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Abstract. Analytical and numerical analyses have been performed to study the problem of magneto-
hydrodynamic (MHD) flow and heat transfer of an upper-convected Maxwell fluid in a parallel plate channel.
The governing equations of continuity, momentum and energy are reduced to two ordinary differential equation
forms by introducing a similarity transformation. The Homotopy Analysis Method (HAM), Homotopy Pertur-
bation Method (HPM) and fourth-order Runge-Kutta numerical method (NUM) are used to solve this problem.
Also, velocity and temperature fields have been computed and shown graphically for various values of the phys-
ical parameters. The objectives of the present work are to investigate the effect of the Deborah numbers (De),
Hartman electric number (Ha), Reynolds number (Rew) and Prandtl number (Pr) on the velocity and temperature
fields. As an important outcome, it is observed that increasing the Hartman number leads to a reduction in the
velocity values while increasing the Deborah number has negligible impact on the velocity increment.

1 Introduction

Non-Newtonian fluid flow is a fast-growing field of interest
due to its various applications in different fields of engineer-
ing (Rivlin and Ericksen, 1955). The problem with this type
of fluid is that there is not a single constitutive equation due
to various rheological parameters appearing in such fluids.
Therefore, different models have been developed in the forms
of (i) differential type, (ii) rate type and (iii) integral type
(Hayat and Awais, 2011; Hayat et al., 2012). The dynamics
of materials with the properties of elasticity and viscosity is
a fundamental topic in fluid dynamics. This kind of materials
is referred to as Maxwell fluid (Mukhopadhyay, 2012; Adeg-
bie et al., 2015). This model categorized as a subclass of rate
type fluids can predict the stress relaxation. The Upper Con-

vected Maxwell (UCM) model is the generalization of the
Maxwell material for the case of large deformation using the
upper convected time derivative.

Several researchers have investigated the application of
MHD flow in different industrial applications (Recebli et
al., 2013, 2015; Selimli et al., 2015; Hayat et al., 2017).
Reviewing the literature indicates the importance of MHD
flow through parallel channels. Hayat et al. (2006) was
among the first who studied the MHD flow of an upper
convected Maxwell (UCM) fluid over a porous stretching
sheet using homotopy analysis method (HAM). Raftari and
Yildirim (2010) proposed a novel analytical model (homo-
topy perturbation method (HPM) to analyze the same prob-
lem investigated by (Hayat et al., 2006). Switching from
the non-rotating flow to rotating one was made by Sajid et
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al. (2011). They advanced the knowledge in this field by
considering the effect of rotation parameter on the overall
performance of the UCM. They concluded that the rotation
parameter can help in controlling the thickness of bound-
ary layer. Compared to the analytical techniques used by
(Hayat et al., 2006; Raftari and Yildirim, 2010), Abel et
al. (2012) proposed a numerical scheme, fourth order Runge–
Kutta method, to examine the MHD flow for UCM Maxwell
over a stretching sheet. These studies were focused on the no-
slip boundary condition imposed along the flat plate. There-
fore, Abbasi and Rahimipetroudi (2013) aimed at improving
the models in this field by considering the slip boundary con-
dition of an UCM Maxwell fluid via HPM. More complexity
was added to the available models by Nadeem et al. (2014).
They looked at the performance of the MHD boundary layer
flow of a Maxwell fluid with nanoparticles. Afify and Elgaz-
ery (2016) extended the problem by Nadeem et al. (2014)
by adding the chemical reaction into their model. In a more
recent research, effects of thermal radiation (Hayat et al.,
2011b) and mass transfer (Hayat et al., 2011a) were stud-
ied on the MHD flow of the UCM fluid with porosity in the
channel walls.

In recent decades, many attempts have been made to de-
velop analytical methods for solving such nonlinear equa-
tions. Analytical techniques such as HPM (Abbasi and
Rahimipetroudi, 2013; He, 2000; Abbasi et al., 2014) and
HAM (Hayat et al., 2006; Abbasi et al., 2014, 2016; Turky-
ilmazoglu, 2011) have been successfully applied to solve
many types of nonlinear problems. The aim of this study is to
investigate the effect of physical parameters on a steady flow
of an upper-convected Maxwell fluid in a channel in the pres-
ence of an external magnetic field. In addition, the conver-
gence of the series solution is also explicitly discussed. The
obtained results from the analytical solution have been com-
pared with the numerical data and the comparison reveals
the capability, effectiveness and convenience of the Homo-
topy Analysis Method (HAM) and the Homotopy Perturba-
tion Method (HPM) methods in solving the stated problem.
Finally, the effect of dominating parameters on the MHD
flow and heat transfer of UCM in a parallel plate is discussed.

2 Problem statement and mathematical formulation

Figure 1 illustrates the schematic diagram of the magneto-
hydrodynamic (MHD) flow of an incompressible UCM fluid
in a parallel plate channel. As seen, the x∗-axis is taken along
the centerline of the channel, parallel to the channel surfaces,
and the y∗-axis is transverse to this. The inter-plate region
contains an incompressible two-dimensional steady, laminar
UCM viscoelastic fluid flow. The flow is symmetric in X-
axis direction. The steady state flow occurs in the channel
with the fluid suction and injection taking place at both plates
with velocityVw. The fluid injection and suction take place
through the walls where Vw > 0 stands for suction and Vw <

Figure 1. Schematic diagram and the coordinate system for the
considered flow.

0 stands for injection. The walls of the channel are at y∗ =H
and y∗ =−H (where 2H is the channel height). Here u∗ and
v∗ are the velocities components in the x∗ and y∗ directions,
respectively.

A uniform magnetic field, B0, is imposed along the
y∗-axis. The constitutive equation for a Maxwell fluid is (Bég
and Makinde, 2010):

τ + λ1 τ̂ = µ0 γ (1)

where τ , λ1, µ0 and γ are the extra stress tensor, relaxation
time, low-shear viscosity and the rate-of-strain tensor, re-
spectively. The upper convected time derivative of the stress
tensor τ̂ is formulated by:

τ̂ =
∂τ

∂t
+ v · ∇τ − (∇v)T · τ − τ · ∇v (2)

where t , v, (·)T and ∇v denote time, velocity vector, trans-
pose of tensor and fluid velocity gradient tensor, respectively.
Governing equations take the following form for the UCM
fluid by implementing the shear stress strain tensor from
Eqs. (1) and (2) (Wehgal and Ashraf, 2012; Hayat and Wang,
2003):

∂u∗

∂x∗
+
∂ν∗

∂y∗
= 0 (3)

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
+ λ

[
u∗2

∂2u∗

∂x∗2
+ v∗2

∂2u∗

∂y∗2

+2u∗ v∗
∂2u∗

∂x∗∂y∗

]
= υ

∂2u∗

∂y∗2
+ J ×B, (4)

∇ ·B = 0, (5)
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∇ ×B = µm J, (6)
∇ ×E = 0, (7)
J = σe (E+V ×B) (8)

where ρ, ∇, ϑ , p, J , B, b, µm, E, σe are fluid density, nabla
operator, kinematic viscosity, pressure, current density, total
magnetic field (so that B = B0+ b, b is the induced mag-
netic field), magnetic permeability, electric field, electrical
conductivity of the fluid, respectively. The uniform constant
magnetic field B is imposed along the y∗-direction. Because
the magnetic Reynolds number is considered to be small
(Shereliff, 1965), the induced magnetic field b is neglected.
It is assumed that the electric field is negligible due to the po-
larization of charges (i.e., Hall effect). Under these assump-
tions, the MHD body force occurring in Eq. (2) takes the
following form (Rossow, 1958; Ganji et al., 2014):

J ×B = σe [(V ×B)×B0]=−σB2
0u
∗ (9)

Equations (3) and (4) are rewritten for an electrically con-
ducting incompressible fluid in the presence of a uniform
magnetic field as below:

∂u∗

∂x∗
+
∂ν∗

∂y∗
= 0 (10)

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
+ λ

[
u∗2

∂2u∗

∂x∗2
+ v∗2

∂2u∗

∂y∗2

+2u∗ v∗
∂2u∗

∂x∗∂y∗

]
= υ

∂2u∗

∂y∗2
−
σB2

0
ρ
u∗, (11)

In order to complete the formulation of the problem, bound-
ary conditions need to be specified. The appropriate no-
slip boundary conditions are identical to (Bég and Makinde,
2010) and owing to symmetry take the form:

y∗ = 0 :
∂u∗

∂y∗
= 0, (12)

y∗ =H : u∗ = 0, v∗ = Vw. (13)

The following dimensionless variables are introduced:

x =
x∗

H
; y =

y∗

H
; u∗ =−Vw x f

′ (y) (14)

Using Eqs. (10) and (14) yields:

v∗ = Vwf (y) (15)

Substituting the dimensionless parameters into the mo-
mentum equation leads to:

f ′′′−M2f ′+Rew

(
f ′

2
− f f ′′

)
+De

(
2f f ′ f ′′− f 2 f ′′′

)
= 0 (16)

Figure 2. The }1 – validity for M = 0, De= 0.4, Rew= 5 and
Pr= 0.9 given by the 4, 5, 6 and 7th-order solution.

The boundary conditions (12) and (13) in the dimension-
less form are given by:

y = 0 : f ′′ = 0; f = 0
y = 1 : f ′ = 0; f = 1 (17)

Although the proposed differential Eq. (16) is of the third or-
der, four boundary conditions are given in Eq. (17). In order
to satisfy all the boundary conditions, the third order differ-
ential Eq. (16) is differentiated as follows:

f ′′′′−M2f ′′+Rew
(
f ′ f ′′− f f ′′′

)
+De

(
2f ′2 f ′′+ 2f f ′′2 − f 2 f ′′′′

)
= 0 (18)

where Rew, De and M are the Reynolds number, Deborah
number and Hartman number, respectively, which are defined
as:

Rew =
VwH

υ
, De=

λV 2
w
υ
, M =

√
σ B2

0H

µ
(19)

Heat transfer problem

By neglecting viscous and ohmic dissipation, the governing
equation of energy obtained is as follows:

u∗
∂T

∂x∗
+ v∗

∂T

∂y∗
=

k

ρ cp

(
∂2T

∂x∗2
+
∂2T

∂y∗2

)
, (20)

where T (x,y) is the temperature at any point and k is the
thermal conductivity. Similar to the case of channel flow, for
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Figure 3. The }1 – validity for M = 0.1, De= 0.1, Rew= 5 and
Pr= 0.9 given by the 4, 5, 6 and 7th-order solution.

Figure 4. The }2 – validity for M = 0, De= 0.3, Rew= 5 and
Pr= 4 given by the 4, 5, 6 and 7th-order solution.

the flow of most fluids under practically significant condi-
tions, the following relation holds:

∂2T

∂x∗2
�

∂2T

∂y∗2
, (21)

The first term on the right hand side of Eq. (20) can be
ignored compared to the second and the energy equation can

be approximated as:

u∗
∂T

∂x∗
+ v∗

∂T

∂y∗
=

k

ρ cp

(
∂2T

∂y∗2

)
, (22)

The flow is assumed to be symmetric, so the appropriate
boundary conditions for the above equation are

y∗ = 0→
∂T

∂y∗
= 0 (23)

y∗ =H → T = Tw (24)

The non-dimensional variables have been defined as:

y =
y∗

H
; θ =

T

Tw
(25)

Inserting the dimensionless parameters described in
Eqs. (14) and (25) into the Eqs. (22)–(24) results in:

θ ′′−Pr f θ = 0, (26)
y = 1→ θ (y)= 1 (27)
y = 0→ θ ′(y)= 0 (28)

where Pr = µcp
k

represents the Prandtl number.

3 Analytical methods

3.1 Implementation of the Homotopy Perturbation
Method

In this section, we employ HPM to solve Eq. (2) subject to
the boundary conditions Eq. (3). One can construct the Ho-
motopy function of Eq. (2) as described in (He, 2000):

H (f,p)= (1−P )
[
f ′′′′ (η)− g0 (y)

]
+p

{
f ′′′′−M2f ′′

+Rew
(
f ′ f ′′− f f ′′′

)
De
(

2f ′2 f ′′+ 2f f ′′2 − f 2 f ′′′′
)}
= 0, (29)

H (θ,p)= (1−P )
[
θ ′′ (y)− g0 (y)

]
+p

[
θ ′′−Prf θ

]
= 0, (30)

where p ∈ [0 , 1] is an embedded parameter. For p = 0 and
p = 1 one has:

f (y,0) = f0 (y) , f (y,1) = f (y)
θ (y , 0) = θ0 (y) , θ (y,1) = θ (y) (31)

Note that when p increases from 0 to 1, f (y , p), θ (y,p)
varies from f0 (y), θ0 (y) to f (y), θ (y).

f (y)= f0 (y)+pf1 (y)+p2 f2 (y)+ . . .

=

n∑
i=0

pi fi (y) ,g0 = 0

θ (y)= θ0 (y)+pθ1 (η)+p2 θ2 (y)+ . . .
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Figure 5. Dimensionless velocities predicted by HAM, HPM and
numerical method (NUM) for different Rew number and De at Pr=
1, }=−1.5.

=

n∑
i=0

pi θi (y) ,g0 = 0 (32)

By substitution of Eq. (32) into the Eqs. (18) and (26),
rearranging based on powers of p-terms and solving these
equations result in the following terms:

f0 (y)= 0.5y3
− 1.5 y2, (33)

f1 (y)= 0.007440476190Dey9

− 0.001785714286(36. + 2.0Rew)y7

Figure 6. Effects of De Deborah numbers on the velocity contours
for M = 1, Pr= 1, Rew = 3.

Figure 7. Effects of M Hartman numbers on the velocity contours
for De= 0.2, Pr= 1, Rew = 3.

− 0.0125000
(

2.0M2
− 9.

)
y5

+ 0.1666666667
(

0.300M2
− 0.3714285714

+0.06428571429Rew)y3

+

(
−0.025M2

+ 0.00625 − 0.007142857143Rew

)
y (34)

f2 (y)=−0.000040881De2x15
− 1.16550116610−25(

−3.01339281021De2
− 2.2321421020DeRew

)
x13

− 2.52525210−25
(
−3.867851021DeM2

− 7.90711021De2
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Figure 8. Dimensionless temperature predicted by analytical and
numerical method (NUM) for different De Deborah number atM =
1, Rew = 3, Pr= 1, }=−1.5.

−3.1821421021DeRew− 4.285711019Re2
w

)
x11

−6.61375661410−25

 1.03501022DeM2
+ 2.251020M2Rew

+2.51831022De2
+ 1.1181022DeRew

+4.501020Re2
w

x9

−2.38095230110−24

 −4.7251021DeM2
+ 4.51020M2Rew

−3.32671021De2
− 4.2892841021DeRew

−6.4285714301019Re2
+ 2.51020M4

x7

− 1.6666710−23
(
−1.501020M4

+ 1.085421021DeM2

−3.21425771019M2Rew− 8.9198791020De2
+

)
x5

0.166666666

 −0.019285M4
+ 0.14962DeM2

+ 0.0164M2Rew
+0.007946De2

+ 0.0104DeRew
+0.0040630Re2

w

x3

+

(
0.001309M4

− 0.0122 DeM2

−0.002053M2 Rew− 0.009762De2

−0.001906DeRe− 0.00054Re2
w

)
x (35)

...

θ0 (y)= 1 (36)

θ1 (y)= −0.025Pr y5
+ 0.25 Pr y3

− 0.225 Pr (37)

θ2 (y)= 0.0000676

Figure 9. Dimensionless temperature predicted by analytical and
numerical method (NUM) for different M Hartman number at
De= 0.2, Rew = 2, Pr= 1, }=−1.

PrDey11
+ 0.0001388Pr2y10

− 0.00089283 PrDey9

− 0.000049603Prx9Rew

− 0.00285714y8Pr2
− 0.000595552Prx7M2

+ 0.002645789PrDey7
− 0.0030959651 PrDey5

+ 0.01250000x6Pr2
+ 0.00250000Prx5M2

+ 0.00562544000y5Pr2
+ 0.0010467104 PrDey3

0.000535Pry5Rew− 0.004167PrM2y3

− 0.05625Pr2y3
+ 0.000200507 PrDe

+ 0.0408878 Pr2

− 0.001190470 PrRewy
3
+ 0.0022619 PrM2

+ 0.000703 PrRew (38)
...

The solution of this equation, when p→ 1, is as follows:

f (y)=
9∑
i=0

Limp→1 p
i fi (y) (39)

θ (y)=
9∑
i=0

Limp→1 p
i θi (y) (40)

Mech. Sci., 9, 61–70, 2018 www.mech-sci.net/9/61/2018/



A. Rahbari et al.: Heat transfer and MHD flow of non-newtonian Maxwell fluid 67

Figure 10. Dimensionless temperature predicted by analytical and
numerical method (NUM) for different Pr Prandtl number at M =
1, Rew = 3, De= 0.3, }=−1.

3.2 Implementation of the Homotopy Analysis Method

For HAM solutions, the auxiliary linear operators are chosen
in the following form:

L(f )= f ′′′′, (41)
L(θ )= θ ′′, (42)

The initially guessed function is obtained by solving the
following equations:

L (
1
6
c1 y

3
+

1
2
c2 y

2
+ c3 y+ c4)= 0, (43)

L (c5 y+ c6)= 0, (44)

with boundary Eqs. (17), (27) and (28) as:

f0 (y)=−
1
2
y3
+

3
2
y, (45)

θ0 (y)= 1, (46)

Let P ∈ [0, 1] denote the embedded parameter and }
indicate non–zero auxiliary parameters. Consequently the
following equations are constructed.

Zeroth – order deformation equations

(1−P )L
[
F (y;p)− f0(y)

]
= p}H (y)N

[
F (y;p)

]
(47)

(1−P )L
[
2(y;p)− θ0(y)

]
= p}H (y)N

[
2(y;p)

]
(48)

F (0;p)= 1; F ′′(0;p)= 0,
F (1;p)= 1, F ′(1;p)= 0 (49)

θ (1;p)= 1; θ ′(0;p)= 0 (50)

N [F (y;p)] =
d4F (y;p)

dy4

+ Re
[

dF (y;p)
dy

d2F (y;p)
dy2

− F (y;p)
d3F (y;p)

dy3

]
+De

[
2
(

dF (y;p)
dy

)2 d2F (y;p)
dy2

−2F (y;p)
(

d2F (y;p)
dy2

)2

−F (y;p)2 d4F (y;p)
dy4

]

+ (M2)
d2F (y;p)

dy2 (51)

N [θ (y;p)] =
d2θ (y;p)

dy2 +PrF (y;p)
dθ (y;p)

dy
(52)

For p = 0 and p = 1, one has:

F (y;0)= f0(y) F (y;1)= f (y) (53)
θ (y;0)= θ0(y) θ (y;1)= θ (y) (54)

As p increases from 0 to 1 then F (y;p), θ (y;p) varies
from f0(y), θ0(y) to f (y), θ (y). By Taylor’s theorem,
F (y;p), θ (y;p) can be expanded in a power series of p as
follows:

F (y;p)= f0(y)+
∞∑
m−1

fm(y)pm

fm(y)=
1
m

∂m(F (y;p))
∂pm

∣∣∣∣
p=0

(55)

θ (y;p)= θ0(y)+
∞∑
m−1

θm(y)pm

θm(y)=
1
m

∂m(θ (y;p))
∂pm

∣∣∣∣
p=0

(56)

there } is chosen in such a way that this series is conver-
gent at p = 1, therefore through Eqs. (55) and (56), it can be
concluded that:

f (y)= f0(y)+
∞∑
m−1

fm(y), (57)

θ (y)= θ0(y)+
∞∑
m−1

θm(y), (58)
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mth – order deformation equations

The mth-order deformation equations are written as:

L
[
fm(y)− χm fm−1(y)

]
= } H (y) Rfm(y) (59)

L
[
θm(y)− χm θm−1(y)

]
= } H (y) Rθm(y) (60)

Fm(0;p)= 0; F ′′m(0;p)= 0,
Fm(1;p)= 0, F ′m(1;p)= 0 (61)

θm(1;p)= 0; θ ′m(0;p)= 0 (62)

R
f
m (y)= f ′′′′m−1+

m−1∑
k=0

[
Re
(
f ′m−1−k f

′′

k − fm−1−k f
′′′

k

)
+Def ′m−1−k

(
k∑
l=0

(
2 f ′k−l f

′′

l

))

−Defm−1−k

(
k∑
l=0

(
2 f ′′k−l f

′′

l + fk−l f
′′′′

l

))]
+ (M2)f ′′m−1 (63)

Rθm (y)= θ ′′m−1−

m−1∑
k=0

[
Pr
(
fm−1−k θ

′

k

)]
(64)

χm =

{
0, m≤ 1
1, m > 1 (65)

For simplicity, it is assumed that:

H (y)= 1 (66)

For different values of m, the solution is obtained by maple
analytic solution device. The first deformation is presented
as:

f1 (y)=−
5

672
}1Dey9

−
3
2

}1

(
−

1
420

Rew−
3

70
De
)
y7

−
3
2

}1

(
3
40
B −

1
60
M2

)
y5

+

(
13
210

}1De−
3

280
}1Rew−

1
20

}1M
2
)
y3

+

(
−

1
160

}1De+
1

140
}1Rew+

1
40
h1M

2
)
y (67)

θ1 (y)=
1
40

}2Pry5
−

1
4

}2Pry3
+

9
40

}2Pr (68)

The solutions of f (y),θ (y) are too long and will be shown
in obtained results.

3.2.1 Convergence of the HAM solution

As pointed out by Liao (2012), the convergence region and
rate of solution series can be adjusted and controlled by
means of the auxiliary parameter }. In order to check the
convergence of the present solution, the so-called }1-curve
of f ′′(1) is depicted in Figs. 2 and 3 and the }2-curve of
θ ′(1) is shown in Fig. 4.

The solutions converge for } values which correspond to
the horizontal line segment in the } curve. In order to inves-
tigate the range of admissible values of the auxiliary param-
eter }, the }-curve of f ′′(1) is illustrated for various quan-
tities of De, M and Rew in Fig. 3. Similarly, the }2-curve
of θ ′(1) is shown in Fig. 4. As seen clearly in Figs. 2–4, it
can be concluded that }1 = }2 =−1 are suitable values for
different quantities within 0.1< De< 0.6, 0<M < 5 and
−5< Rew < 5(≤ T ≤ 6).

4 Numerical method

The above system of non-linear ordinary differential
Eqs. (17) and (23) along with the boundary conditions (16),
(24) and (25) are solved numerically using the algebra pack-
age Maple 16.0. The package uses a boundary value (B-V)
problem procedure. The algorithm can be used to find mod-
erate accurate solutions for ODE boundary and initial value
problems, both with a global error bound. The method uses
either Richardson extrapolation or deferred corrections with
a base method of either the trapezoid or midpoint method.
The trapezoid method is generally efficient for typical prob-
lems, while the midpoint method is a powerful method
for solving harmless end-point singularities that the trape-
zoid method cannot. The midpoint method, also known as
the fourth-order Runge–Kutta–Fehlberg method, improves
the Euler method by adding a midpoint in the step which
increases the accuracy by one order. Thus, the midpoint
method is used as a suitable numerical technique (Hatami
et al., 2013; Aziz, 2006).

5 Results and discussion

In the present study HAM and HPM methods are applied
to obtain an explicit analytic solution of the MHD flow of
an UCM fluid in a channel (Fig. 1). Comparison between
the results obtained by the numerical method (Runge-Kutta-
Fehlberg technique), Homotopy Perturbation and Homotopy
Analysis Methods for different values of active parameters
is shown in Fig. 5. The results are proved to be precise and
accurate in solving a wide range of mathematical and en-
gineering problems especially Fluid mechanics cases. This
investigation is completed by depicting the effects of some
important parameters to determine how these parameters af-
fect the fluid flow and heat transfer. From a physical point
of view, Figs. 6–10 are presented in order to highlight the
effects of the Deborah number De, Hartman number M and
Prandtl number Pr on the velocity and temperature profiles.

Figure 6 shows the effect of Deborah number on the ve-
locity distribution for M = 1, Pr= 1, Rew = 3. This number
may be interpreted as the ratio of the relaxation time, and the
characteristic time of an experiment or a computer simulation
probing the response of the material (Reiner, 1964). Higher
De values imply a strongly elastic behavior. The Newtonian
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fluids possess no relaxation time (i.e., De= 0). An increase
in the elastic parameter (i.e. as De rises from 0 to 0.6) re-
sults in a decrease of the velocity components at any given
point (Hayat et al., 2009; Mostafa and Mahmoud, 2011). Fig-
ure 7 shows the effect of a Hartman number M on the veloc-
ity components for De= 0.2, Pr= 1, Rew = 3. An increase
of the magnetic parameter leads to a decrease in the veloc-
ity components and contours at a given point. This is due to
the fact that the applied transverse magnetic field produces
damping in form of a Lorentz force thereby decreasing the
magnitude of the velocity. The drop in velocity as a conse-
quence of an increase in the strength of the magnetic field is
observed.

Figures 8 show the variation of temperature for different
values of the viscoelastic parameter Deborah number De.
From Fig. 8, it is found that the temperature field increases
with an increase of the Deborah number De. It is remarkable
to note that, since the Deborah number has depended on the
relaxation time, the larger values of Deborah number imply
to higher relaxation time. It is well known fact that the larger
relaxation time fluids leads to a higher temperature (Khan et
al., 2016).

Also, the effects of Hartman parameter M on the temper-
ature profile have been illustrated in Fig. 9. It can be inferred
from this figure that the temperature increases with an in-
crease in the magnetic field. Application of a magnetic field
normal to an electrically conducting fluid has the tendency
to produce a resistive type of body force called the Lorentz
force which opposes the fluid motion, causing a flow retarda-
tion effect. This causes the fluid velocity to decrease. How-
ever, this decrease in flow speed is accompanied by corre-
sponding increases in the fluid thermal state level (Mostafa
and Mahmoud, 2011). This can be attributed to the fact that,
u is small and an increase in Ha increases the Joule dissipa-
tion which is proportional to Ha and therefore, the tempera-
ture increases.

Figure 10 shows the effect of Prandtl number on the di-
mensionless temperature profile. As observed, an increase in
the Prandtl number leads to a decrease in the temperature.
This is in agreement with the physical fact that the thermal
boundary layer thickness decreases with increasing Pr.

6 Conclusions

In this investigation, the analytical approaches called Ho-
motopy Analysis Method (HAM), Homotopy Perturbation
Method (HPM) have been successfully applied to find the
most accurate analytical solution for the velocity and tem-
perature distributions of MHD flow of an upper-convected
Maxwell fluid in a channel. Furthermore, the obtained solu-
tions by the proposed method have been compared with the
direct numerical solutions using the Runge-Kutta-Fehlberg
technique. Effects of different physical parameters, such as,
De Deborah number, M Hartman number and Pr Prandtl

number on the velocity and temperature profiles have been
investigated. The main conclusions are as follows:

– The comparison shows that the HAM and HPM solu-
tions are highly accurate and provide rapid achievement
in computing the flow characteristics. According to the
previous publications this method is a powerful tech-
nique for finding analytical solutions in science and en-
gineering problems.

– The results show that an increase in the M Hartman
number is associated with a reduction in the veloc-
ity profile. Moreover, it is worthwhile to mention that,
the velocity patterns are marginally influenced by the
changes in De Deborah number parameter.

– Also it is observed that an increase of Pr Prandtl number
results in decreasing the thermal boundary layer thick-
ness and a more uniform temperature distribution across
the boundary layer. The reason is that smaller values of
Pr are equivalent to increasing the thermal conductiv-
ities, and therefore heat is able to diffuse away more
rapidly than for higher values of Pr. This means that the
heat loss increases for larger Pr as the boundary layer
gets thinner.
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