Articles | Volume 11, issue 1
https://doi.org/10.5194/ms-11-125-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.Code-to-code verification for thermal models of melting and solidification in a metal alloy: comparisons between a Finite Volume Method and a Finite Element Method
Related subject area
Subject: Heat Transfer and Thermal Systems | Techniques and Approaches: Numerical Modeling and Analysis
Cited articles
Battaglioli, S., Robinson, A. J., and McFadden, S.: Axisymmetric front
tracking model for the investigation of grain structure evolution during
directional solidification, Int. J. Heat Mass Tran., 115, 592–605,
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.095, 2017a.
Battaglioli, S., McFadden, S., and Robinson, A. J.: Numerical simulation of
Bridgman solidification of binary alloys, Int. J. Heat Mass Tran., 104,
199–211, https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.030, 2017b.
COMSOL Multiphysics® v. 5.4: Phase Change User's Guide, 1–18,
https://doi.org/10.1007/978-1-4684-0412-8_12, 2018.
Kim, C. S.: Thermophysical properties of stainless steels, Argonne National
Laboratory, Argonne, IL, USA, 1975.
McFadden, S., Mooney, R. P., Sturz, L., and Zimmermann, G.: A Nucleation
Progenitor Function approach to polycrystalline equiaxed solidification
modelling with application to a microgravity transparent alloy experiment
observed in-situ, Acta Mater., 148, 289–299,
https://doi.org/10.1016/j.actamat.2018.02.012, 2018.