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The spherical flexible joint is extensively used in engineering. It is designed to provide flexibility in
rotation while bearing vertical compression load. The linear rotational stiffness of the flexible joint is formulated.
The rotational stiffness of the bonded rubber layer is related to inner radius, thickness and two edge angles. FEM
is used to verify the analytical solution and analyze the stiffness. The Mooney—Rivlin, Neo Hooke and Yeoh
constitutive models are used in the simulation. The experiment is taken to obtain the material coefficient and
validate the analytical and FEM results. The Yeoh model can reflect the deformation trend more accurately, but
the error in the nearly linear district is bigger than the Mooney—Rivlin model. The Mooney—Rivlin model can fit
the test result very well and the analytical solution can also be used when the rubber deformation in the flexible
joint is small. The increase of Poisson’s ratio of the rubber layers will enhance the vertical compression stiffness

but barely have effect on the rotational stiffness.

The spherical flexible joints are widely used as non-rigid
connection in aerospace and offshore oil and gas industry.
The flexible joint is the critical part of the flexible bearing
nozzle in the solid rocket boosters (SRB). It allows nozzle
to deflect in given directions for booster thrust vector control
(Kumar et al., 2015). Elastomeric bearings are flexible joints
used in helicopter rotor hubs. These bearings are spherical
hinges to withstand centrifugal and lateral forces while toler-
ating rotational, flap and lead-lag motions (Donguy, 2015). In
the offshore oil and gas industry, the flex joints, also known
as FlexJoints®, are used to connect TLP (tension leg plat-
form) to the subsea foundation (Kumar, 2000). A typical flex-
ible joint consists of alternately laminated spherical rubber
and metal layers. For different application, the configuration
of the metal layers may be slightly different. The metal layers
of rocket solid booster flexible bearings may protrude outside
the rubber layers to resist to higher temperature (Lampani
et al., 2012). On the contrary, to protect the metal from sea-
water corrosion, the metal layers of FlexJoints® are wrapped
in the rubber layer (Gunderson et al., 1992).

Due to near incompressibility of rubber, the bearing load
capacity and stiffness will increase dramatically when the lat-
eral edge motion of the rubber is constrained. Meanwhile the
relatively low shear modulus may facilitate the rotation and
release the bending moment produced stress at the connec-
tion. Therefore, the stiffness is one of the most important fac-
tors in the flexible joint design. Typically, the vertical com-
pression stiffness is designed sufficiently high to bear com-
pression loading and the rotational stiffness needs to be rela-
tively low. The effect factors of both stiffnesses are necessary
to be analysed. Moreover the stiffness also plays a part in fail-
ure analysis (Stevenson and Harris, 1992). Thus an analytical
solution of the stiffness is necessary. The effective compres-
sion modulus is defined to formulate the vertical compression
stiffness (Tsai, 2012). Gent and Lindley (1959) proposed an
approximation to calculate the effective compression mod-
ulus of the bonded rubber. That method was called “mean
pressure” method. The solution are obtained by superposing
two stages. In the first stage, the elastomer is compressed be-
tween unbonded rigid plates; in the second stage, the shear
stresses are then applied to the bonded surface. This approx-
imation was used for rubber discs and infinite long rubber
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strips based on two kinematic assumptions and one stress as-
sumption:

a. planes parallel to the rigid surface will keep plane and
parallel during or after deformation;

b. lines normal to the rigid surface will be changed to
parabolic after deformation produced by the compres-
sion;

c. normal stress components in three directions are equal
to the mean pressure.

The rubber block in this approximation is assumed incom-
pressible, which will overestimate the compression stiffness
when the shape factor is high. Therefore, another method was
proposed with regard of bulk compressibility (Chalhoub and
Kelly, 1990, 1991; Kelly, 1993). The method applies to the
rubber layers of circular, infinite-strip and square shapes with
Poisson’ ratio between 0.49 and 0.5. Tsai and Pai proposed
a new method for the full range of Poisson’s ratio with two
kinematic assumptions to calculate the effective compression
moduli of the rubber layers with infinite-strip, circular and
square shapes (Tsai and Lee, 1998). Wang et al. (2017) used
the same method to calculate the effective compression mod-
ulus of the spherical bonded rubber layer.

The flexible joint undergoes pure shear deformation under
the torsional moment. Some studies have been taken on the
shear deformation of the rubber bearings with circular and
square shapes (He et al., 2012; Mishra and Igarashi, 2013).
Exact closed-form expressions are derived for the torsional
stiffness of the spherical rubber bush mountings (Horton and
Tupholme, 2005). Zhang et al. (2012) used nonlinear FEM
to simulate the SRB flexible joint structural behaviour and
conducted experiments to validate the analysis. But the stiff-
ness was not studied. Chen and Yang (2015) proposed an an-
alytical method to calculate the compression and torsional
stiffness of the helicopter rotor elastomeric bearings with in-
compressible assumption. An experiment was conducted to
validate the analytical solution. But the calculation error is
too big.

The linear vertical stiffness of the spherical bonded rubber
layer has been presented in the previous work (Wang et al.,
2017). A closed-form expression of the linear rotational stiff-
ness of the bonded rubber layer is proposed. The influence
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factors on the rotational stiffness are studied. FEM is used
to verify the analytical result and analyse the stiffness of the
flexible joint. The experiment is taken to validate the simula-
tion and analytical results.

The sectional view of a typical flexible joint is shown in
Fig. 1. It is spherical and consists of laminated rubber and
metal layers. The top plate is fixed and loads are applied to
the bottom plate. Generally, the spherical rubber and metal
layers are equivalent to be in series and have a coincident
centre. Thus the total linear stiffness, K, of the flexible joint
could be calculated by the expression below:
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(zh)”

where K; is the vertical compression stiffness (or rotational
stiffness) of the rubber layer i.

Some assumptions are given to calculate the linear vertical
compression stiffness and rotational stiffness of the flexible
joint:

a. the metal layer is rigid;

b. planes parallel to the metal layer will remain plane and
parallel during or after compression deformation;

c. lines normal to the metal layer will be changed to
parabolic after the deformation produced by the com-
pression loads, as shown in Fig. 2.

Figure 3 shows the cross section of a single spherical rubber
layer. According to Wang et al. (2017), the vertical stiffness
can be expressed as
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where G and v are respectively the initial shear modulus and
Poisson’s ratio of the rubber; R and ¢ are respectively the
inner radius and thickness of the rubber layer; & is the volume
modulus, & is the effective compression strain; P;(x) and
Q4(x) are respectively Legendre function of the 1st and 2nd
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Because the rubber layer is axisymmetric about z axis, the
rotational stiffness about any axes which pass through the
origin in xy plane will be the same. The linear rotational stiff-
ness about the x axis is calculated by semi-inverse method.
As shown in Fig. 4, the bottom is fixed and a torsional mo-
ment, M, is applied to the top surface. An angle, ¢, around
x axis is produced in the rubber layer. Only shear deforma-
tion occur when the thickness is much smaller than the in-
ner radius, so there is no deformation along r direction and
u(r) = 0. Any point in the rubber layer moves along a circle
of radius (y? 4 z2)?- centered on the x axis and the displace-
ment parallel to x axis is zero. In that case, for any point on
zy plane (6 = 90°), the displacement in the ¢ direction only
related to r and uy, = Vi(r), the displacement in the 6 direc-
tion is zero and ug = 0; for any point on the xz plane (6 = 0),
the displacement in the ¢ direction is zero and u, = 0; for
any point on the z axis (6 = ¢ = 0), the displacement in the
6 direction is V;(r); for any point on the x axis (# =0 and
@ = 90°), the displacement in the 6 direction is zero. To meet



the above conditions, the displacement components are as-
sumed as below:

u =0, (3
uy = V(r)sing,
ug = V(r)cosgpcost,

where V (r) is the function of r. Because Poisson’s ratio has
a low influence on the rotational stiffness, the rubber is as-
sumed as completely incompressible here. Thus the volume
modulus is infinite and &, + &y 499 = 0. According to the
displacement assumption, the strain in the rubber layer can
be calculated as
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According to the Hooke law, the stress is
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Thus the equilibrium equations of the rubber layer in spher-
ical coordinate system (Landau and Lifshitz, 1986) can be
expressed as
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According to the first equation in Eq. (6), oy is not related
tor. rﬁ + 2‘”/ 2Z needs to be 0 if the latter two equa-
tions in Eq. (6) Vahdate for any ¢ and 6. Then the latter two
equations become 00y,/360 =0 and 9oy, /d¢ = 0. So, the

general solution of the equations is

opp = C1,
V(r) = Car + C3/r?, @)

where C1, C,, C3 are constants.

To make the results more general, define a parameter
r = R+s,s €[0,t]. The boundary condition on the free sur-
faces of the rubber layer can be approximately expressed as

0pp =099 =0y = C1 =0 when ¢ = ¢1 and ¢ = ¢;. Substi-
tute Eq. (7) into Eq. (5) and yield
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The torsional moment M can be expressed by the stress inte-
gration as
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The boundary condition on the restrained surfaces of the rub-
ber layer can be expressed as

ug =uy, =0,s =0, (11)
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where D = (R + t)\/sinzesinzgo + cos2¢, which is the dis-
tance between a point on the top restrained surface and
X axis.

Substitute Egs. (3) and (7) into Eq. (12) and yield
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Thus the rotational stiffness K;; of the rubber layer i is
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Because the rubber thickness #; is far less than the rubber
layer radius R;, define p; = t;/R; and p; < 0. Then Eq. (14)
will be simplified as
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The vertical compression stiffness of the bonded rubber layer
has been analyzed in Wang et al. (2017), here the rotational
stiffness will be analyzed. According to Egs. (5) and (7), the
rubber layer bears pure shear stress in rotation and the rota-
tional stiffness is proportional to the shear modulus. Besides
the shear modulus, the rotational stiffness is also related to
the inner radius, the thickness and two edge angles. A bonded
rubber layer is modelled to analyze the rotational stiffness
by individual variables. Its inner radius, R, is 100 mm; the
thickness, 7, is 2 mm; the edge angles of free surfaces, ¢ and
¢, are, respectively, 20 and 70°. Because the rubber thick-
ness is far less than the radius, which is the displacement
assumption, the analytical result will be inaccurate when the
thickness-radius ratio is rather low.

Figure 5 shows the relation between the rotational stiffness
and the edge angles. When the outer edge angle is constant
the rotational stiffness decreases if the inner edge angle in-
creases and when the inner angle is constant it increases if
the outer edge angle increases. The trend is approximately
linear when edge angles are between 0.3 and 1.3 rad.

Figure 6a shows the relation between the rotational stiff-
ness and the thickness of the rubber layer. The curve is a hy-
perbola. When the thickness approaches to zero, the stiffness
approaches to infinite. As the thickness increases from 0 to
0.5 mm, the stiffness decreases sharply. Then the stiffness de-
creases gently. Figure 6b shows the relation between the ro-
tational stiffness and the inner radius of the rubber layer. It
can be seen the rotational stiffness increases as the inner ra-
dius increases. Comparing Fig. 6a and Fig. 6b, decreasing
the thickness of the rubber layer will be more effective to
increase the rotational stiffness when the overall size of the
rubber layer is constant.

A prototype of the flexible joint is manufactured, as shown
in Fig. 7. The flexible joint consists of four rubber layers.

Geometric parameters of rubber layers.

No. of Inner Thickness  Inner Outer
rubber radius (t;)ymm edge edge
layer (i) (R;)/mm angle angle
(e1)° (p2)/°
1 140 3 42.4 74.6
2 150 4 42.6 71.2
3 161 4 42.7 68.2
4 172 3 429 65.8

Three metal layers are evenly arranged and fully wrapped by
the rubber. The thickness of the inner and outer rubber on the
edge of the flexible joint is 3 mm. The thickness of the metal
layer is 7mm. The specific geometric parameters of every
rubber layers are shown in Table 1. A static nonlinear anal-
ysis is taken on the flexible joint in Abaqus/Standard. The
stress of the flexible joint under compression is axisymmet-
ric, so a 2-D FE model is enough for the simulation. A half
3-D joint model can be used to simulate the flexible joint un-
der torsional moment which is symmetric about xy plane.

The linear elastic material model is applied to the metal
layers. The property coefficients of the metal layers are
Young’s modulus E = 206 GPa and Poisson’s ratio v = 0.3.
The rubber is modeled by the hyperelastic material model.
The relation between stress and strain is derived from a strain
energy density function. The Mooney—Rivlin, Neo Hooke
and Yeoh constitutive models are used in this simulation.

The Nitrile rubber reinforced by carbon-black is used in
the flexible joint prototype. Figure 8a shows the test data
of the uniaxial tension test of the rubber. The test was per-
formed on dumbbell shaped specimens prepared according
to Type 1A GB/T 528-2009. The test was carried out on
the tensile testing machine. The interested strain range is 0—
200 % in the rubber of the flexible joint. The rubber material
is nearly incompressible, which means its bulk modulus is
far larger than shear modulus and Poisson’s ratio is close to
0.5. In the simulation of the rubber with tensile and shear de-
formation, Poisson’s ratio is always assumed to be 0.5 and
then bulk modulus goes to infinite. But that will overestimate
the compression capacity of the rubber component when it
is highly constrained and compressed. Thus the measuring
of the incompressible parameter D is necessary. It equals
to double reciprocal of the initial volume modulus. The vol-
umetric compression test was performed on circular cylin-
der specimens according to Crocker’s method (Crocker and
Duncan, 2001). Figure 8b shows the test data of the volu-
metric compression test of the rubber. An approximate lin-
ear relationship is observed between pressure and volume ra-
tio. Import the test data into Abaqus and the coefficients of
Mooney—Rivlin, Neo Hooke and Yeoh constitutive models
are obtained as shown in Table 2.



Coefficients of constitutive model.
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Detailed dimension of the flexible joint.

The increment is fixed as 0.1 in all steps in the simulation.
The nlgeom option is on. As shown in Fig. 9, the top plate
of the flexible joint is fixed. A reference point RP-1 is set at
the coincident center. The reference point is coupled with the
bottom plate of the flexible joint in the interaction module.
A displacement of 2.5 mm in y is set on the reference point
in the 2-D analysis. An angle of 0.15rad in z axis is set on
the reference in both steps in the 3-D analysis. Meanwhile
the symmetry boundary condition is also applied in the 3-D
model.

The meshes of models are shown in Fig. 9. For nearly
incompressible materials, hourglassing and volume locking
phenomena may occur during simulation. Thus the hybrid
and second-order elements are used to solve these prob-
lems. The 2-D axisymmetric element, CAXS8R, is used for
the metal part and CAX8RH is used for the rubber part in
2-D model. The 3-D solid element, C3D20R, is used for the

metal part and C3D20RH is used for the rubber part in 3-D
model.

To validate the theoretical and simulation results, a test de-
vice was designed to carry out the compression and rotation
test for the prototype, as shown in Fig. 10. The compression
and rotation loading was provided by a 2000 kN compres-
sion tester. Four 500 kN pressure sensors were used in paral-
lel to measure the loading. A laser displacement sensor and
an angle sensor were respectively used in compression and
rotation test. In the compression test, the flexible joint was
directly compressed by the pressure tester. The maximum
compression loading is set as 1000 kN. The loading speed is
about 40 kNmin~!. In the rotation test, the loading was trans-
mitted from the tester to the flexible joint by a turning stick.
There are two hinges on the stick, so the pressure loading
will be always perpendicular to the bottom plate of the flex-
ible joint. The maximum rotation angle was about 8°. The
loading speed was about 3° min~'. Both tests were repeated
5 times.

Figure 11a shows the results of the compression simulation
and test. It can be seen that the curve of the test data is nearly
linear when the compression displacement is smaller than
1.5 mm. Then the compression stiffness increases obviously.
The result of Neo Hooke model has the most obvious differ-
ence compared with the test result. The result of Mooney—
Rivlin model fits the test result very well in the nearly linear
district. The result of Yeoh model can indicate the variation
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Figure 9. FE mesh of the flexible joint models.

trend of the flexible joint, but its error in the nearly linear dis-
trict is bigger than the Mooney—Rivlin model and that error
increases rapidly as the compression displacement increases.
Thus the Mooney—Rivlin model is used to calculate the linear
vertical compression stiffness of the flexible joint. Accord-
ing to the Mooney—Rivlin material coefficient in Table.2, the
initial shear modulus is 0.706 MPa and the Poisson’s ratio
is 0.4985. The analytical, FEM and test results of the linear
vertical compression stiffness of the flexjoint are respectively
291, 307 and 308 kN mm™!. The error of the analytical result
is 5.5 % compared with the test result.

Figure 11b shows the results of the rotation simulation and
test. It can be seen that the test curve is almost linear when
the rotation angle is smaller than 2°. Then the rotational stiff-
ness of flexible joint decreases. The error of the Neo Hooke
model is smaller than the Mooney—Rivlin model in the non-
linear district, but they both can not reflect the decrease of
the rotational stiffness. The error of the Yeoh model is bigger
than the Mooney—Rivlin model in the nearly linear district.
But it fits the test result very well in the non-linear district.
The result of the Mooney—Rivlin has obvious difference with
the test result. But it fits the test result well in the nearly linear
district. Thus the Mooney—Rivlin model is used to calculate
the linear rotational stiffness of the flexible joint. The analyt-
ical, FEM and test results of the linear rotational stiffness of
the flexible joint are respectively 441, 468 and 457 Nm per
degree. The error of the analytical result is 3.5 % compared
with the test result.

After analyzing Fig. 11, it can be considered that the
Mooney—Rivlin model can fit the test result very well when

www.mech-sci.net/9/81/2018/
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the rubber deformation in the flexible joint is small. The
Yeoh model can reflect the deformation trend more accu-
rately, but the error in the nearly linear district is bigger than
the Mooney—Rivlin model. The analytical solutions are ac-
curate in the nearly linear district.

The typical unfilled rubber has Poisson’s ratio in the range
of 0.4995 to 0.499995 and filled rubber has Poisson’ ratio
in the range of 0.49 to 0.497 (Hibbitt et al., 2016). In order
to study the effect of Poisson’s ratio on the flexible joint un-
der compression or torsional moment, six FE models with
different Poisson’s ratios are created. These Poisson’s ra-
tios are 0.49, 0.495, 0.499, 0.4995, 0.4999 and 0.49995 re-
spectively. The corresponding incompressible parameters are
0.028, 0.014, 0.0028, 0.0014, 0.00028 and 0.00014 MPa~".

Figure 12a shows the vertical compression stiffnesses of
the flexible joints with different Poisson’s ratios vs. the dis-
placement. The analysis is taken in the nearly linear district,
which means the maximum displacement is 1.5 mm accord-
ing to Fig. 11a. The vertical compression stiffness increases
by 3.45 % when Poisson’s ratio is 0.49 and by 8.92 % when
Poisson’s ratio is 0.49995. It can be found that as Poisson’s
ratio increases, the compression stiffness increases more con-
siderably. Besides, as Poisson’s ratio increases from 0.4999
to 0.49995, the compression stiffness tends to be saturated.

Figure 12b shows the rotational stiffnesses of the flexible
joints with different Poisson’s ratios vs. the angle. The anal-

Mech. Sci., 9, 81-89, 2018
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ysis is taken in the nearly linear district, which means the
maximum angle is 2° according to Fig. 11b. It can be seen
that Poisson’s ratio can barely affect the rotational stiffness.
The rotational stiffness also tends to be saturated as Poisson’s
ratio increases from 0.4999 to 0.49995.

By comparing two figures in Fig. 12, it can be found that
Poisson’s ratio has a more considerable effect on the verti-
cal compression stiffness than the rotational stiffness. The
vertical stiffness increases by 6.2 times as Poisson’s ratio in-
creases from 0.49 to 0.49995. On the contrary, the rotational
stiffness only increases by 1.47 % as Poisson’s ratio increases
from 0.49 to 0.49995.

The analytical formulae of the linear rotational stiffness are
derived for the flexible joint. The rotational stiffness of rub-
ber layer is related to the inner radius, the thickness and two
edge angles. It will decrease when the inner edge angle in-
creases and increase when the outer edge angle increases.
The increase of the rubber thickness will reduce the rota-
tional stiffness. The increase of the inner radius will enhance
the rotational stiffness.

The FEM is used to verify the analytical method and ana-
lyze the stiffness of the flexible joint. The Mooney—Rivlin,

Neo Hooke and Yeoh constitutive models are used in the
simulation. The experiment is taken to obtain the material
coefficient and validate the analytical and simulation results.
The Yeoh model can reflect the deformation trend more ac-
curately, but the error in the nearly linear district is bigger
than the Mooney—Rivlin model. The Mooney—Rivlin model
can fit the test result very well when the rubber deformation
in the flexible joint is small. The error of two analytical so-
lutions are respectively 5.5 and 3.5 %. That’s usable in the
flexible joint design. The increase of Poisson’s ratio of the
rubber layers will enhance the vertical compression stiffness
but barely have effect on the rotational stiffness. The vertical
stiffness increases by 6.2 times and the rotational stiffness
only increases by 1.47 % as Poisson’s ratio increases from
0.49 to 0.49995.

The data generated during this study are avail-
able from the corresponding author on reasonable request.
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