D. and Chybowski, L.: Instantaneous rotational speed algorithm for
locating malfunctions in marine diesel engines, Energies, 13, 1396,
https://doi.org/10.3390/en13061396, 2020.

Li, S., Wu, Q., and Zhang, Z.: Bifurcation and chaos analysis of multistage
planetary gear train, Nonlinear Dynam., 75, 217–233,
https://doi.org/10.1007/s11071-013-1060-z, 2014.

Li, Y., Ding, K., He, G., and Yang, X.: Vibration modulation sidebands
mechanisms of equally-spaced planetary gear train with a floating sun gear,
Mech. Syst. Signal Pr., 129, 70–90,
https://doi.org/10.1016/j.ymssp.2019.04.026, 2019.

Liang, X., Zuo, M. J., and Hoseini, M. R.: Vibration signal modeling of a
planetary gear set for tooth crack detection, Eng. Fail. Anal., 48, 185–200,
https://doi.org/10.1016/j.engfailanal.2014.11.015, 2015.

Liang, X., Zuo, M. J., and Feng Z.: Dynamic modeling of gearbox faults: A
review, Mech. Syst. Signal Pr., 98, 852–876,
https://doi.org/10.1016/j.ymssp.2017.05.024, 2018.

Lin, J. and Parker, R. G.: Analytical Characterization of the Unique
Properties of Planetary Gear Free Vibration, J. Vib. Acoust., 121, 316–321,
https://doi.org/10.1115/1.2893982, 1999.

Liu, J. M., Gu, L. C., and Geng, B. L.: A practical signal processing
approach for fault detection of axial piston pumps using instantaneous
angular speed, Proc. Inst. Mech. Eng. Pt. C-J. Eng. Mech. Eng. Sci., 234,
3935–3947, https://doi.org/10.1177/0954406220917704, 2020.

Liu, L., Liang, X., and Zuo, M. J.: Vibration signal modeling of a planetary
gear set with transmission path effect analysis, Measurement, 85, 20–31,
https://doi.org/10.1016/j.measurement.2016.02.006, 2016.

Liu, W., Shuai, Z., Guo, Y., and Wang, D.: Modal properties of a two-stage
planetary gear system with sliding friction and elastic continuum ring gear,
Mech. Mach. Theory, 135, 251–270,
https://doi.org/10.1016/j.mechmachtheory.2019.01.026, 2019.

Liu, X., Yang, Y., and Zhang, J.: Resultant vibration signal model based
fault diagnosis of a single stage planetary gear train with an incipient
tooth crack on the sun gear, Renew. Energy, 122, 65–79,
https://doi.org/10.1016/j.renene.2018.01.072, 2018.

Mark, W. D. and Hines, J. A.: Stationary transducer response to
planetary-gear vibration excitation with non-uniform planet loading, Mech. Syst. Signal Pr., 23, 1366–1381,
https://doi.org/10.1016/j.ymssp.2008.09.010, 2009.

McFadden, P. D.: A technique for calculating the time domain averages of the
vibration of the individual planet gears and the sun gear in an epicyclic
gearbox, J. Sound Vibr., 144, 163–172,
https://doi.org/10.1016/0022-460X(91)90739-7, 1991.

McFadden, P. D.: Window functions for the calculation of the time domain
averages of the vibration of the individual planet gears and sun gear in an
epicyclic gearbox, J. Vib. Acoust., 116, 179–187,
https://doi.org/10.1115/1.2930410, 1994.

McNames, J.: Fourier series analysis of epicyclic gearbox vibration, J. Vib.
Acoust., 124, 150–153, https://doi.org/10.1115/1.1403735, 2002.

Parker, R. G. and Lin, J.: Mesh phasing relationships in planetary and
epicyclic gears, J. Mech. Des., 126, 365–370,
https://doi.org/10.1115/1.1667892, 2004.

Rao, Z. G.: Planetary gear transmission design, 2nd Edn., Chemical Industry
Press, Beijing, China, 2014.

Song, Y., Zhang, J., Zhang, J., Wang, S., and Liu, J.: Inherent
Characteristics of 3K-II Spur Planetary Gear Trains, J. Mech. Eng., 45,
23–28, https://doi.org/10.3901/JME.2009.07.023, 2009.

Sun, R. B., Yang, Z. B., Luo, W., Qiao, B. J., and Chen, X. F.: Weighted
sparse representation based on failure dynamics simulation for planetary
gearbox fault diagnosis, Meas. Sci. Technol., 30, 045008,
https://doi.org/10.1088/1361-6501/ab02d8, 2019.

Wang, Y., Tang, B., Qin, Y., and Huang, T.: Rolling bearing fault detection
of civil aircraft engine based on adaptive estimation of instantaneous
angular speed, IEEE Trans. Ind. Inform., 16, 4938–4948,
https://doi.org/10.1109/TII.2019.2949000, 2020.

Wu, S., Zhang, H., Wang, X., Peng, Z., Yang, K., and Zhu, W.: Influence of
the backlash generated by tooth accumulated wear on dynamic behavior of
compound planetary gear set, Proc. Inst. Mech. Eng. Pt. C-J. Eng. Mech.
Eng. Sci., 231, 2025–2041, https://doi.org/10.1177/0954406215627831, 2017.

Xiang, L., Gao, N., and Hu, A.: Dynamic analysis of a planetary gear system
with multiple nonlinear parameters, J. Comput. Appl. Math., 327, 325–340,
https://doi.org/10.1016/j.cam.2017.06.021, 2018.

Xue, S. and Howard, I.: Torsional vibration signal analysis as a diagnostic
tool for planetary gear fault detection, Mech. Syst. Signal Pr., 100,
706–728, https://doi.org/10.1016/j.ymssp.2017.07.038, 2018.

Zeng, Q., Zainab, M., Shao, Y., Gu, F., and Ball, A. D.: Planetary gear fault diagnosis based on instantaneous angular speed analysis, IEEE 2017 23rd International Conference on Automation and Computing (ICAC), IEEE, Huddersfield, UK, https://doi.org/10.23919/IConAC.2017.8081996, 2017.

Zhao, M., Jia, X., Lin, J., Lei, Y., and Lee, J.: Instantaneous speed jitter
detection via encoder signal and its application for the diagnosis of
planetary gearbox, Mech. Syst. Signal Pr., 98, 16–31,
https://doi.org/10.1016/j.ymssp.2017.04.033, 2018.