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Abstract. The 3K planetary gear system is a basic planetary transmission structure with many advantages over
the 2K-H planetary gear system. However, the vibration characteristics will be more complicated due to the
increase of central gears meshing with each planet gear simultaneously. In this paper, a lumped-parameter model
for a 3K-II planetary gear set was developed to simulate the dynamic response. The time-varying stiffness of each
meshing pair for different gear tooth root crack faults is calculated via the finite element method. By considering
the effect of time-varying transmission paths, the transverse synthetic vibrations are obtained. Subsequently, the
feasibilities of transverse synthetic vibration signals and output torsional vibration signals as reference for fault
diagnosis are analyzed by studying the time-domain and frequency-domain characteristics of these two vibration
signals. The results indicate that both the transverse synthetic vibration signals and output torsional vibration
signals can be used for fault identification and localization of the 3K-II planetary gear train, and yet they both
have their limitations. Some results of this paper are available as references for the fault diagnosis of 3K planetary
gear trains.

1 Introduction

Planetary gear transmission has the advantages of low
weight, small size, high load capacity and large transmis-
sion ratio, etc. Thus, planetary gear reducers are widely used
in mining machinery, wind power generation, automobiles,
ships, and other fields. The more common types of basic
planetary gearing include the 2K-H and 3K (Rao, 2014). The
2K-H type contains two central gears and a carrier arm, and
the 3K type includes three center gears (sun gear s, ring gears
b and e), as shown in Fig. 1a. Compared to a fixed-shaft
gearbox, the vibration signal of a planetary gearbox is more
complex. For a planetary gear set, each planet gear meshes
with the sun and ring gear(s) simultaneously. The planet gear
not only rotates around its own axis but also around the axis
of the central members (sun gear, ring gear, and the carrier)
(Xue and Howard, 2018). There are phase differences be-
tween each gear mesh pair (Parker and Lin, 2004), and the
coupling between all the gear mesh pairs causes some of the
excitations to be augmented or offset (Liang et al., 2018).

To monitor the operation of a planetary gearbox, the tra-
ditional method is to install a fixed sensor on the housing to
measure the vibration signals (Mark and Hines, 2009). How-
ever, in this way, the transfer paths of the vibration signals to
the sensor change due to the rotation of the carrier; the mea-
sured vibration data exists as a modulation phenomenon. Mc-
Fadden (1991, 1994) and Howard (1991) presented a tech-
nique for calculating the time-domain averages of the tooth
meshing vibration of the individual planet gears and the sun
gear in an epicyclic gearbox. McFadden (1994) also pro-
posed various window functions to acquire the vibration sig-
nals of each planet gear. Subsequently, numerous scholars
have concentrated on the interpretation of the vibration spec-
trum modulation phenomenon due to the change of trans-
mission path caused by the rotation of the carrier arm. Mc-
Names (2002) made use of Fourier series analysis to account
for the asymmetries observed in the spectrum and predicted
the possible locations of the major spectral constituents. In-
alpolat and Kahraman (2009, 2010) applied a Hanning win-
dow function to represent the periodic varying of the trans-
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Figure 1. The 3K-II planetary gear set: (a) three-dimensional
model; (b) Force analysis of each gear.

fer path from vibration source to transducer due to the rota-
tion of the carrier and analyzed the modulation sidebands of
the planetary gear system in five possible situations. Further-
more, Liang et al. (2015) and Liu et al. (2016) used the Ham-
ming and the Hanning window function with different pa-
rameters to indicate the transmission path effects. Recently,
Li et al. (2019) tested the time-varying transfer path function
of a 2K-H planetary gear system by an experimental method
based on the modal reciprocity principle.

As a signal gauged from the gear axle, torsional vibration
conveys the operational information of the gearbox as well
(Addabbo et al., 2019). Assuming that all the gears of a plan-
etary gear set are isotropic on the circumference, the propa-
gation distance from the meshing locations of each gear pair
to the torsional vibration sensor is invariant. Therefore, tor-
sional vibration analysis is an optional method of planetary
gearbox condition monitoring. Feng and Zuo (2013) offered
clear formulas to describe the torsional vibration signals for
a planetary gearbox. It was shown that the torsional vibra-
tion signal is modulated only by the fault frequency. Zeng
et al. (2017) developed instantaneous angular speed (IAS)
measurement systems for planetary gear train fault diagnosis
and examined its validity by an experimental method. Zhao
et al. (2018) introduced a Kurtosis-guided partial multino-
mial differentiator to evaluate the IAS, and based on that a
method for fault detection of planetary gearboxes was pre-
sented. Moreover, Xue and Howard (2018) also analyzed the

feasibility of torsional vibration signals as a fault diagnosis
tool for planetary gearboxes using some general signal pro-
cessing technologies.

Kinetic analysis is a better approach to study the vibration
characteristics of a planetary gear set. Compared to math-
ematical models (Inalpolat and Kahraman, 2009; Li et al.,
2019; Feng and Zuo, 2013), a dynamical model can more ac-
curately characterize the physical parameters of a gear sys-
tem, such as time-varying meshing stiffness and damping,
and it helps to understand the effects of various types of
gear faults on planetary gearboxes. Many dynamical models
have been proposed to obtain the dynamic performance of
epicyclic gearboxes. Kahraman (1994) developed a kinetic
model for a 2K-H planetary gear set to study the load distri-
bution properties. Based on the model in Kahraman (1994),
Lin and Parker (1999) developed a lumped-parameter dy-
namics model considering the effects of meshing phase dif-
ference, time-varying meshing stiffness, and carrier rotation.
Then the free vibration characteristics of a 2K-H planetary
gearbox were investigated. Subsequently, the nonlinear dy-
namical behavior was studied, and the comparison with a 2D
finite element model was carried out to prove the effective-
ness of the lumped-parameter model (Ambarisha and Parker,
2007). Li et al. (2014) developed a dynamic model for a mul-
tistage planetary gear train and analyzed the influences of
damping, backlash, and excitation frequency on system dy-
namic characteristics. Additionally, some scholars have also
investigated the effects of manufacturing errors, cracks, wear,
backlash, breakage, and other factors on the dynamic char-
acteristics of planetary gearboxes by means of establishing a
dynamical model (Chaari et al., 2006; Liu et al., 2018; Sun
et al., 2019; Xiang et al., 2018; Wu et al., 2017; Liu et al.,
2019).

Literature studies mentioned previously indicate that a
large range of studies have been conducted for the dynamic
characteristics and vibration signal analysis of planetary gear
systems. However, most of them focus on 2K-H. As another
basic planetary gearing, the 3K planetary gear system is more
compact than the 2K-H planetary gear system and offers a
larger transmission ratio range. The vibration properties of a
3K planetary gear set would be more complex as each planet
gear meshes with more central gears simultaneously. Few
pieces of literature could be found on vibration investigations
of the 3K planetary gear set. Song et al. (2009) presented a
dynamics model for a 3K-II planetary gear set by decompos-
ing it into two 2K-H planetary gear trains and analyzed the
inherent characteristics. Nevertheless, the force direction of
the gears was not considered in Song et al. (2009).

In this paper, a dynamic model of the 3K-II planetary gear
train is proposed by considering the force on each gear, as
shown in Fig. 1b. Taking into account the phase difference
between each meshing pair, the time-varying meshing stiff-
ness with different types of tooth root crack faults was ana-
lyzed by the finite element method. Supposing the sun gear
s is the input component and the ring gear e is the output
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component, then the transverse synthetic vibration signal and
output torsional vibration signal at healthy cases and five
cracked tooth root cases are simulated. Both the vibration
characteristics of these two signals are investigated. Some
results are considered references for the fault detection of 3K
planetary gear trains.

2 The dynamic modeling of 3K-II planetary gear
system

2.1 Dynamic model of a 3K-II planetary gear train

In this section, a mathematical planetary gear transmission
model is developed to help understand the complex dynamic
response of a 3K-II planetary gear system, as shown in
Fig. 2. This model contains an input torque, a sun gear, a
carrier arm, three planet gears, two ring gears, and an out-
put load. Similar to the model used by Liang et al. (2015),
each component of this model has three DOFs (degrees of
freedom): one rotation and two transverse motions in the x
and y directions. The rotational coordinates of the carrier
c, ring gear b, ring gear e, sun gear s, and planet gears pn
(θj j = c,b,e,s,pn;n= 1,2. . .N ) are the absolute angular
displacements of each component. The transverse motions
xj yj ,j = c,b,e,s,p1,p2, . . .,pN are measured in a rota-
tional coordinate system fixed to the carrier rotating around
rotation center o. The mesh internal force of gear pairs and
the bearing support are described as a spring–damper sys-
tem. The ψ1,ψ2, . . .,ψN are the angles measured relative to
planet gear 1. The initial position (time zero) is displayed as
Fig. 2; i.e., ψ1 = 0.

It is worth noting that the tangential force of each planet
gear applied by ring gear b and ring gear e is in opposite
direction. That is, ring gears b and e mesh with different
sides of planet gear teeth. This conclusion is obtained from
the force analysis described in Fig. 1b. It is found from the
force on planet gear p that the direction of tangential force
Fep is opposite to that of the other two. This is because the
ring gear e has a smaller pitch radius than ring gear b. This
phenomenon is also applicable to 3K-I and 3K-III planetary
gear sets. Since we mainly focus on the effects of a tooth
root crack on different gears on the vibration response, the
static transmission error, the friction, and the backlash be-
tween gear pairs are not considered in this paper. The equa-
tions of motion of the planetary gear set are achieved based
on lumped-parameter method as follows.

Motion equations of the sun gear:



ms(ẍs − 2ωcẏs −ω
2
cxs)+ ksxxs + csx ẋs

+

N∑
n=1

Fspn cos(ψsn)= 0,

ms(ÿs + 2ωcẋs −ω
2
cys)+ ksyys + csy ẏs

+

N∑
n=1

Fspn sin(ψsn)= 0,

Is θ̈s + rs
N∑
n=1

Fspn = Ts,

(1)

where Fspn is the dynamic force between the nth planet gear
and the sun gear,

Fspn = kspnδspn+ cspnδ̇spn,

δspn =
(
xs − xpn

)
cos(ψsn)+ (ys − ypn) sin(ψsn)

+ rsθs − (−rpθpn)− rcθc cosαs,
ψsn = π/2+ (ψn−αs),
ψn = 2(n− 1)π/N; n= 1,2, . . .,N.

Motion equations of the ring gear b:



mb(ẍb− 2ωcẏb−ω
2
cxb)+ kbxxb+ cbx ẋb

−

N∑
n=1

Fbpn cos(ψbn)= 0,

mb(ÿb+ 2ωcẋb−ω
2
cyb)+ kbyyb+ cby ẏb

+

N∑
n=1

Fbpn sin(ψbn)= 0,

Ibθ̈b+ kbuθb+ cbuθ̇b+ rb
N∑
n=1

Fbpn = 0,

(2)

where Fbpn is the dynamic force between the nth planet gear
and the ring gear b,

Fbpn = kbpnδbpn+ cbpnδ̇bpn,

δbpn =−
(
xb− xpn

)
cos(ψbn)+ (yb− ypn) sin(ψbn)

+ rbθb− rpθpn− rcθc cosαb,
ψbn = π/2− (ψn+αb).

Motion equations of the ring gear e:



me(ẍe− 2ωcẏe−ω
2
cxe)+ kexxe+ cex ẋe

+

N∑
n=1

Fepn cos(ψen)= 0,

me(ÿe+ 2ωcẋe−ω
2
cye)+ keyye+ cey ẏe

−

N∑
n=1

Fepn sin(ψen)= 0,

Ieθ̈e− re
N∑
n=1

Fepn =−Te,

(3)
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Figure 2. Dynamic model of a 3K-II planetary gear set.

where Fepn is the dynamic force between the nth planet gear
and the ring gear e,

Fepn = kepnδepn+ cepnδ̇epn,

δepn =
(
xe− xpn

)
cos(ψen)− (ye− ypn) sin(ψen)

−
(
reθe− rpθpn

)
− (−rcθc cosαe) ,

ψen = π/2− (ψn−αe).

Motion equations of the planet gears:



mp(ẍpn− 2ωcẏpn−ω
2
cxpn)+Fcpnx

−Fspn cos(ψsn)+Fbpn cos(ψbn)
−Fepn cos(ψen)=mprcω2

c cosψn
mp(ÿpn+ 2ωcẋpn−ω

2
cypn)+Fcpny

−Fspn sin(ψsn)−Fbpn sin(ψbn)
+Fepn sin(ψen)=mprcω2

c sinψn
Ip θ̈pn+ rp(Fspn−Fbpn+Fepn)= 0

(4)

in which Fcpnx and Fcpny are the support forces between the
nth planet gear and carrier in the x and y directions.

Fcpnx = cpn
(
ẋpn− ẋc

)
+ kpn

(
xpn− xc

)
,

Fcpny = cpn
(
ẏpn− ẏc

)
+ kpn

(
ypn− yc

)
.

Motion equations of the carrier:



mc(ẍc− 2ωcẏc−ω
2
cxc)+ kcxxc+ ccx ẋc

−

N∑
n=1

Fcpnx = 0,

mc(ÿc+ 2ωcẋc−ω
2
cyc)+ kcyyc+ ccy ẏc

−

N∑
n=1

Fcpny = 0,

Icθ̈c+ rc
N∑
n=1

Fcpnx sinψn− rc
N∑
n=1

Fcpny cosψn = 0.

(5)

All the notations of nomenclature used in this paper are
explained in Appendix A, the selected parameters of the 3K-
II planetary gear set are listed in Table 1, and the number of
the planet gears is three.

2.2 Crack mesh stiffness calculation

Crack is a typical form of failure in gear transmission trains.
The existence of a crack will weaken the bearing capacity of
the gear tooth and even break the tooth. Stiffness excitation
is one of the most important internal excitation forms in gear
transmission. When a crack develops on the gear tooth, the
mesh stiffness will be reduced, and the vibration properties
of the gear transmission train will be changed.

Compared with the stiffness calculated by the potential en-
ergy method (PEM), the finite element method (FEM) results
describe the crack characteristics more accurately. And the fi-
nite element method includes coupling flexibility of adjacent
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Table 1. The 3K-II planetary gear set parameters.

Parameters Sun gear Planet gear Ring gear Carrier arm

Ring gear b Ring gear e

Number of teeth Zs = 15 Zp = 23 Zb = 60 Ze = 63 –
Module (mm) m= 1.5 m= 1.5 m= 1.5 m= 1.5 –
Face width (mm) Bs = 34 Bp = 32 Bb = 12 Be = 18 –
Pressure angle α = 20◦ α = 20◦ α = 20◦ α = 20◦ –
Mass (kg) ms = 0.106 mp = 0.164 mb = 0.837 me = 3.207 mc = 0.400
Moment of inertia (kg ·m2) Is = 8.307× 10−6 Ip = 3.317× 10−5 Ib = 2.117× 10−3 Ie = 3.648× 10−2 Ic = 3.191× 10−4

Elastic modulus (GPa) E = 210 E = 210 E = 210 E = 210 E = 210
Poisson’s ratio c = 0.3 c = 0.3 c = 0.3 c = 0.3 c = 0.3
Base circle radius (m) rs = 10.572× 10−3 rp = 16.210× 10−3 rb = 42.286× 10−3 re = 44.401× 10−3 rc = 29× 10−3

Root circle radius (m) rsf = 9.906× 10−3 rpf = 15.375× 10−3 rbf = 48.311× 10−3 ref = 48.270× 10−3 –
Tip circle radius (m) rsa = 13.250× 10−3 rpa = 18.719× 10−3 rba = 44.750× 10−3 rea = 45.185× 10−3 –
Reduction ratio 105
Bearing stiffness (N/m) ksx = ksy = kbx = kby = kex = key = kcx = kcy = kpn = 1.0× 108

Bearing damping (N s/m) csx = csy = cbx = cby = cex = cey = ccx = ccy = cpn = 1.5× 103

Figure 3. Finite element models for analysis: (a) external gear pair;
(b) internal gear pair.

teeth and avoids repeated superposition of tooth base stiff-
ness. The FEM model of an external gear pair used in this
paper is shown in Fig. 3a, and the internal gear pair is dis-
played in Fig. 3b. The elements of the teeth are refined to
ensure the accuracy of the calculation results. The hubs of
the driven wheel and the driving wheel are rigidly coupled
with their respective centers. The load is applied to the rotat-
ing shaft of the driving gear, and all the degrees of freedom
of the driving and driven gears are limited except the axial ro-
tation of the driving gear. All the calculations are completed
in ANSYS (engineering simulation and 3D design software);
then the comprehensive meshing stiffness is expressed as the
following:Kmesh = Tload/

(
1θ · r2

driving

)
, where Tload is drive

torque, 1θ is the rotation angle of the driving gear after the
deformation under load, and rdriving is the base radius of the
driving gear.

To present the influence of cracks of different gears on the
vibration characteristics of the system, a linear crack with
constant crack angle (65◦) and constant length (1.32 mm) is
applied in both the internal and external gear pairs in this
section, as shown in Fig. 4.

There are five crack cases in this study: case I, i.e., the
sun gear with a root cracked tooth; case II, i.e., a planet

Figure 4. Gears with a linear crack: (a) external gear; (b) internal
gear.

gear with cracked tooth root (sun gear s-ring gear e side);
case III, i.e., a planet gear with cracked tooth root (ring gear
b side); case IV, i.e., the ring gear b with a root cracked
tooth; and case V, i.e., the ring gear e with a root cracked
tooth. In all the above conditions, some will affect the gear
meshing stiffness in all branches, while others will not. To
display the impact of various cases on the system meshing
stiffness, all the summary information is included in Table 2.
When the carrier rotates one round, all the planet gears re-
turn to their original positions, and all the teeth of each gear
are meshed at least once. To include all the tooth crack fault
signals, all the information in Table 2 is based on the obser-
vations over one carrier revolution. In Table 2, kjpn (where
j = s, b, e; n= 1, 2, 3) denotes the meshing stiffness of the
nth s−p, b−p, and e−pmesh pairs, respectively. γjn (where
j = s, b, e; n= 1, 2, 3) is the mesh phase difference of the
sun gear s, ring gear b, and ring gear e meshes, individually,
between each planet gear and the first planet gear. γse1 is the
mesh phase difference between the s−p and e−pmesh pairs
of the first planet gear. In this paper, according to the parame-
ters listed in Table 1, all these phase differences are obtained
as γs1 = γb1 = γe1 = γs2 =−5, γb2 = 20, γe2 = 21, γs3 =
−10, γb3 = 40, γe3 = 42, and γse1 = 11.4372 (Parker and
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Lin, 2004). θm is the rotation angle of carrier within a mesh-
ing period and is equal to 360/Zb (6◦).

Figure 5a shows the effect of tooth crack on s−p mesh-
ing stiffness values in case I. It can be found that all the s−p
meshing stiffness values are influenced. The fault interval is
|γs2θm| (30◦), and there are 12 fault impacts covering one car-
rier revolution. According to the force analysis of the 3K-
II planetary gear system, the sun gear s and the ring gear e
meshed with the same tooth side of the planet gear, while the
ring gear b meshed with the other tooth side. Since the exis-
tence of a crack mainly affects the bending and shear stiffness
values (Chen et al., 2019), the crack on a different flank from
the meshing surface can be considered to have no influence
on the meshing stiffness. In other words, in case II, only one
s−p and one e−p meshing stiffness values are affected,
while in case III only one b−p was affected. The influence
of case II and case III on the meshing stiffness of this 3K-II
planetary gear system is shown in Fig. 5b and c, respectively.
In both of these two cases, the total number of fault impacts
is three, and the fault interval is Zpθm(138◦). As for case IV
and V, all the planet branches are affected, which is similar
to case I. As illustrated in Fig. 5d and e, the fault intervals are
|γb2θm| (120◦) and |γe2θm| (126

◦

) individually, and there are
three fault impacts for both.

2.3 Analysis of fault characteristic spectrum

Meshing frequency is an important property in the vibration
analysis of a gear transmission train. For the 3K-II plane-
tary gear set, since each planet gear meshes with all central
gears simultaneously, the meshing frequency of each mesh
pair is the same. Considering that the ring gear b is fixed, the
meshing frequency is described as the following (Xue and
Howard, 2018):

fm = Zbfc, (6)

in which fc is the carrier rotational frequency. In case I, since
each planet branch is affected, the fault characteristic fre-
quency is given by

f c
sf =N

fm

Zs
=N

Zb

Zs
fc, (7)

where N is the number of planet gears, and fm/Zs is the
shaft frequency of sun gear relative to the carrier. For single
planet gear failure (cases II and III), only one planet branch
is affected, and the fault characteristic frequency is written as

f c
pf =

fm

Zp
=
Zb

Zp
fc, (8)

where fm/Zp is the shaft frequency of fault planet gear
with respect to the carrier. As for the local ring gear crack
(cases IV and V), it is similar to case I, and the fault charac-

Figure 5. Meshing stiffness curves affected by crack faults:
(a) case I; (b) case II; (c) case III; (d) case IV; (e) case V.

teristic frequency is written as

f c
bf =N

fm

Zb
=Nfc, (9)

f c
ef =N

fm

Ze
=N

Zb

Ze
fc, (10)

where fm/Zb and fm/Ze are the rotational frequency of ring
gears b and e relative to the carrier, respectively.
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Table 2. Summary of meshing stiffness of each gear pair.

Each mesh pair One rotation of the carrier

Stiffness Whether there is a The location of The total number Fault impacts
fault impact fault impact of fault impacts interval

Case I ksp1 Yes 0 360/ |γs2θm| |γs2θm|
ksp2 Yes γs2θm
ksp3 Yes γs3θm

kbpn, kepn(n= 1, 2, 3) are not affected – –

Case II ksp1 Yes 0 360/
(
Zpθm

)
Zpθm

ksp2 No –
ksp3 No –
kep1 Yes γse1θm 360/

(
Zpθm

)
Zpθm

kep2 No –
kep3 No –

kbpn(n= 1,2,3) is not affected – –

Case III kbp1 Yes 0 360/
(
Zpθm

)
Zpθm

kbp2 No –
kbp3 No –

kspn, kepn(n= 1,2,3) are not affected – –

Case IV kbp1 Yes 0 360/ |γb2θm| |γb2θm|
kbp2 Yes γb2θm
kbp3 Yes γb3θm

kspn,kepn(n= 1, 2, 3) are not affected – –

Case V kep1 Yes 0 360/ |γe2θm| |γe2θm|
kep2 Yes γe2θm
kep3 Yes γe3θm

kspn, kbpn(n= 1, 2, 3) are not affected – –

3 Numerical simulation and transverse synthetic
vibration fault signal analysis

Vibration analysis is a common method used in mechanical
fault detection. For planetary reducers, a common approach
is using a sensor mounted on the fixed housing to monitor
the gear system (as shown in Fig. 1). In this section, the vi-
bration properties of each component of the 3K-II planetary
gear system are obtained by solving the differential Eqs. (1)–
(5). The output torque is limited to a constant value equal
to 200 N m, and the input speed is maintained at 4000 rpm.
For this operating condition, each characteristic frequency in
Sect. 2.3 is listed in Table 3. For a complete rotation of the
carrier, a transducer fixed on the housing experiences distur-
bances from all gear meshes in sequence. Considering the
suppression effect of the great bearing damping and long
transmission lengths on vibration signal, three force trans-
mission paths, as shown in Fig. 1, are mainly considered in
this paper. They can be simplified as follows.

1. Path 1: gear pair b−pmesh points, ring gear b, housing,
sensor;

2. Path 2: gear pair s−p mesh points, planet gear p, ring
gear b, housing, sensor;

3. Path 3: gear pair e−p mesh points, planet gear p, ring
gear b, housing, sensor.

Considering that all the above transfer paths pass through
the planet gear and that each planet gear contacts with the
sun gear s, and the ring gears b and e simultaneously, the
vibration of planet gears contains the information about s−p,
b−p, and e−pmesh pairs. In this paper, the vibration signals
of each planet gear are used to reflect the vibration signals
obtained by housing-mounted sensors of a 3K-II planetary
gear system, and it is represented as follows:

A(t)=
N∑
n=1

wn(t)an(t), (11)

in which wn(t) is the time-varying transfer path function of
the nth planet gear,N is the number of planet gears, and an(t)
represents the nth planet gear acceleration signal.
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Table 3. Each characteristic frequency for a given operating condition.

Meshing Carrier rotational Fault characteristic frequency

frequency frequency Case I Case II (III): Case IV: Case V:

fm = 800 Hz fc = 13.33 Hz f c
sf
= 160 Hz f c

pf
= 34.78 Hz f c

bf
= 40 Hz f c

ef
= 38.10 Hz

3.1 Time-varying transfer path function

With the rotation of the carrier, the distance from each mesh
point to the stationary sensor varies periodically. The period
is the carrier rotating period. When the nth planet gear is at
its closest to the sensor, its influence on the measured signal
would reach its maximum, and the influence is minimized as
the planet moves away from the sensor to the farthest point.

One reference (Inalpolat and Kahraman, 2009) used a
Hanning window function to describe this change and as-
sumed that each planet gear’s individual effect on the sen-
sor only persists for a time interval of Tc/N , where Tc is the
revolution period of the carrier. Based on that assumption,
the influence of a planet gear at the farthest location from
the sensor would decrease to zero, and the continuous peri-
odic effects of each planet gear during a rotation of the car-
rier are ignored. This is inconsistent with the actual situation.
A weighting window function Eq. (12) mentioned in Liu et
al. (2016) is used in this study.

wn(t)= α− (1−α)cos(ωct +φn), (12)

where α is limited in the range of 0.5< α < 1 to control the
bandwidth and minimal value of the window function, ωc is
the rotation speed of carrier, and φn = 2π (n−1)/N+π/2 is
the initial phase angle for the nth planet gear.

Figure 6 shows the effect of coefficient α on the trans-
fer path function wn(t). It can be found that when α ≤ 0.5,
wn(t) might be less than or equal to 0, and when α ≥ 1,wn(t)
would have values greater than 1. These situations are not ac-
ceptable. In view of this, the value of α is chosen to be equal
to 0.6 in this paper.

3.2 Characteristic analysis of transverse synthetic
vibration signals

Using the MATLAB ODE (ordinary differential equation)
solver to solve the differential Eqs. (1)–(5), the acceleration
signal of each planet gear in a rotational coordinate system
fixed to the carrier can be obtained. To obtain the absolute ac-
celeration in a fixed coordinate system fixed to the housing,
the coordinate transformation theory is adopted (Hibbeler,
2004). Since the sensor just measures the vibration signal in
a single direction, only the vertical acceleration signal is con-
sidered in this paper.

Figure 7 shows the vertical synthetic acceleration signals
of a 3K-II planetary set at six different cases (the healthy gear
case; failure case I, sun gear cracking; failure case II, planet

Figure 6. The effect of coefficient α on the transfer path function.

gear cracking on the s− e side; failure case III, planet gear
cracking on the b side; failure case IV, ring gear b crack-
ing; and failure case V, ring gear e cracking). Affected by
the carrier rotation, synthetic vibration signals present an ob-
vious amplitude modulation phenomenon. It can be found
that when there is a fault, it will affect the amplitude of the
synthetic vibration signal. However, due to the amplitude
modulation phenomenon, its fault characteristics of the time-
domain signal are not obvious enough to be used for accurate
fault location. In view of this, the frequency spectrum and
cepstrum are used in this section to highlight fault features.

Figure 8 illustrates the frequency spectrum of the syn-
thetic vibration signals in different gear health cases. To high-
light the various fault frequency components, we select a fre-
quency range from 1130 to 1270 carrier rotation frequency
orders to demonstrate the spectrum characteristics. The first
significant observation from these figures is that the ampli-
tude at the mesh frequency fm and its harmonics tend to be
close to 0 in all kinds of gear health cases. Still, it has siz-
able amplitudes at nfm±mfc (m and n are integers), like
1138, 1142, 1201 carrier order, and so on. As mentioned
previously, each gear component fault will generate its fault
characteristic frequency. The amplitudes at these fault fre-
quencies could be used for fault diagnosis.

For failure case I with a cracked sun gear, the amplitudes
on the positions of the sideband frequency (nfm± kf

c
sf ±

mfc; m, k, and n are integers) increase significantly rela-
tive to the healthy case, as shown in Fig. 8a–b. For instance,
the amplitude at frequency 1169fc (19fm+2f c

sf +5fc; fm =

60fc, f c
sf = 12fc) is found to be 1.6 m/s2 compared with the
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Figure 7. Synthetic vibration signals in the vertical direction: (a) healthy gear case, (b) failure case I, (c) failure case II, (d) failure case III,
(e) failure case IV, and (f) failure case V.

value of 0.03 m/s2 in the healthy case. There are many other
options as well, like 1157fc, 1190fc, 1210fc, and so on.

For failure cases II and III with a cracked planet gear, the
frequency components on the positions of the planet gear
characteristic frequency (nfm± kf

c
pf ±mfc; m, k, and n are

integers) in Fig. 8c–d have sizable amplitudes relative to
the healthy case. For instance, the amplitude at frequency
1219.87fc (20fm+ 8f c

pf fc; fm = 60fc, f c
pf = 60/23fc) in

Fig. 8c is found to be 0.73 m/s2 compared with the value of
0.09 m/s2 in the healthy case. The amplitude of the same lo-
cation in Fig. 8d could be investigated to be 0.69 m/s2. The
difference between cases II and III is that the amplitude of
case II at the fault characteristic frequency of planet gear is
greater than that of case III. It is caused by the coupling effect
of the excitation of the s−p and e−p mesh pairs.

For failure case IV with a cracked ring gear b, the char-
acteristic frequency of ring gear b is nfm± kf

c
bf ±mfc (m,

k, and n are integers). As shown in Fig. 8e, the amplitude
of the corresponding position of the characteristic frequency
rises obviously relative to the healthy case. For instance, the
amplitude at frequency 1149fc (19fm+ 3f c

bf ; fm = 60fc,
f c
bf = 3fc) is found to be 2.33 m/s2 compared with the value

of 0.03 m/s2 in the healthy case.
For failure case V with a cracked ring gear e, the sizable

sidebands in Fig. 8f appear at the position nfm± kf
c
ef ±

mfc (m, k, and n are integers). For instance, the ampli-
tude at frequency 1151.43fc (19fm+4f c

ef ; fm = 60fc, f c
ef =

180/63fc) is found to be 0.98 m/s2 compared with the value
of 0.18 m/s2 in the healthy case.

A big challenge of comparing the frequency spectra
(Fig. 8a–f) is that there are so many period components, like
the meshing frequency, the carrier rotational frequency, and
four fault characteristic frequencies. It is hard to determine
which periodic features make up these sizable sideband com-
ponents. The cepstrum is used to show the frequency com-
ponents of a signal from the time dimension to highlight the
periodic features which are not apparent in the original spec-
trum. As displayed in Fig. 9b, the amplitude at 0.00625 s
(1/f c

sf ) shows a massive increase, which corresponds to the
case of the cracked sun gear. In the case with a cracked planet
gear, the amplitude of the component at 0.02875 s (1/f c

pf ) in-
creases markedly, as shown in Fig. 9c–d. Similarly, the corre-
sponding amplitude changes of the inverted frequency com-
ponents at 0.025 s (1/f c

bf ) and 0.02625 (1/f c
ef ) in Fig. 9e–f

can also be used to locate the ring gear faults of b and e,
respectively.

According to the analysis above, we can see that the trans-
verse vibration signal detected by the sensor fixed to the
housing can be used as a basis for distinguishing faults of
the 3K-II planetary gear set. However, due to the modulation
phenomenon caused by the carrier arm’s rotation, the side-
band component of the signal frequency domain becomes
complicated and the signal fault characteristics are not dis-
tinct enough. This makes it troublesome to diagnose faults
via housing vibration signals.
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Figure 8. Frequency spectrum of synthetic vibration signals:
(a) healthy gear case, (b) failure case I, (c) failure case II, (d) failure
case III, (e) failure case IV, and (f) failure case V.

4 Numerical simulation and torsional vibration fault
signal analysis

Instantaneous angular speed (IAS), as a detectable signal, is
commonly used in operation monitoring and fault detection
of rotating machinery such as motors, gears, bearings, etc.
(Kazienko and Chybowski, 2020; Wang et al., 2020; Liu et
al., 2020). Compared to vibration signals detected by sensors
fixed on the case, the IAS signal is not affected by the am-
plitude modulation caused by the rotation of the carrier arm.
Besides, the IAS signal shows better sensitivity to different
types of mechanical faults involving a large number of side-
band orders. In this section, the same operating conditions in
Sect. 3 are selected to obtain the IAS of the output ring gear

Figure 9. Cepstrum of synthetic vibration signals: (a) healthy gear
case, (b) failure case I, (c) failure case II, (d) failure case III, (e) fail-
ure case IV, and (f) failure case V.

e. Likewise, the time-domain spectrum, frequency spectrum,
and cepstrum of the angular velocity of ring gear e are given,
as shown in Figs. 10–12. Similarly, a frequency range from
350 to 440 carrier rotation frequency orders is selected in
Fig. 11 to display the various failure characteristics. The fre-
quency component of the ring gear e angular velocity signal
is concentrated at the meshing frequency and its harmonics.

As seen in Fig. 10b, the rotational velocity of the ring gear
e is less affected by the cracked sun gear. The changes of
the frequency component and the inverted frequency compo-
nent in Figs. 11b and 12b are also not significant compared
with the healthy case. It is caused by the high transmission
ratio of the 3K-II planetary gear train (105 in this paper) and
the massive difference in the moment of inertia and mass be-
tween the sun gear and the output ring gear. The relatively
small meshing force between the s−p pairs would reduce
the impacts of cracked sun gear on the ring gear e.

As illustrated in Fig. 10c–d, for the case with a cracked
planet gear, the angular velocity of the ring gear e has many
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Figure 10. Ring gear e angular velocity signals: (a) healthy gear case, (b) failure case I, (c) failure case II, (d) failure case III, (e) failure
case IV, and (f) failure case V.

pronounced periodic fluctuations. The time interval between
adjacent fluctuations is 0.0288s (1/f c

pf ), which corresponds
to the sharp increment in the amplitude of the inverted fre-
quency domain at 0.0288 s in Fig. 12c–d. Meanwhile, there
is also a significant increase in the amplitudes at the location
of characteristic frequency nfm±kf

c
pf (n and k are integers),

as displayed in Fig. 11c–d.
When a crack develops on a tooth of ring gear b, the

angular velocity of the ring gear e has periodic perturba-
tions with time intervals of 0.025 s (1/f c

bf ), as depicted in
Fig. 10e. Sizable sidebands appear at the positions of fre-
quency nfm± kf

c
bf (n and k are integers) in Fig. 11e. There

is a significant increase in the amplitude of the inverted fre-
quency component at 0.025 s (1/f c

bf ), as shown in Fig. 12e.
As for the case with a cracked ring gear e, the periodic

perturbation interval of the rotational velocity in Fig. 10f is
0.0263 s (1/f c

ef ). The locations of apparent sidebands change
to the frequency nfm±kf

c
ef (n and k are integers) in Fig. 11f.

The position with the largest increment of the inverted fre-
quency component changes to 0.0263 s (1/f c

ef ) in Fig. 12f.
It is seen from the analysis of Figs. 10–12 that the torsional

vibration signal can be used to diagnose faults of the 3K-II
planetary gear system. In contrast to the transverse synthetic
vibration signals in Sect. 3, torsional vibration signals are
unaffected by the amplitude modulation due to the carrier’s
rotation. This makes the fault characteristics in the time do-
main of a torsional vibration signal more pronounced and the
sidebands of fault in the frequency domain easier to identify.
However, the torsional vibration signal also has limitations

for the fault detection of the 3K-II planetary gear system,
like the sun gear local tooth root cracking.

5 Conclusion

The 3K planetary gear system, as a basic planetary drive
structure, is more compact than the 2K-H and has a wider
range of transmission ratios. A torsional vibration dynamics
model of a 3K-II planetary gear system is developed in this
paper. The effect of five crack conditions on the time-varying
meshing stiffness is analyzed. A theoretical model that con-
siders the modulation effect due to the rotation of carrier is
adopted to obtain the synthetic vibration signals to reveal the
housing vibration in the health and tooth root cracking cases.
Subsequently, both the feasibility of using the synthetic vi-
bration signals and the torsional vibration signals of the out-
put ring gear as a basis for fault diagnosis of the 3K-II plan-
etary gear system is analyzed by reference to time-domain
spectra, frequency spectrum, and cepstrum in the healthy and
five cracked-tooth cases. The main conclusions are as fol-
lows:

1. The synthetic vibration signal of the planetary housing
shows obvious amplitude modulation waves. Further-
more, besides the fault-frequency component, the spec-
tral sidebands also have the carrier rotation frequency
component in the frequency domain.

2. The torsion signal is unaffected by the amplitude mod-
ulation of the carrier’s rotation, making it possible to
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Figure 11. Frequency spectrum of ring gear e angular velocity sig-
nals: (a) healthy gear case, (b) failure case I, (c) failure case II,
(d) failure case III, (e) failure case IV, and (f) failure case V.

demonstrate fault diagnostics more clearly in the time
and frequency domains.

3. Both the synthetic vibration signal and torsional vibra-
tion signal can be used for fault diagnosis of the 3K-II
planetary gear system. However, both of them have their
limitations, i.e., the synthetic vibration signal is influ-
enced by the modulation of the carrier rotation, which
makes the fault characteristics not clear enough, and the
spectral sideband composition more is complex, thus
making it more complicated to determine the specific
fault type; for the torsional vibration signal, in the case
of a large transmission ratio, it is difficult to identify the
sun gear failures by the angular velocity signal of the

Figure 12. Cepstrum of ring gear e angular velocity signals:
(a) healthy gear case, (b) failure case I, (c) failure case II, (d) failure
case III, (e) failure case IV, and (f) failure case V.

output ring gear. In practice, the fault detection of the
3K planetary gearbox should be performed by installing
both a sensor on the housing and an angle encoder on
the output.
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Appendix A: The meaning of the symbols used in
this paper

Notation
ms, mp, mc, mb, me; (kg) mass of the sun s, planet p, carrier, and rings b and e
Is, Ip, Ic, Ib, Ie; (kg ·m2) moment of inertia of the sun s, planet p, carrier, and rings b and e
N number of planet gears
αs, αb, αe; (rad) working pressure angle of the sun–planet, ring-b–planet, and

ring-e–planet gear pairs
xj yj (j = c, b, e, s, p1, p2, . . ., pN ); (m) radial displacement in the x and y directions measured in the rotating

coordinate system
θj (j = c, b ,e, s, p1, p2, . . ., pN ); (rad) angular displacement of the carrier, ring b, ring e, sun, and planets
ωc; (rad/s) rotation speed of the carrier
kjx, kjy(j = c, b, e, s, p1, p2, . . ., pN );
(N/m)

bearing radial stiffness of the carrier, ring b, ring e, sun, and planets in
the x and y directions

cjx, cjy(j = c, b, e, s, p1, p2, . . ., pN );
(N s/m)

bearing radial damping of the carrier, ring b, ring e, sun, and planets in
the x and y directions

cbu; (N s/rad) damping of ring b in torsional direction
kbu; (N/rad) stiffness of ring b in torsional direction
ψn(n= 1, 2, . . ., N ); (rad) circumferential angle of nth planet
Te, Ts ; (N m) output torque on the ring e, input torque on the sun s
rs, rp, rb, re; (m) base radius of the sun, planet, ring b, and ring e
rc; (m) radius of the circle through the center of the planet gears
δspn, δbpn, δepn; (m) relative displacement on the lines of action of nth sun–planet, ring-b–

planet, and ring-e–planet gear pairs
kjpn(j = s, b, e; n= 1, 2, 3); (N/m) meshing stiffness of the nth sun–planet, ring-b–planet, and ring-e–

planet mesh pairs
γjn(j = s, b, e; n= 1, 2, 3) mesh phase difference of the sun s, ring b, and ring e meshes, individu-

ally, between each planet gear and the first planet gear
γse1 mesh phase difference between the sun and ring e meshes of the first

planet gear
Zs, Zp, Zb, Ze number of teeth of the sun s, planet p, and rings b and e
θm; (rad) carrier rotation angle within a meshing period
fm; (Hz) gear mesh frequency
fc, fs, fp, fe; (Hz) shaft frequency of the carrier, sun s, planet p, and ring e
f c
sf , f

c
pf , f

c
bf , f

c
ef ; (Hz) fault characteristic frequency of cracked sun s, planet p, and rings b and

e
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