Cheng, X. T., Zhang, Q. Z., and Liang, X. G.: Analyses of entransy dissipation,
entropy generation and entransy-dissipation-based thermal resistance on heat
exchanger optimization, Appl. Therm. Eng., 38, 31–39,
https://doi.org/10.1016/j.applthermaleng.2012.01.017, 2012.
Guo, Z. Y.: Physical mechanism of convective heat transfer: synergy of
velocity field and heat flow field, Chinese Sci. Bull., 2000,
2118–2122, 2000.
Guo, Z. Y., Tao, W. Q., and Shah, R. K.: The field synergy (coordination)
principle and its applications in enhancing single phase convective heat
transfer, Int. J. Heat Mass Tran., 48, 1797–1807,
https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.007,
2005.
Guo, Z. Y., Zhu, H. Y., and Liang, X. G.: Entransy – a physical quantity describing
heat transfer ability, Int. J. Heat Mass Tran., 50,
2545–2556, https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.034, 2007.
Harambat, F.: Energy Management in Car Underhood Compartment – Temperature
and Heat Flux Analysis of Car Inclination Effects, Heat Transfer
Eng., 36, 68–80, https://doi.org/10.1080/01457632.2014.906283,
2014.
Juan, T.: Investigation and Assessment of Factors Affecting the Underhood
Cooling Air Flow Using CFD, Proceedings of the 2008 SAE World Congress and
Exhibition, Rosemont, IL, USA, SAE International, https://doi.org/10.4271/2008-01-2658, 2008.
Kaleli, A., Kaltakkiran, G., Dumlu, A., and Ayten, K. K.: Design and control of
intelligent cooling system for IC engine, Proceedings of 2017 International
Conference on Engineering and Technology, 2017 International Conference on Engineering and Technology, 21–23 August 2017, IEEE, Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/ICEngTechnol.2017.8308163, 2018.
Kang, Y. H., Wang, Q. H., and Lu, X. F.: Experimental and theoretical study on
the flow, mixing, and combustion characteristics of dimethylether, methane,
and LPG jet diffusion flames, Fuel Process. Technol., 129,
98–112, https://doi.org/10.1016/j.fuproc.2014.09.004, 2015.
Khaled, M., Harambat, F., Yammine, A., and Peerhossaini, H.: Active Control of Air Flow in
Vehicle Underhood Compartment: Temperature and Heat Flux Analysis,
Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer
Meeting, FEDSM 2010 Collocated with 8th International Conference on
Nanochannels, Microchannels, and Minichannels, Montreal, QC, Canada,
SAE International, https://doi.org/10.1115/FEDSM-ICNMM2010-30322, 2010.
Khaled, M., Mangi, F., Hage, H. E., Harambat, F., and Peerhossaini, H.: Fan air flow analysis and heat
transfer enhancement of vehicle underhood cooling system–towards a new
control approach for fuel consumption reduction, Appl. Energ., 91,
439–450, https://doi.org/10.1016/j.apenergy.2011.10.017, 2012.
Khaled, M., Habchi, C., Harambat, F., Elmarakbi, A., and Peerhossaini, H.: Leakage effects in car
underhood aerothermal management: temperature and heat flux analysis, Heat
Mass Transf., 50, 1455–1464,
https://doi.org/10.1007/s00231-014-1347-8, 2014a.
Khaled, M., Ramadan, M., Hage, H. E., et al.: Review of underhood
aerothermal management: Towards vehicle simplified models, Appl. Therm.
Eng., 73, 842–858, https://doi.org/10.1016/j.applthermaleng.2014.08.037, 2014b.
Larsson, L., Wiklund, T., and Löfdahl, L.: Cooling performance investigation
of a rear mounted cooling package for heavy vehicles, Proceedings of the
2011 SAE World Congress and Exhibition, Detroit, MI, USA,
SAE International, https://doi.org/10.4271/2011-01-0174, 2011a.
Larsson, L., Löfdahl, L., Dahl, E., and Wiklund, T.: Continuing cooling
performance investigation of a rear mounted cooling package for heavy
vehicles, SAE 2011 Commercial Vehicle Engineering Congress, Rosemont, IL,
USA, SAE International, https://doi.org/10.4271/2011-01-2285, 2011b.
Liu, S. C., Li, L. F., Zhang, Y., and Mi, C. J.: Flow Field Heat Dissipation
Analysis and Structural Modification of Engine Compartment Based on
Velocity-temperature Field Coupling, Automot. Eng., 39, 879–888,
https://doi.org/10.19562/j.chinasae.qcgc.2017.08.005, 2017.
Lu, P., Gao, Q., and Wang, Y.: The simulation methods based on 1D/3D
collaborative computing for the vehicle integrated thermal management,
Appl. Therm. Eng., 104, 42–53,
https://doi.org/10.1016/j.applthermaleng.2016.05.047, 2016.
Lu, P. Y., Gao, Q., Lv, L., and Xue, X. Y.: Numerical calculation method of
model predictive control for integrated vehicle thermal management based
on underhood coupling thermal transmission, Energies, 12, 259,
https://doi.org/10.3390/en12020259, 2019.
Lukeman, Y., Lim, F. Y., Abdullah, S., Zulkifli, R., Shamsudeen, A., and Hasan, M. K.: Underhood Fluid Flow and
Thermal Analysis for Passenger Vehicle, Appl. Mech. Mater.,
165, 150–154, https://doi.org/10.4028/www.scientific.net/AMM.165.150, 2012.
Merati, P., Davis, C., Chen, K. H., and Johnson, J. P.: Underhood Buoyancy Driven
Flow – An Experimental Study, J. Heat Transf., 133, 082502,
https://doi.org/10.1115/1.4003758, 2011.
Ordóñez, J. C. and Bejan, A.: Entropy generation minimization in
parallel-plates counterflow heat exchangers, Int. J.
Energ. Res., 24, 843–864,
https://doi.org/10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M, 2015.
Ou, J. J., Li, L. F., Cui, T., and Chen, Z.-M.: Application of field synergy
principle to analysis of flow field in underhood of LPG bus, Comput.
Fluids, 103, 186–192, https://doi.org/10.1016/j.compfluid.2014.07.029, 2014.
Pan, F. P., Schoon, R., Putta, S., Ogale, A., and Chen, C.: A practical simulation approach
for truck cooling system at early stage design process and development,
Proceedings of the 2010 SAE World Congress and Exhibition, USA, SAE International, https://doi.org/10.4271/2010-01-1927, 2010.
Prigogine, I.: An Introduction to the Thermodynamics of Irreversible
Processes, J. Electrochem. Soc., 110, 97C, https://doi.org/10.1149/1.2425756, 1963.
Sharma, P., Parwal, M., and Ayyar, E.: Design Optimization of Engine
Cooling Unit Packaging for Commercial Vehicle, SAE 2018 International
Conference on Advances in Design, Materials, Manufacturing and Surface
Engineering for Mobility, Chennai,
India, https://doi.org/10.4271/2018-28-0013, 2018.
Shen, K., Xu, X. Y., and Wang, X. Y.: Experiment on Temperature Field in Rear
Engine Compartment, Journal of Tongji University (Natural Science), 41,
779–783, https://doi.org/10.3969/j.issn.0253-374x.2013.05.024, 2013.
Singh, R. and Shen, F.: CFD-based Robust Optimization of Front-end Cooling
Airflow, Proceedings of the 2007 SAE World Congress and Exhibition, Detroit,
MI, USA, SAE International,
https://doi.org/10.4271/2007-01-0105, 2007.
Song, W. M., Meng, J. A., and Li, Z. X.: Numerical study of air-side performance
of a finned flat tube heat exchanger with crossed discrete double inclined
ribs, Appl. Therm. Eng., 30, 1797–1804,
https://doi.org/10.1016/j.applthermaleng.2010.04.013, 2010.
Sun, X. X., Shao, C. M., Wang, G. Z., Li, R. P., Niu, D., and Shi, J.: Global energy
management for propulsion, thermal management system of a series-parallel
hybrid electric vehicle, Proceedings of the 3rd International Conference on
Vehicle Technology and Intelligent Transport Systems,
SciTePress, available at:
https://www.scitepress.org/Papers/2017/63704/63704.pdf (last access: 1 June 2020), 2017.
Tao, W. Q., Guo, Z. Y., and Wang, B. X.: Field synergy principle for enhancing
convective heat transfer-its extension and numerical verifications,
Int. J. Heat Mass Tran.,
45, 3849–3856, https://doi.org/10.1016/S0017-9310(02)00097-2, 2002.
Vegendla, S. N. P., Sofu, T., Saha, R., Hwang, L.-K., and Madurai Kumar, M.: Investigation on Underhood Thermal Analysis
of Truck Platooning, SAE International Journal of Commercial
Vehicles, 11, 5–16, https://doi.org/10.4271/02-11-01-0001, 2018.
Walls, M., Joo, M., and Ross, M.: Impact of the Direct Injection of Liquid
Propane on the Efficiency of a Light-Duty, Spark-Ignited Engine, SAE World
Congress Experience, Detroit, MI, USA, SAE
International, https://doi.org/10.4271/2017-01-0865, 2017.
Wang, H. C., Shan, X. Z., and Yang, Z. G.: Numerical simulation of the influence
of ground effect simulation on vehicle cooling system experiment in climate
wind tunnel, Journal of Jilin University (Engineering and Technology
Edition), 47, 1373–1378, https://doi.org/10.13229/j.cnki.jdxbgxb201705007, 2017.
Wang, S. M., Jian, G. P., Wang, J. R., and Sun, L. J.: Application of
entransy-dissipation-based thermal resistance for performance optimization
of spiral-wound heat exchanger, Int. J. Heat Mass
Tran., 116, 743–750,
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.061, 2018.
Wei, D., Williams, J., Karanth, D., and Sovani, S.: CFD Application in Automotive
Front-End Design, Proceedings of the 2006 SAE World Congress and
Exhibition, Detroit, MI, USA, SAE International,
https://doi.org/10.4271/2006-01-0337, 2006.
Wu, J. and Guo, Z. Y.: Application of entransy dissipation extremum principle
in radiative heat transfer optimization, Sci. China Ser. E, 51,
1306–1314, https://doi.org/10.1007/s11431-008-0141-6, 2008.
Wu, X. H., Yuan, P., Luo, Z. M., Wang, L. X., and Lu, Y.-L.: Heat Transfer and
Thermal Resistance Characteristics of Fin with Built-In Interrupted Delta
Winglet Type, Heat Transf. Eng., 37, 172–182,
https://doi.org/10.1080/01457632.2015.1044397, 2016.
Xia, M. X., Zhao, L. W., and Xu, H.: Overall performance factor for
evaluating intensified heat conduction based on the field synergy theory,
Journal of Engineering for Thermal Energy and Power, 26, 197–201
+254, 2011 (in Chinese).
Yang, S. Z., Wang, D., Dang, Y., and Li, L. G.: Numerical Simulation and
Optimization of the Underhood Fluid Field and Cooling Performance for Heavy
Duty Commercial Vehicle under Different Driving Conditions, Proceedings of
the 2015 SAE World Congress and Exhibition, Rosemont, IL, USA,
SAE International, https://doi.org/10.4271/2015-01-2902,
2015.
Yu, Z. Q., Wang, P., Zhou, W. J., Li, Z. Y., and Tao, W.-Q.: Study on the
consistency between field synergy principle and entransy dissipation
extremum principle, Int. J. Heat Mass Tran., 116,
621–634, https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.044, 2018.
Zhang, C. H., Uddin, M., and Foster, L.: Investigation of the Turbulence
Modeling Effects on the CFD Predictions of Passenger Vehicle Underhood
Airflow, Proceedings of the 2018 SAE World Congress and Exhibition, Detroit,
MI, USA, SAE International,
https://doi.org/10.4271/2018-01-0476, 2018.
Zhao, T., Liu, D., and Chen, Q.: A collaborative optimization method
for heat transfer systems based on the heat current method
andentransy dissipation extremum principle, Appl. Therm. Eng.,
146, 635–647, https://doi.org/10.1016/j.applthermaleng.2018.10.016, 2019.