Articles | Volume 8, issue 2
https://doi.org/10.5194/ms-8-307-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.Design and evaluation of a new exoskeleton for gait rehabilitation
Related authors
Related subject area
Subject: Biomechanics | Techniques and Approaches: Numerical Modeling and Analysis
A new methodology to identify minimum strain anatomical lines based on 3-D digital image correlation
Mech. Sci., 8, 337–347,
2017Cited articles
Anama, K. and Al-Jumaily, A. A.: Active Exoskeleton Control Systems: State of the Art, Procedia Engineer. 41, 988–994, 2012.
Ashkani, O., Maleki, A., and Jamshidi, N.: Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle, Australas. Phys. Eng. S., 40, 137–144, https://doi.org/10.1007/s13246-016-0502-6, 2016.
Banala, S. K., Agrawal, S. K., and Scholz, J. P.: Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients, Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, 12–15 June, Noordwijk, The Netherlands, 401–407, 2007.
Barbareschi, G., Richards, R., Thornton, M., Carlson, T., and Holloway, C.: Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2015, 6728–6731, https://doi.org/10.1109/EMBC.2015.7319937, 2015.
Begg, R. K., Wytch, R., and Major, R. E.: Instrumentation used in clinical gait studies: a review, J. Med. Eng. Technol., 13, 290–295, 1989.