Articles | Volume 17, issue 1
https://doi.org/10.5194/ms-17-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ms-17-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Design and motion planning of a compact direct-drive leg-wheel robot: DTransleg
Zhong Wei
School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiangsu Engineering Research Center for Intelligent Meteorological Detection Robots, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jinlin Guo
School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiwen Zhang
School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jinyao Ren
School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
Yang Yang
School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiangsu Engineering Research Center for Intelligent Meteorological Detection Robots, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Sheng Xiang
School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiangsu Engineering Research Center for Intelligent Meteorological Detection Robots, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Weixi Wang
School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiangsu Engineering Research Center for Intelligent Meteorological Detection Robots, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jia Liu
CORRESPONDING AUTHOR
School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiangsu Engineering Research Center for Intelligent Meteorological Detection Robots, Nanjing University of Information Science & Technology, Nanjing 210044, China
Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
Aiguo Song
CORRESPONDING AUTHOR
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
Cited articles
Bai, L., Guan, J., Chen, X., Hou, J., and Duan, W.: An optional passive/active transformable wheel-legged mobility concept for search and rescue robots, Robotics and Autonomous Systems, 107, 145–155, https://doi.org/10.1016/j.robot.2018.06.005, 2018.
Bishop, T., Ye, K., and Karydis, K.: Design and central pattern generator control of a new transformable wheel-legged robot, 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024, 11383–11389, https://doi.org/10.1109/ICRA57147.2024.10610884, 2024.
Blake, J. J. and Hong, D.: IMPASS: Intelligent mobility platform with active spoke system, 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009, 1605–1606, https://doi.org/10.1109/ROBOT.2009.5152735, 2009.
Cao, R., Gu, J., Yu, C., and Rosendo, A.: Omniwheg: An omnidirectional wheel-leg transformable robot, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022, 5626–5631, https://doi.org/10.1109/IROS47612.2022.9982030, 2022.
Chen, J., Xu, K., and Ding, X.: Roller-skating of mammalian quadrupedal robot with passive wheels inspired by human, IEEE/ASME Transactions on Mechatronics, 26, 1624–1634, https://doi.org/10.1109/TMECH.2020.3025942, 2021.
Chen, J., Qin, R., Huang, L., He, Z., Xu, K., and Ding, X.: Unlocking Versatile Locomotion: A Novel Quadrupedal Robot with 4-DoFs Legs for Roller Skating, 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024, 8037–8043, https://doi.org/10.1109/ICRA57147.2024.10610706, 2024a.
Chen, S. C., Huang, K. J., Chen, W. H., Shen, S. Y., Li, C. H., and Lin, P. C.: Quattroped: a leg-wheel transformable robot, IEEE/ASME Transactions On Mechatronics, 19, 730–742, https://doi.org/10.1109/TMECH.2013.2253615, 2014.
Chen, Z. R., Yu, W. S., and Lin, P. C.: Fast Wheeled Driving to Legged Leaping onto a Step in a Leg-Wheel Transformable Robot, 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024, 11342–11348, https://doi.org/10.1109/ICRA57147.2024.10610303, 2024b.
Clark, A. J., Cissell, K. A., and Moore, J. M.: Evolving controllers for a transformable wheel mobile robot, Complexity, 2018, 7692042, https://doi.org/10.1155/2018/7692042, 2018.
Deng, Y., Hua, Y., Napp, N., and Petersen, K.: A compiler for scalable construction by the Termes robot collective, Robotics and Autonomous Systems, 121, 103240, https://doi.org/10.1016/j.robot.2019.07.010, 2019.
Du, W., Fnadi, M., and Benamar, F.: A new whole-body motion generator and adaptive altitude control for a quadruped-on-wheel robot, Journal of Mechanisms and Robotics, 15, 041005, https://doi.org/10.1115/1.4055060, 2023.
Endo, G. and Hirose, S.: Study on roller-walker – improvement of locomotive efficiency of quadruped robots by passive wheels, Advanced Robotics, 26, 969–988, https://doi.org/10.1163/156855312X633066, 2012.
Fu, Z., Xu, H., Li, Y., and Guo, W.: Design of a novel wheel-legged robot with rim shape changeable wheels, Chinese Journal of Mechanical Engineering, 36, 153, https://doi.org/10.1186/s10033-023-00974-7, 2023.
Ge, Y., Gao, F., and Chen, W.: A transformable wheel-spoke-paddle hybrid amphibious robot, Robotica, 42, 701–727, https://doi.org/10.1017/S0263574723001716, 2024.
Godden, T., Mulvey, B. W., Redgrave, E., and Nanayakkara, T.: PaTS-Wheel: A passively-transformable single-part wheel for mobile robot navigation on unstructured terrain, IEEE Robotics and Automation Letters, 9, 5512–5519, https://doi.org/10.1109/LRA.2024.3389828, 2024.
He, J., Sun, Y., Yang, L., Sun, J., Xing, Y., and Gao, F.: Design and control of TAWL – a wheel-legged rover with terrain-adaptive wheel speed allocation capability, IEEE/ASME Transactions on Mechatronics, 27, 2212–2223, https://doi.org/10.1109/TMECH.2022.3176638, 2022.
Huang, P. C., Chang, I. C., Yu, W. S., and Lin, P. C.: Body Velocity Estimation in a Leg–Wheel Transformable Robot without A Priori Knowledge of Leg–Wheel Ground Contacts, 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024, 11349–11355, https://doi.org/10.1109/ICRA57147.2024.10610114, 2024.
Itabashi, K. and Kumagai, M.: Development of a human type legged robot with roller skates, 2010 IEEE/SICE International Symposium on System Integration, Sendai, Japan, 21–22 December 2010, 120–125, https://doi.org/10.1109/SII.2010.5708312, 2010.
Iverach-Brereton, C., Baltes, J., Anderson, J., Winton, A., and Carrier, D.: Gait design for an ice skating humanoid robot, Robotics and Autonomous Systems, 62, 306–318, https://doi.org/10.1016/j.robot.2013.09.016, 2014.
Ju, Z., Wei, K., and Xu, Y.: From Concept to Field Trials: Design, Analysis, and Evaluation of a Novel Quadruped Robot With Deformable Wheel-Foot Structure, IEEE Transactions on Robotics, 41, 3143–3161, https://doi.org/10.1109/TRO.2025.3562449, 2025.
Jung, T., Lim, J., Bae, H., Lee, K., Joe, H., and Oh, J.: Development of the humanoid disaster response platform DRC-HUBO+, IEEE Transactions on Robotics, 34, 1–17, https://doi.org/10.1109/TRO.2017.2776287, 2018.
Karumanchi, S., Edelberg, K., Baldwin, I., Nash, J., Reid, J., Bergh, C., Leichty, J., Carpenter, K., Shekels, M., Gildner, M., Newill-Smith, D., Carlton, J., Koehler, J., Dobreva, T., Frost, M., Hebert, P., Borders, J., Ma, J., Douillard, B., Backes, P., Kennedy, B., Satzinger, B., Lau, C., Byl, K., Shankar, K., and Burdick, J.: Team RoboSimian: semi-autonomous mobile manipulation at the 2015 DARPA robotics challenge finals, Journal of Field Robotics, 34, 305–332, https://doi.org/10.1002/rob.21676, 2017.
Kim, Y., Lee, Y., Lee, S., Kim, J., Kim, H., and Seo, T.: STEP: A new mobile platform with 2-DOF transformable wheels for service robots, IEEE/ASME Transactions On Mechatronics, 25, 1859–1868, https://doi.org/10.1109/TMECH.2020.2992280, 2020.
Kim, Y. S., Jung, G. P., Kim, H., Cho, K., and Chu, C.: Wheel transformer: A wheel-leg hybrid robot with passive transformable wheels, IEEE Transactions on Robotics, 30, 1487–1498, https://doi.org/10.1109/TRO.2014.2365651, 2014.
Kwon, Y., Seo, H., Ryu, S., Lim, K., Pi, Y., and Seo, T.: NoteBot: Fully retractable spoke-wheel robot based on a compliant mechanism, Sensors and Actuators A: Physical, 397, 117173, https://doi.org/10.1016/j.sna.2025.117173, 2025.
Lacagnina, M., Muscato, G., and Sinatra, R.: Kinematics, dynamics and control of a hybrid robot Wheeleg, Robotics and Autonomous Systems, 45, 161–180, https://doi.org/10.1016/j.robot.2003.09.006, 2003.
Lee, D. Y., Kim, S. R., Kim, J. S., Park, J. J., and Cho, K. J.: Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure, Soft Robotics, 4, 163–180, https://doi.org/10.1089/soro.2016.0038, 2017.
Lee, J., Bjelonic, M., Reske, A., Wellhausen, L., Miki, T., and Hutter, M.: Learning robust autonomous navigation and locomotion for wheeled-legged robots, Science Robotics, 9, 9641, https://doi.org/10.1126/scirobotics.adi9641, 2024.
Lee, Y., Ryu, S., Won, J. H., Kim, S., Kim, H. S., and Seo, T.: Modular two-degree-of-freedom transformable wheels capable of overcoming obstacle, IEEE Robotics and Automation Letters, 7, 914–920, https://doi.org/10.1109/LRA.2021.3096223, 2021.
Li, M., Guo, S., Hirata, H., and Ishihara, H.: A roller-skating/walking mode-based amphibious robot, Robotics and Computer-Integrated Manufacturing, 44, 17–29, https://doi.org/10.1016/j.rcim.2016.06.005, 2017.
Li, Y., Wei, Z., Guo, J., Ren, J., Ding, Y., Wang, W., Liu, J., and Song, A.: A Stair-Climbing Wheelchair with Novel Spoke Wheels for Smooth Motion, Applied Sciences, 15, 5433, https://doi.org/10.3390/app15105433, 2025.
Liu, J., Zhao, D., Liu, C., and Xing, J.: Reconfiguration motion analysis and motion quality control of an unmanned metamorphic vehicle, Control Engineering Practice, 142, 105776, https://doi.org/10.1016/j.conengprac.2023.105776, 2024.
Luces, J. V., Matsuzaki, S., and Hirata, Y.: RoVaLL: Design and development of a multi-terrain towed robot with variable lug-length wheels, IEEE Robotics and Automation Letters, 5, 6017–6024, https://doi.org/10.1109/LRA.2020.3010495, 2020.
Mertyüz, İ., Tanyıldızı, A. K., Taşar, B., Tatar, A., and Yakut, O.: FUHAR: A transformable wheel-legged hybrid mobile robot, Robotics and Autonomous Systems, 133, 103627, https://doi.org/10.1016/j.robot.2020.103627, 2020.
Murphy, D., Giuliani, M., and Bremner, P.: Evaluation and Design Recommendations for a Folding Morphing-wheg Robot for Nuclear Characterisation, 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 14–18 October 2024, 9088–9093, https://doi.org/10.1109/IROS58592.2024.10802195, 2024.
Namgung, J. and Cho, B. K.: Legway: Design and Development of a Transformable Wheel-Leg Hybrid robot, 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), Austin, TX, USA, 12–14 December 2023, 1–8, https://doi.org/10.1109/Humanoids57100.2023.10375169, 2023.
Niku, S. B.: Introduction to robotics: analysis, systems, applications, Prentice Hall, New Jersey, 349 pp., ISBN 0130613096, 2001.
Okada, T., Mahmoud, A., Botelho, W. T., and Shimizu, T.: Trajectory estimation of a skid-steering mobile robot propelled by independently driven wheels, Robotica, 30, 123–132, https://doi.org/10.1017/S026357471100035X, 2012.
Ottaviano, E. and Rea, P.: Design and operation of a 2-DOF leg-wheel hybrid robot, Robotica, 31, 1319–1325, https://doi.org/10.1017/S0263574713000556, 2013.
Pan, L. H., Kuo, C. N., Huang, C. Y., and Chou, J.: The Claw-Wheel transformable hybrid robot with reliable stair climbing and high maneuverability, 2016 IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21–25 August 2016, 233–238, https://doi.org/10.1109/COASE.2016.7743386, 2016.
Peng, Y., Pan, Y., Shan, M., Zhou, S., Lin, C., and Gao, F.: TWLHex: A Biologically Inspired Multi-Morphology Transformable Wheel-Legged Hexapod, IEEE Robotics and Automation Letters, 10, 6656–6663, https://doi.org/10.1109/LRA.2025.3569121, 2025.
Polzin, M., Guan, Q., and Hughes, J.: Robotic locomotion through active and passive morphological adaptation in extreme outdoor environments, Science Robotics, 10, 6419, https://doi.org/10.1126/scirobotics.adp6419, 2025.
Raghavan, V., S., Kanoulas, D., Caldwell, D., G., and Tsagarakis, N.: Reconfigurable and agile legged-wheeled robot navigation in cluttered environments with movable obstacles, IEEE Access, 10, 2429–2445, https://doi.org/10.1109/ACCESS.2021.3139438, 2021.
Ryu, S., Lee, Y., and Seo, T. W.: Shape-morphing wheel design and analysis for step climbing in high speed locomotion, IEEE Robotics and Automation Letters, 5, 1977–1982, https://doi.org/10.1109/LRA.2020.2970977, 2020.
She, Y., Hurd, C. J., and Su, H. J.: A transformable wheel robot with a passive leg, 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), Hamburg, Germany, 28 September–2 October 2015, 4165–4170, https://doi.org/10.1109/IROS.2015.7353966, 2015.
Shen, Y., Zhang, G., Tian, Y., and Ma, S.: Development of a wheel-paddle integrated quadruped robot for rough terrain and its verification on hybrid mode, IEEE Robotics and Automation Letters, 3, 4062–4067, https://doi.org/10.1109/LRA.2018.2862431, 2018.
Shi, K., Jiang, Z., Liu, B., Yang, G., and Jin, M.: Synergistic Terrain-Adaptive Morphing and Trajectory Tracking in a Transformable-Wheeled Robot, IEEE Robotics and Automation Letters, 10, 1656–1663, https://doi.org/10.1109/LRA.2024.3524876, 2025.
Siboni, T., Coronel, M., and Zarrouk, D.: Design and Modeling of a Reconfigurable Robot: Decoupled STAR (DSTAR), IEEE Robotics and Automation Letters, 11, 882–889, https://doi.org/10.1109/LRA.2025.3634888, 2026.
Sonsalla, R. U., Planthaber, S., Dominguez, R., Dettmann, A., Cordes, F., Huelsen, B., Schulz, C., Schoeberl, P., Kasperski, S., Wiedemann, H., and Kirchner F.: Towards a semi-autonomous robotic exploration of a lunar skylight cavity, 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022, 1–20, https://doi.org/10.1109/AERO53065.2022.9843610, 2022.
Sun, C., Yang, G., Yao, S., Liu, Q., Wang, J., and Xiao, X.: RHex-T3: A transformable hexapod robot with ladder climbing function, IEEE/ASME Transactions On Mechatronics, 28, 1939–1947, https://doi.org/10.1109/TMECH.2023.3276756, 2023.
Sun, T., Xiang, X., Su, W., Wu, H., and Song, Y.: A transformable wheel-legged mobile robot: Design, analysis and experiment, Robotics and Autonomous Systems, 98, 30–41, https://doi.org/10.1016/j.robot.2017.09.008, 2017.
Sun, Y., Zhang, L., Wang, M., Ding, J., Jia, W., and Pu, H.: Design and experimental evaluation of a multi-mode mobile robot based on eccentric paddle mechanism, IEEE Robotics and Automation Letters, 6, 8607–8614, https://doi.org/10.1109/LRA.2021.3112757, 2021.
Tadakuma, K., Tadakuma, R., Maruyama, A., Rohmer, E., Nagatani, K., and Yoshida K.: Mechanical design of the wheel-leg hybrid mobile robot to realize a large wheel diameter, 2010 IEEE/RSJ international conference on intelligent robots and systems, Taipei, Taiwan, 18–22 October 2010, 3358–3365, https://doi.org/10.1109/IROS.2010.5651912, 2010.
Wang, T. H. and Lin, P. C.: A reduced-order-model-based motion selection strategy in a leg-wheel transformable robot, IEEE/ASME Transactions on Mechatronics, 27, 3315–3321, https://doi.org/10.1109/TMECH.2021.3126606, 2022.
Wei, Y. and Lee, K.: CLAW: Cycloidal Legs-Augmented Wheels for Stair and Obstacle Climbing in Mobile Robots, IEEE/ASME Transactions on Mechatronics, 30, 1536–1546, https://doi.org/10.1109/TMECH.2024.3435767, 2025.
Wei, Z., Song, G., Sun, H., Qi, Q., Gao, Y., and Qiao, G.: Turning strategies for the bounding quadruped robot with an active spine, Industrial Robot: An International Journal, 45, 657–668, https://doi.org/10.1108/IR-06-2018-0119, 2018.
Wei, Z., Song, G., Sun, H., Qiao, G., Qi, Q., He, M., and Song, A.: Kinematic modeling and trotting gait planning for the quadruped robot with an active spine, Journal of Southeast University (Natural Science Edition), 49, 1019–1025, https://doi.org/10.3969/j.issn.1001-0505.2019.06.001, 2019 (in Chinese with English abstract).
Wei, Z., Ping, P., Luo, Y., Liu, J., Chen, D., Wang, W., Sun, H., Song, A., and Song, G.: A novel transformable leg-wheel mechanism, Journal of Mechanisms and Robotics, 16, 031008, https://doi.org/10.1115/1.4057069, 2024.
Wei, Z., Cai, Z., Yu, Z., Xiang, S., Yang, Y., Liu, J., Song, G., and Song, A.: BiTSpoke: A Leg-Wheel Robot with Single-Motor Driven Actively-Transformable Spoke Wheels, IEEE Robotics and Automation Letters, 10, 4874–4881, https://doi.org/10.1109/LRA.2025.3554383, 2025a.
Wei, Z., Ren, J., Guo, J., Yang, Y., Xiang, S., Chen, D., Liu, J., and Song, A.: SlidBot: A Quadruped Robot with Passive Wheels for Roller Skating, Journal of Bionic Engineering, 22, 2831–2848, https://doi.org/10.1007/s42235-025-00770-0, 2025b.
Wei, Z., Yu, Z., Cai, Z., Chen, D., Wang, W., Tian, R., Liu, J., and Sun, H.: BiDSpoke: A Leg-Wheel Robot With Bidirectionally Transformable and Isotropic Spoke Wheels, IEEE/ASME Transactions on Mechatronics, https://doi.org/10.1109/TMECH.2025.3614873, 2025c.
Xu, K. and Ding, X.: Typical gait analysis of a six-legged robot in the context of metamorphic mechanism theory, Chinese Journal of Mechanical Engineering, 26, 771–783, https://doi.org/10.3901/CJME.2013.04.771, 2013.
Xu, K., Wang, S., Wang, J., Wang, X., Chen, Z., and Si, J.: High-adaption locomotion with stable robot body for planetary exploration robot carrying potential instruments on unstructured terrain, Chinese Journal of Aeronautics, 34, 652–665, https://doi.org/10.1016/j.cja.2020.11.012, 2021a.
Xu, K., Qin, R., Chen, C., Dong, G., Chen, J., and Ding, X.: Design and multimodal locomotion plan of a hexapod robot with improved knee joints, Journal of Field Robotics, 41, 1279–1296, https://doi.org/10.1002/rob.22324, 2024.
Xu, K., Wang, S., Shi, L., Li, J., and Yue, B.: Horizon-stability control for wheel-legged robot driving over unknow, rough terrain, Mechanism and Machine Theory, 205, 105887, https://doi.org/10.1016/j.mechmachtheory.2024.105887, 2025.
Xu, Q., Xu, H., Xiong, K., Zhou, Q., and Guo, W.: Design and analysis of a bi-directional transformable wheel robot Trimode, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021, 8396–8403, https://doi.org/10.1109/IROS51168.2021.9636421, 2021b.
Yeldan, A., Arora, A., and Soh, G. S.: QuadRunner: A transformable quasi-wheel quadruped, 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022, 4694–4700, https://doi.org/10.1109/ICRA46639.2022.9811839, 2022.
Zhang, S., Yao, J., Wang, Y., Liu, Z., Xu, Y., and Zhao, Y.: Design and motion analysis of reconfigurable wheel-legged mobile robot, Defence Technology, 18, 1023–1040, https://doi.org/10.1016/j.dt.2021.04.013, 2022.
Zhang, T., Ding, C., Wang, D., Ma, T., Li, X., Li, Z., Zhang, J., and Zhu, X.: A centipede-inspired robot with passive terrain adaptation: optimized design and performance analysis, Scientific Reports, 15, 16823, https://doi.org/10.1038/s41598-025-97457-7, 2025.
Zheng, C., Sane, S., Lee, K., Kalyanram, V., and Lee, K.: α-WaLTR: Adaptive wheel-and-leg transformable robot for versatile multiterrain locomotion, IEEE Transactions on Robotics, 39, 941–958, https://doi.org/10.1109/TRO.2022.3226114, 2022.
Zhou, Q., Yang, S., Jiang, X., Zhang, D., Chi, W., Chen, K., Zhang, S., Li, J., Zhang, J., Wang, R., Li, J., Zhang, Y., Wang, H., Wang, S., Xiang, L., Zheng, Y., and Zhang, Z.: Max: A wheeled-legged quadruped robot for multimodal agile locomotion, IEEE Transactions on Automation Science and Engineering, 21, 7562–7582, https://doi.org/10.1109/TASE.2023.3345876, 2023.
Short summary
We created a robot called DTransleg that can walk on legs or roll on wheels using a simple, transformable design. Its upper leg doubles as a wheel rim, allowing smooth switching between walking and rolling. Tests with simulations and a real prototype show stable motion and easy transitions, paving the way for robots that adapt to different environments.
We created a robot called DTransleg that can walk on legs or roll on wheels using a simple,...