Articles | Volume 2, issue 2
https://doi.org/10.5194/ms-2-157-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.Special issue:
Review Article: Inventory of platforms towards the design of a statically balanced six degrees of freedom compliant precision stage
Related subject area
Micro and Nano Systems
Displacement amplification ratio modeling of bridge-type nano-positioners with input displacement loss
Buckling of elastically restrained nonlocal carbon nanotubes under concentrated and uniformly distributed axial loads
Design and optimization of full decoupled micro/nano-positioning stage based on mathematical calculation
Buckling of nonuniform carbon nanotubes under concentrated and distributed axial loads
Vibration analysis of single-walled carbon nanotubes using wave propagation approach
Mech. Sci., 10, 299–307,
2019Mech. Sci., 10, 145–152,
2019Mech. Sci., 9, 417–429,
2018Mech. Sci., 8, 299–305,
2017Mech. Sci., 8, 155–164,
2017Cited articles
Ananthasuresh, G. K. and Kota, S.: Designing compliant mechanisms, Mech. Eng., 117, 93–96, 1995.
Anderson, G. A. B.: A six degree of freedom flexural positioning stage, M.S. thesis, Massachusetts Institute of Technology, Cambridge, USA, 136 pp., 2003.
Brouwer, D. M., de Jong, B. R., and Soemers, H. M. J. R.: Design and modeling of a six DOFs MEMS-based precision manipulator, Precis. Eng., 34, 307–319, 2010.
Chang, S. H., Tseng, C. K., and Chien, H. C.: An ultra-precision XY$\theta $z piezo-micropositioner part I: Design and analysis, IEEE T. Ultrason. Ferr., 46, 897–905, 1999a.
Chang, S. H., Tseng, C. K., and Chien, H. C.: An ultra-precision XYθz piezo-micropositioner part II: Experiment and performance, IEEE T. Ultrason. Ferr., 46, 906–912, 1999b.