Armstrong-Helouvry, B., Dupont, P., and Canudas de Wit, C.:
A survey of models, analysis tools and compensation methods for the control of machines with friction,
Automatica, 30, 1083–1138, https://doi.org/10.1016/0005-1098(94)90209-7, 1994.

Canudas de Wit, C., Olsson, H., Astrom, K. J., and Lischinsky, P.:
A new model for control of systems with friction,
IEEE T. Automat. Contr., 40, 419–425, https://doi.org/10.1109/9.376053, 1995.

Chen, J. S., Huang, Y. K., and Cheng, C. C.:
Mechanical model and contouring analysis of high-speed ball-screw drive systems with compliance effect,
Int. J. Adv. Manuf. Tech., 24, 241–250, https://doi.org/10.1007/s00170-003-1777-9, 2004.

Du, F., Zhang, M., Wang, Z., Yu, C., Feng, X., and Li, P.:
Identification and compensation of friction for a novel two-axis
differential micro-feed system,
Mech. Syst. Signal Pr., 106, 453–465, https://doi.org/10.1016/j.ymssp.2018.01.004, 2018.

Han, S. I. and Lee, J. M.:
Adaptive dynamic surface control with sliding mode control and RWNN
for robust positioning of a linear motion stage,
Mechatronics, 22, 222–238, https://doi.org/10.1016/j.mechatronics.2012.01.007, 2012.

Guo, K., Pan, Y. P., and Yu, H. Y.:
Composite Learning Robot Control with Friction Compensation: A
Neural Network-Based Approach,
IEEE T. Ind. Electron., 66, 7841–7851, https://doi.org/10.1109/TIE.2018.2886763, 2018.

Jiang, N. J., Xu, J., and Zhang, S.:
Distributed Adaptive Synchronization Control with Friction
Compensation of Networked Lagrange Systems,
Int. J. Control Autom., 16,
1038–1048, https://doi.org/10.1007/s12555-017-0429-z, 2018.

Kong, X. D., Yu, B., Quan, L. X., Ba, K. X., and Wu, L. J.:
Nonlinear mathematical modeling and sensitivity analysis of
hydraulic drive unit,
Chin. J. Mech. Eng., 5, 999–1011, https://doi.org/10.3901/cjme.2015.0626.083, 2015.

Kumar, N. S., Shetty, A., Shetty, A., Ananth, K., and Shetty, H.:
Effect of spindle speed and feed rate on surface roughness of Carbon Steels in CNC turning,
Procedia Engineer., 38, 691–697, https://doi.org/10.1016/j.proeng.2012.06.087, 2012.

Lee, D. H. and Ahn, J. W.:
Dual Speed Control Scheme of Servo Drive System for a Nonlinear
Friction Compensation,
IEEE T. Power Electr., 23, 959–965, https://doi.org/10.1109/TPEL.2007.915046, 2008.

Lee, W., Lee, C.-Y., Jeong, Y. H., and Min, B.-K.:
Distributed Component Friction Model for Precision Control of a Feed
Drive System,
IEEE-ASME T. Mech., 20, 1966–1974,
https://doi.org/10.1109/TMECH.2014.2365958, 2015.

Liu, L. and Wu, Z.:
Comprehensive parameter identification of feed servo systems with
friction based on responses of the worktable,
Mech. Syst. Signal Pr., 64, 257–265, https://doi.org/10.1016/j.ymssp.2015.04.012, 2015.

Liu, Y. T., Higuchi, T., and Fung, R. F.:
A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator
– part I: experimental design and results,
Precis. Eng., 27, 14–21, https://doi.org/10.1016/S0141-6359(02)00180-0, 2003.

Lopes, R. A. M., Carrara, V., and Kuga, H. K.:
Stepwise modeling with friction/inertia effects separation and velocity control with dynamic
compensation of a reaction wheel,
Comput. Appl. Math., 38, 1–11, https://doi.org/10.1007/s40314-019-0784-x, 2019.

Shi, X. and Polycarpou, A. A.:
A Dynamic Friction Model for Unlubricated Rough Planar Surfaces,
J. Tribol., 125, 788–796, https://doi.org/10.1115/1.1573229, 2003.

Urbakh, M., Klafter, J., Gourdon, D., and Israelachvili, J.:
The nonlinear nature of friction,
Nature, 430, 525–528, https://doi.org/10.1038/nature02750, 2004.

Wang, Z., Feng, X., Li, P., and Du, F.:
Dynamic modeling and analysis of the nut-direct drive system,
Adv. Mech. Eng., 10, 1–11, https://doi.org/10.1177/1687814018810656, 2018.

Wang, Z., Feng, X., Du, F., Li, H., and Su, Z.:
A novel method for smooth low-speed operation of linear feed
systems,
Precis. Eng., 60, 215–221, https://doi.org/10.1016/j.precisioneng.2019.08.009, 2019.

Xiang, H. B., Qiu, Z. R., and Li, X. F.: Simulation and Experimental Research of Non-linear Friction Compensation for High-Precision Ball Screw Drive System, the 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16-19 August 2009, 607–609, https://doi.org/10.1109/ICEMI.2009.5274257, 2009.

Yu, H. and Feng, X.:
Dynamic Modeling and Spectrum Analysis of Macro-Macro Dual Driven
System,
J. Comput. Nonlin. Dyn., 11, 208–212, https://doi.org/10.1115/1.4032245, 2016.