Articles | Volume 7, issue 1
https://doi.org/10.5194/ms-7-79-2016
https://doi.org/10.5194/ms-7-79-2016
Research article
 | 
17 Mar 2016
Research article |  | 17 Mar 2016

A computationally efficient model to capture the inertia of the piezoelectric stack in impact drive mechanism in the case of the in-pipe inspection application

Jin Li, Chang Jun Liu, Xin Wen Xiong, Yi Fan Liu, and Wen Jun Zhang

Abstract. This paper presents a new model for the piezoelectric actuator (PA) in the context of in the impact drive mechanism (IDM) for the in-pipe inspection application. The feature of the model is capturing the inertia of PA stack in a distributed manner as opposed to the lumped manner in literature. The benefit arising from this feature is a balanced trade-off between computational efficiency and model accuracy. The study presented in this paper included both theoretical development (i.e. the model of the piezoelectric actuator and the model of the entire IDM which includes the actuator) and experimental verification of the model. The study has shown that (1) the inertia of the PA in such a robot will significantly affect the accuracy of the entire model of IDM and (2) the simulation of the dynamic behavior with the proposed model is sufficiently accurate by comparing with the experiment. It is thus recommended that the inertia of the PA be considered in the entire model of the IDM robot. The model is an analytical type, which has a high potential to be used for the model-based control of the IDM robot and optimization of its design for a much improved performance of the IDM system.

Download
Short summary
Our work mainly focuses on the dynamic modeling of a piezoelectric actuator (PA) in the impact drive mechanism in the case of the in-pipe inspection application. The novel model we have developed is able to capture the inertia of the PA and the feature of this model is its computational efficiency with reasonable accuracy. This study has concluded that the inertia of the PA in such a robot can significantly affect the accuracy of the entire model of IDM.