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Abstract. Notch flexure hinges are commonly used in compliant mechanisms for precision engineering appli-
cations and yet important rotational properties of a hinge like the bending stiffness, maximum angular deflection
and rotational precision are difficult to predict accurately and simultaneously. There exist some closed-form
equations and a few design tool approaches for calculating flexure hinges with particular geometries, but apart
from that no comprehensive calculation program for the contour-specific analysis is known to the authors. Devel-
oped in MATLAB, this paper presents a novel computational design tool using a non-linear analytical approach
for large deflections of rod-like structures to calculate the elasto-kinematic flexure hinge properties by numeri-
cally solving a system of differential equations. Building on previous investigations, four certain hinge contours
are implemented, the circular, the corner-filleted, the elliptical, and the power function-based contour with dif-
ferent exponents. In addition to the theoretical approach and the implementation it is exemplarily shown, that
finite elements method (FEM) results correlate well with the analytical design tool results. For a given deflection
angle of 10◦ and a corner-filleted contour as an example, the deviations of the bending stiffness are between
0.1 % and 9.4 % for typical parameter values. The presented design tool can be beneficial for the accelerated and
systematic synthesis of compliant mechanisms with optimized flexure hinges.

1 Introduction

Notch flexure hinges experience a growing application in
industry and research. Due to their advantages of high re-
producibility, high resolution, and clearance-free or friction-
less motion they are widely used in compliant mechanisms
(Howell et al., 2013; Zentner, 2014) for precision engineer-
ing, micromechanics or measurement technology tasks. For
these applications flexure hinges with specific notch geome-
tries are the most common form of compliant segments used
to realize a rotation (Lobontiu, 2003). According to bend-
ing of the materially coherent joint, the angular deflection is
limited because of the resulting maximum strain. Further, a
small shift of the axis of rotation results which affects the
motion behavior as well as guidance accuracy of a compliant
mechanism over its rigid-body counterpart (Venanzi et al.,
2005).

Nevertheless, predicting the motion of an individual
single-axis flexure hinge is a non-trivial task due to geometric
non-linearities caused by large deflections, leading to a sys-
tem of differential equations that need numeric solving ap-
proaches for accurately determining the hinge performance
properties. When looking for an optimal flexure hinge design
for a specific mechanism motion task predominantly time-
consuming simulations and iterative procedures become a
necessity and only a few detailed guidelines are known to the
authors. In literature closed-form equations exist for the pre-
diction of the bending stiffness and deflection in most cases
(e.g. Paros and Weisbord, 1965; Smith et al., 1987; Tseytlin,
2002; Wu and Zhou, 2002; Lobontiu, 2003; Schotborgh
et al., 2005). Rarely, simple and contour-independent de-
sign equations for calculating various elasto-kinematic hinge
properties are suggested (e.g. Linß et al., 2017a, b). Other-
wise, when optimal hinge contours are looked for, design
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graphs may be used to figure out an appropriate order for
polynomial flexure hinges (Linß, 2015).

To date specific tools for the analysis of flexure hinges are
sparsely found. One author for example provides scripts that
can be downloaded and used within MATHCAD to calcu-
late flexure hinges and compliant mechanisms using simpli-
fied design-equations in a limited parameter range (Janssen,
2018). Other software-based applications for the analysis of
circular notch flexure hinges are coming with a simple graph-
ical user interface (Vink, 2018; van Beek, 2018). Addition-
ally, inaccessible applications which are developed for pub-
lished research are reported briefly (Ivanov, 2016). Most of
these applications are based on the implementation of em-
pirical design equations derived from analytical considera-
tions or FEM analysis. When analyzing flexure hinges us-
ing these tools, the analyzing options are mostly very re-
stricted. Most of these tools apply compromised design equa-
tions only within a small parameter range. Apart from that,
more complex tools for the analysis (Megaro et al., 2017)
and synthesis (Turkkan and Su, 2016; Culpepper and Kim,
2004) of compliant mechanisms with distributed compliance
are state of the art. On the contrary they do neither offer the
possibility to regard several notch flexure hinges nor calcu-
late the rotational precision or axis shift. Moreover, it has
to be mentioned that some of these software applications re-
quire licenses for commercial software like MATHCAD or
MATLAB, but others are available for free. With this paper
the authors try to fill the gap regarding a comprehensive soft-
ware application for the accurate and non-linear analysis of
various notch flexure hinges with the most important con-
tours and broad evaluation criteria which may be advanta-
geous especially for precision engineering to enable an intu-
itive and quick design process.

According to a plane rotation caused by bending due to
a moment or transverse force load, this paper presents a
novel design tool for the contour-specific quasi-static anal-
ysis of notch flexure hinges. The tool offers the calculation
of parameters like bending stiffness, rotational axis shift,
maximum elastic strain and outer fiber strain distribution,
maximum angular deflection, and deformation of the neu-
tral axis for extensive geometric specifications – computable
for a specified load or rotational angle. The calculations will
be possible by numerically solving a system of differen-
tial equations for large deflections of thin rod-like structures
within a few seconds. Further, the design tool provides a plot
of the hinge for the given geometry.

The following sections are organized as follows. In Sect. 2
the investigated types and regarded contours of flexure
hinges are presented and characterized. In Sect. 3 the analyt-
ical approach for the characterization of flexure hinges with
the theory of large deflections of rod-like structures based on
non-linear modeling is described. Moreover, specific param-
eters to calculate the motion and strain are investigated, too.
In Sect. 4 the development and implementation of the design
tool are outlined. Also, the algorithm for the analyzing proce-

dure is illustrated. In Sect. 5 an FEM-based characterization
is done for four different hinge contours and results are com-
pared to the design tool-based solution. Finally, conclusions
are drawn in Sect. 6.

2 Design and modeling of notch flexure hinges

In the past numerous designs of flexure hinges with no limit
to the geometric shape have been developed. It can mainly
be differentiated between cut-out geometries and more com-
plex compositions of the compliant segment. An example for
a complex geometry would be the proposed butterfly hinge
(e.g. Henein et al., 2003; Pei and Yu, 2011) or a topology
optimization-based contour (Zhu et al., 2014). However, in
this paper the focus is on notch flexure hinges with distinct
contour shapes. For this purpose, many notch geometries
are being outlined in literature. By far the most commonly
used and easy to manufacture circular flexure hinge contour
(e.g. Paros and Weisbord, 1965; Wu and Zhou, 2002) is well
known for its large bending stiffness and high precision but
also for high maximum strain values. On the contrary, a well
distributed strain can be achieved with the corner-filleted
contour (e.g. Lobontiu, 2003; Meng et al., 2013). As a com-
promise between high precision and low strain the elliptical
contour has been applied (e.g. Smith et al., 1997; Chen et
al., 2008). Moreover, parabolic or hyperbolic (e.g. Lobontiu,
2003; Chen et al., 2009) and cycloidal contours (Tian et al.,
2010) have been utilized as well as combinations of the men-
tioned basic geometries (e.g. Zelenika et al., 2009; Lobontiu
et al., 2011; Chen et al., 2011).

Beyond that, more complex mathematical functions like
the spline contour (Christen and Pfefferkorn, 1998; De Bona
and Munteanu, 2005), the power function-based contour (Li
et al., 2013) the exponent-sine contour (Wang et al., 2013)
the Lamé contour (Desrochers, 2008) and the Bézier contour
(Vallance et al., 2008) are rarely taken into consideration.
Lately higher order polynomial functions were proposed to
regulate the bending stiffness, precision and elastic strain dis-
tribution to an optimum (Linß et al., 2011a, 2015; Gräser, et
al., 2018). For combining the advantages of different notch
contours, asymmetric flexure hinges were previously consid-
ered (Chen et al., 2005). Also the kinematic behavior in terms
of an ideal axis of rotation can be realized with asymmetric
flexure hinges (Linß et al., 2011b; Lin et al., 2013). However,
in this paper only transversal and axial symmetric notch flex-
ure hinges are investigated because they allow a holistic and
intuitive design with regard to the mechanism synthesis. The
investigated design and modeling of notch flexure hinges are
described in the following subsections.

2.1 Investigated flexure hinges and geometric
parameters

Subject of this research is a notch flexure hinge fixed at one
end and loaded at the free end as it is shown in Fig. 1 for the
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Contour design domain

Figure 1. Notch flexure hinge with a variable hinge height within
the contour design domain, the geometric parameters and the de-
flected state as a result of a moment and/or a transverse force load.

initial and the deflected state. With respect to the application
in a mechanism and according to literature, the flexure hinge
with its notch contour design domain is generally modeled
with adjacent link segments (Yong et al., 2008). The deflec-
tion can be modeled in two ways by either specifying the load
(a moment load M , a transverse force load F , or a moment
and force load M , F ) or by specifying the deflection angle ϕ
at the free end in point P . The illustration of the flexure hinge
in Fig. 1 shows the basic geometric parameters that define the
shape of the hinge: the total hinge height H , minimum hinge
height h, hinge width w, total length L, contour length l, and
contour function hc(x) based on the selected notch geometry.

In this paper only directionally constant forces are ac-
counted and the equations are based on them. The system
of differential equations will vary for follower forces and
may be adjusted for those applications. The vectorial direc-
tion for a given moment is M =−Mez, for a transverse force
F =−F ey and for the bending angle ϕ =−ϕez. For charac-
terizing different flexure hinges, the dimensionless ratios in
Table 1 are introduced with their lower and upper bounds in
the software application. These lower and upper bounds are
chosen to aim for that the dimensions of the cross sections are
small compared to the hinge length and therefore to support
the validity of the implemented theory incorporating rod-like
structures.

2.2 Flexure hinge contour selection and definition

Regarding Fig. 1, the design domain for the variable notch
contour ranges from point D1 to D5 along the x-axis while
the contour will always be axial-symmetric to the y-axis. Due
to the used theory for all investigations it must be assured
that the hinge contour is a symmetric, continuously differ-
entiable, and not undercut contour function. The hinge has a
rectangular cross-section, and the minimum notch height h is
at the origin of the hinge (at x = 0). In some occasions, the

Table 1. Geometric flexure hinge parameters related to the total
hinge height and their parameter ranges.

Parameter Ratio Lower Upper
bound bound

Hinge overall length βL =
L
H

βl 10

Contour length βl =
l
H

0.1 βL

Minimum contour height βh =
h
H

0.01 1

Hinge width βw =
w
H

0.1 100

contour will contain a straight line parallel to the y-axis in
betweenD1 andD2 and analogically in betweenD4 andD5,
and therefore the resulting curvature will include a discon-
tinuity. With this regard, the integration when solving will
be performed ranging from the points D2 to D4 to ensure
a continuously differentiable mathematical expression. This
can be done by adjusting the initial value of the curvature for
each segment when a discontinuity is present.

In the design tool three typical flexure hinge contours are
considered, the circular (Fig. 2a), corner-filleted (Fig. 2b) and
elliptical contour (Fig. 2c). Besides that, the advantages of
the polynomial contour (Linß et al., 2011a) are implemented
and extended to a power function (Fig. 2d) to offer a wider
range of possible contours. The power function-based hinge
contour offers a great spectrum for the flexure hinge design
(Linß, 2015). Due to the variable height function, the contour
design may be adjusted from circular-type to corner-filleted-
type contours to achieve a desired angular deflection or axis
shift.

In Table 2 the according height functions of the four im-
plemented flexure hinge contours are listed. Contour-specific
parameters for the exact definition of each flexure hinge are
proposed with R, r , rx , ry , n as they are shown in Fig. 2.
The circular and elliptical flexure hinge contours may be ex-
act or approximated semi-circles or semi-ellipses depending
on the chosen geometry. This issue is depicted in Fig. 3 for
the circular hinge contour and in Fig. 4 for the elliptical con-
tour. The circular hinge contour only describes an exact semi-
circle for 2R ≤H −h (cf. Fig. 3a and b). The notch length
in these two cases results as:

l = 2R. (1)

Otherwise the circle center is positioned outside of the con-
tour design domain (cf. Fig. 1) and approximated semi-
circles result (cf. Fig. 3c) with the notch length expressed
as:

l = 2

√
R2−

(
H −h

2
−R

)2

. (2)

The same accounts for the elliptical contour. An exact semi-
ellipse can only be modeled for 2ry ≤H −h (cf. Fig. 4a
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(a) (b) (c) (d)

(a) (b)

1

Figure 2. The four implemented flexure hinges with their contour-specific parameters: (a) circular contour with radius R, (b) corner-filleted
contour with stress-optimal fillet radius r = 0.1l (Linß et al., 2011b), (c) elliptical contour with major axis rx and minor axis ry , (d) variable
power function-based contour (shown for different exponent values n).

(a) (b) (c)

Figure 3. Three different cases for designing a circular flexure hinge in dependence of the input parameter values (all shown for βL = 2 and
βh = 0.1): (a) 2R <H −h (with βl < 1), (b) 2R =H −h(right semi-circular contour, with βl < 1), (c) 2R >H −h (with 0< βl < βL).

and b) and the notch length is as follows:

l = 2rx . (3)

In case the ellipse center is located outside of the contour de-
sign domain, approximated semi-ellipses arise with the notch
length as:

l = 2rx

√
1−

(
H −h

2ry
− 1

)2

. (4)

3 Theoretical approach

In contrast to form and force-closed joints the materially co-
herent connection of flexure hinges leads to a restoring force
when bent (bending stiffness) – which can be advantageous
in technical systems, too. Apart from that, the angular de-
flection of a flexure hinge is limited by reaching admissi-
ble material stress or strain values (maximum angular deflec-
tion). Moreover, no exact relative rotation is possible with a
flexure hinge because always a shift of its axis of rotation
occurs in dependence of geometric and load parameters (ro-
tational precision). When applying flexure hinges in a com-
pliant mechanism, this can lead to path deviations compared
to the rigid-body mechanism, which are not negligible espe-
cially in precision engineering (Venanzi et al., 2005; Linß,
2015).

In this section, the approach of the non-linear analytical
characterization of a notch flexure hinge and the equations
for its bending stiffness, strain distribution/maximum angular
elastic deflection, and rotational precision are presented.

3.1 Theory for large deflections of rod-like structures

As long as the dimensions of a cross section are small com-
pared to the rod length, the non-linear theory for large de-
flections of rod-like structures is sufficient to describe the
motion behavior of compliant systems (Zentner, 2014). If a
flexure hinge is modeled together with adjacent deformable
link segments as a bent beam with a variable height, this the-
ory is assumed to be suitable for the calculations in this pa-
per, too. Therefore, the assumption is made that Bernoulli’s
hypothesis, Saint-Venant’s principle, and Hooke’s law apply.
Shear deformation according to Timoshenko as investigated
in (Dirksen and Lammering, 2011) and the effect of anticlas-
tic bending (Campanile et al., 2011) are neglected, because
first investigations with the applied theory show a good cor-
relation between the theoretical results and FEM simulations
for different flexure hinges (Linß et al., 2017b).

A stationary coordinate system ξηζ is considered with the
origin at the fixed end (Fig. 5). Bending of a beam results in
a deflection curve of the neutral axis with assumed constant
length. Therefore, the arc length parameter s is introduced to
describe the neutral axis in its deflected state. The rod under-
goes a shift uξ (s) and uη(s) for each point along s. Because of
the shift in ξ and η-direction a deflection angle θ (s) results.
The resulting curvature is defined by κ(s) as the gradient of
the deflection angle θ (s). Thus, for describing a flexure hinge
as a bent rod or beam four non-linear differential equations
result:

dMζ

ds
+F cosθ = 0, (5)
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(a) (b) (c)

1

Figure 4. Three different cases for designing an elliptical flexure hinge in dependence of the input parameter values (all shown for βL = 2,
βh = 0.1 with 0< βl < βL): (a) 2ry <H −h, (b) 2ry =H −h (right semi-elliptical contour), (c) 2ry >H −h.

Table 2. Height functions of the four implemented flexure hinge contours.

Hinge contour Height function expression

Circular hc (x)= h+ 2R− 2
√
R2− x2

Corner-filleted hc (x)=


h+ 2r − 2

√
r2−

(
x+ l

2 − r
)2
, for − l

2 ≤ x <−
l
2 + r

h, for − l
2 + r ≤ x ≤

l
2 − r

h+ 2r − 2

√
r2−

(
x− l

2 + r
)2
, for l

2 − r < x ≤
l
2

Elliptical hc (x)= h+ 2ry

(
1−

√
1− x2

r2
x

)
Power function hc (x)= h+ (H−h)(

l
2

)n |x|n ;with n ∈ R and1.1≤ n ≤ 50

dθ
ds
− κ =, with κ =

Mζ

E Iζ
and (6)

Iζ =



wH 3

12
for 0≤ s < L1−

l

2
wh3

c(s)
12

for L1−
l

2
≤ s ≤ L1+

l

2
wH 3

12
for L1+

l

2
< s ≤ L1+L2

,

duξ
ds
− cosθ + 1= 0, (7)

duη
ds
− sinθ = 0. (8)

Since the flexure hinge is symmetric, no initial curvature of
the beam is regarded in this paper. Due to the fact that simple
and concise closed-form equations cannot be derived from
this system of non-linear differential equations a numerical
solution is done with the following boundary conditions for
a moment load at the free end of the hinge:

κ(L)=
M

EIζ (L)
,θ (0)= 0,uξ (0)= 0,uη(0)= 0, (9)

and for a transverse force load with:

κ(L)= 0,θ (0)= 0,uξ (0)= 0,uη(0)= 0. (10)

The boundary value problem is solved numerically with the
use of MATLAB as it is described in Sect. 4.2. At the end
of this procedure all four parameters κ , θ , uξ and uη are ob-
tained for each point s along the deformed neutral axis and
further results can be determined as it is described in the fol-
lowing subsections. Please note, though the equations have
been derived for a universal approach based on a positive
deflection, the input force, moment or deflection angle are
translated into negative values by the software. This way the
flexure hinge is always deflected into η and ξ -direction like
depicted in Fig. 5. Nevertheless, because of the symmetry, it
makes no difference in which direction the hinge is deflected.
Therefore, it is focused on the absolute value of the angular
deflection.

3.2 Bending stiffness of a flexure hinge

On the contrary to the compliance of a flexure hinge, the
bending stiffness around an axis of a system of coordinates
is a measure for the resistance of an object against deforma-
tion under external loads. Due to the fact that flexure hinges
in this paper are mainly exposed to bending around the ζ -
axis, the stiffness is described as a product of the Young’s
modulus and the geometrical moment of inertia. Therefore,
it becomes clear that the bending stiffness can be influenced
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Figure 5. Parameters for the theoretical characterization of a flex-
ure hinge (depiction of the initial and deflected position) with the
model for the determination of the rotational axis shift based on
guiding the center with a constant distance, the fixed center ap-
proach.

by material and geometric parameter changes. When speak-
ing about bending stiffness properties in this paper, depend-
ing on the load case the relation between the load and the
rotation angle, M(ϕ) and F (ϕ), are meant.

3.3 Strain distribution and maximum angular deflection
of a flexure hinge

The bending stress σ is analyzed after linear beam theory to
characterize the maximum stress of the entire flexure hinge
for a given deflection angle as a result of the moment or force
load:

σ (s)|ηmax =−
Mζ (s)
Iζ (s)

· ηmax(s). (11)

According to the used theory, the maximum absolute stress
value always results at the outer fiber for the maximum coor-
dinate of η, which corresponds with the contour height func-
tion of the flexure hinge. Fulfilling Hooke’s law, stress and
strain are linearly connected by the Young’s modulus as it is
described for the bending strain ε as:

ε (s)=
σ (s)
E
=−

Mζ (s)
EIζ (s)

· ηmax(s)= −κ(s) · ηmax(s). (12)

Further, a part of Eq. (12) can be expressed with the curva-
ture κ(s). Due to the solution of the system of differential
equations in MATLAB the curvature along the neutral axis
is known and can therefore be used to determine the elas-
tic strain. This solution is obtained for each specification and
load case of the analysis settings. The maximum elastic strain
can then be found with an accuracy that depends on the step
size of the solution for κ(s). According to the approach, the

maximum strain is independent from the width w for a given
deflection. Due to the used theory, only the bending moment
Mζ is taken into account.

For a moment load, the maximum strain occurs, related
to the ξ -axis in the hinge center in general. In contrast to
this, for a force load the critical location depends on the
flexure hinge contour. For this purpose, the strain distribu-
tion can be plotted along the entire flexure hinge so that a
user can assess critical strain areas. The maximum absolute
value of the strain εmax is implemented in the results win-
dow of the design tool. Among the four regarded contours,
the circular contour always leads to the highest strain values
for a constant deflection (see Sect. 5). Using the elliptical,
the power function-based, and the corner-filleted contour, the
maximum strain value can be further reduced and analyzed
with the software for different material choices. The admissi-
ble elastic strain εadm should always be higher than the max-
imum strain of each flexure. A safety factor is introduced
to emphasize the relation between admissible and maximum
elastic strain according to Eq. (13):

SF =
εmax

εadm
(13)

The user should always aim for a safety factor SF > 1 to
ensure that no plastic deformation arises. Using the calcu-
lated safety factor, the maximum angular deflection can be
expressed by Eq. (14):

ϕmax = SF ·ϕ (14)

Therein ϕ will either be the user-defined deflection angle
or the calculated deflection angle in case a load is given.
This way the contour and geometry-dependent correlation
between the material-given admissible elastic strain εadm and
the maximum rotation angle ϕmax is derived.

3.4 Rotational precision of a flexure hinge

Due to the fact that flexure hinges do not have a stationary
rotation axis, the term rotational precision is introduced. No-
tably, in precision engineering, the rotational precision of a
flexure hinge is a very important performance criterion. Be-
cause of the serial connection of several flexure hinges in
the kinematic chain of a compliant mechanism, the rotational
axis shift v of a single flexure hinge (cf. Fig. 5) can influence
the path deviation of a coupler point of the compliant mecha-
nism compared to the rigid-body mechanism. Depending on
the possibility to specify the deflection angle or load case,
v (ϕ) or v(M,F ) is considered in this paper. In literature sev-
eral approaches are suggested to express the rotational preci-
sion which lead to slightly different results. Most approaches
are based on the deflected state of the hinge so that the shift of
the center point at ξ = L

2 is calculated (e.g. Lobontiu, 2003;
Tian et al., 2010). Another approach considers the intersec-
tion of the ξ -axis and the tangent to the deflected neutral axis
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through P ′. This way the axis shift can be determined in ξ -
direction only (e.g. Horie et al., 1997; Smith, 2000). Further,
the fixed centrode is calculated with the help of a geomet-
rical approximation method (e.g. Dirksen and Lammering,
2011; Palmieri et al., 2012), which leads to high numerical
effort because of a theoretically infinitesimal analysis. As it
has been described in previous publications (e.g. Tseytlin,
2002; Zelenika et al., 2009; Linß et al., 2011b), the distance
between the initial center point C and the guided center point
C′ with a constant distance of L2 during the motion (fixed
center approach) is suitable and chosen to define the rota-
tional precision v in this paper (cf. Fig. 5).

The absolute value of the rotational axis shift v, based on
the fixed center approach, is put together from the axis shift
in ξ and η-direction as:

v =

√
(ξC′ −L1)2

+ η2
C′

=

√(
L2+ uξ −L2cosϕ

)2
+
(
uη−L2 sinϕ

)2
. (15)

To determine the axis shift according to Eq. (15), the coordi-
nates ξ and η at the free end of the hinge on the neutral axis
s and the rotation angle ϕ must be known. The numerical so-
lution of the system of differential equations provides results
for all s in both axes shifts so the coordinates of point P ′

are known, too. The deflection angle ϕ will therefore equal
the angular deflection in point P ′ which is derived from the
differential equation of θ (s) using ϕ = θ (L).

Furthermore, to minimize the axis shift, the user should
know, that independent from the hinge contour a transverse
force leads to a significant larger axis shift than a moment
load for the same angle ϕ. Also the hinge contour has a strong
influence on the axis shift, depending on the dimensions βl
and especially βh (e.g. Linß et al., 2017a). With regard to a
high rotational precision or a small axis shift the following
order can be generalized for thin hinges: The circular con-
tour, the elliptical contour or polynomial 4th-order contour,
and the corner-filleted contour. It can be concluded that the
more the compliance is distributed along the hinge contour
(meaning longer thin stretches), the higher the axis shift will
be. On the contrary, a more concentrated compliance leads to
a better rotational precision.

4 Implementation

In this section the development of a computer program for
the analysis of notch flexure hinges with different hinge con-
tours will be described. For this purpose, the previously de-
scribed theory for large deflections of rod-like structures will
be implemented in a graphical user interface (GUI) devel-
oped with MATLAB. Therefore, a solution for the non-linear
analytical characterization will be received and evaluated. In
the following subsections it is shown how the different in-
puts and selections are realized throughout the GUI (front
end) and how they are internally processed by the software

(back end) to produce the results which are then displayed
in fields and diagrams. Further it is explained how the soft-
ware will be distributed for license-free public usage. For the
development of the GUI the MATLAB version R2017b was
used.

4.1 Matlab-based graphical user interface

The developed GUI for the analysis of notch flexure hinges
is shown in Fig. 6. For public usage it was generated as a
standalone application called “detasFLEX” using the MAT-
LAB deploy tool for WINDOWS 64 bit computers. Due to
this process, no MATLAB license is needed to run the pro-
gram. Although, the file comes with a Runtime – a database
including all the important MATLAB functions – that needs
to be downloaded and installed to the computer.

The development of the GUI has been made with the use
of the GUI development environment, called GUIDE. It ba-
sically is a layout editor where one can graphically design
the appearance of an application using input and output text
fields, push buttons, sliders, axes and more. GUIDE automat-
ically generates the MATLAB code for modifying the pro-
gram behavior. This way it is possible to process input data,
solve the system of differential equations and generate all re-
sult data and diagrams.

4.2 Program structure

For a better overall understanding for a user to analyze a spe-
cific flexure hinge using the given design tool, the modular
composition of the program is shown in Fig. 7 which can be
derived from the GUI in Fig. 6. Mainly the interface is di-
vided into four groups. To start with, there are text fields for
the input of data and information about the hinge notation
and valid geometries for the chosen contour. In this area the
material, the hinge contour, the dimensional and the contour-
specific geometric parameters of the flexure hinge may be
set. Next the analysis settings can be made. Thereby the pro-
gram user can choose between the selection of a given de-
flection angle or a given load and specify its value, set the
load case and finally press the “calculate”-button or reset ev-
erything to default values. Afterwards, when all results are
obtained by the solver, the result values are presented in a
separate section of the interface. Also, the geometry, bend-
ing line, bending stiffness and precision as well as the strain
distribution are charted in diagrams. In addition, features to
export data and diagrams into files, print the geometry and
zoom into the notation are provided.

Internally an algorithm based on the user input and analy-
sis settings is executed to compute a solution for the bound-
ary value problem and supply all the important results and di-
agrams. The underlying procedure is showcased in the form
of a flowchart in Fig. 8 and will be briefly described. When
first executing the program “detasFLEX.exe” a user may
specify input values for material and basic geometry, choose
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Figure 6. Graphical user interface of the PC program detasFLEX (design tool for the analysis of flexure hinges), shown using the example
of a corner-filleted flexure hinge.

a contour and manipulate contour specific parameters. These
values and selections get read and converted into SI units
for further processing. To make sure all input data comply
with the geometric bounds and are numeric real positive data
greater zero, a query is programmed. In the case of invalid
inputs, a warning will be displayed and parameters need to
be adjusted by the user. Following, a constant step size along
−L1 ≤ x ≤ L2 is being set as tc = L× 10−3 for the calcula-
tion and plotting of the flexure hinge geometry. Afterwards,
the program determines if either the deflection angle or the
load at the free end of the flexure hinge is specified which
reflects major differences between the solution.

In case a deflection angle is specified, firstly the angle
value is divided into five load steps. It has been shown that
the motion behavior for very large angular deflections may
accurately be calculated with the used theory (Zentner et al.,
2017) which is why the angle was limited to ϕ ≤ 45◦. There-
after, the chosen load case (moment or force) needs to be
evaluated. Next, initial values are estimated. In a following

step, the initial guess is approximated for a cantilever beam,
fixed at ξ = 0 with the constant height h and a deflection of
ϕ(L)= 1◦ because the extent of the deflection mainly de-
pends on the minimum notch height and so the solver does
not exaggerate the deflection on the first adjustment step. The
initial guesses are derived from linear beam theory for small
deflections and result for a moment load as

Mini = 1◦ ·
π

180◦
·

Ewh3

12(L1+L2)
, (16)

and for a force load results as

Fini = 1◦ ·
π

180◦
·

Ewh3

6(L1+L2)2 . (17)

In case the load is specified, the program will first figure
out which load case (moment, force or both) was set by the
user and then split the load into five equally sized load steps.
Then, for each load step the system of differential equations
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Figure 7. Modular structure of the PC program detasFLEX (Anal-
ysis).

gets solved with the used MATLAB function ode45 with a
variable step size tv for efficient calculation. The solver is
based on the Dormand-Prince method which uses six func-
tion evaluations in each step. It represents an explicit four-
step Runge-Kutta method. The algorithm performs an itera-
tive integration of first order non-stiff differential equations
with initial conditions. Afterwards a solution is obtained for
the system of differential equations. In case of a force load, a
boundary value problem is present because of the unknown
support reaction due to the ξ -shift of the free end (important
for large deflections). For this purpose, the function fsolve
(shooting method for the unknown moment support reaction
calledMAζ ) is applied to iterate the solution until the bound-
ary conditions are matched. In case of a moment load no op-
timization needs to be done because all support reactions are
explicit. It can be taken advantage of the linear relationM (ϕ)
so that the system of differential equations only needs to be
solved numerically for Mini (using ode45) and with the re-
sulting angle θ (L)= ϕ the related moment M (ϕ) may be
obtained. Resulting values of the results M or F , ϕ, κ , θ ,
uξ and uη are then being saved for further processing. It can
be mentioned, that the elapsing time for the numerical solu-
tion is usually shorter for plain moment loads because of the
simplifications possible.

In a following step, when a solution for the system of dif-
ferential equations was found, the deflected state of the neu-
tral axis is plotted into the diagram. Also the bending stiff-
ness and axis shift are evaluated with the given equations
described in Sect. 3 and outlined in their respective chart.
Next, the outer fiber strain distribution and maximum value
are being calculated with the step size tv and also displayed
in a graph. The safety factor and all other output values are
printed into the intended results window. The whole pro-
cess takes just a few seconds after the “calculate” button is
pressed.

4.3 Segment-wise calculation

As it is already shown in Fig. 2, the flexure hinges are split
up into several sections for the numerical solution. Beam sec-
tions with a constant hinge height are solved by referring to a
constant geometrical moment of inertia whilst sections con-
taining a variable contour function are referred to the solu-
tion of the corresponding height function found in Table 2.
The system of differential equations therefore varies for each
section. The circular, the elliptical and the power function-
based contour are split up into three sections (cf. Fig. 2a, c
and d) and the corner-filleted contour is split up into five sep-
arate sections when being calculated (cf. Fig. 2b). The nu-
merical solution at the end of each section serves as a set of
initial values for the next section. This method guarantees a
continuous progression of the neutral axis. Furthermore, us-
ing this approach, transition points arise at the exact location
in between sections along the neutral axis which enable the
evaluation of results precisely at these points. This is espe-
cially important when it comes to examining the rotational
precision of the regarded flexure hinge.

4.4 Examples

To demonstrate some of the functionalities the design tool
offers, examples are given in this subsection. The program
enables a wide variety of different geometry, material, con-
tour and analysis settings selections so that numerous notch
flexure hinges for diverse tasks in industry and research may
be analyzed within a few seconds with respect to the geomet-
ric lower and upper bounds.

The following examples are done for all four different con-
tours with the same typical geometric ratios (βL = 2, βl =
1, βh = 0.03, βw = 0.6) and material settings (E = 72 GPa,
εadm = 0.5%). Firstly a specific given deflection angle of
ϕ = 5◦ is defined and each hinge is then calculated for a force
load. The obtained geometry, deflection curve and strain dis-
tribution diagrams are presented in Fig. 9. It becomes clear
that the deflection angle is too high for the chosen circular
and elliptical flexure hinge contour because the admissible
elastic strain is exceeded. Further it is noticeable, that due
to the load case of a force load, the maximum elastic strain
is shifted out of the hinge center towards the fixed end of
the hinge, the more distributed the compliance of the hinge
is. This is especially significant for the power function-based
contour (Fig. 9c) and even more for the corner-filleted con-
tour (Fig. 9d). Also, the more distributed the compliance is
along the hinge contour (larger sections with a small hinge
height), the lower the maximum strain will be which is well
visible for the corner-filleted contour. Also the bending line
is more equally curved throughout the whole length L, the
more distributed the compliance of the hinge is. From Fig. 9a
to d the compliance of the hinge increases and so does the
outer fiber strain distribution.
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detasFLEX
(Analysis)
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Abbildung 0.1: Flowchart detasFLEX - Analysis

1

Figure 8. Detailed flowchart of the PC program detasFLEX.

Mech. Sci., 9, 389–404, 2018 www.mech-sci.net/9/389/2018/



S. Henning et al.: detasFLEX – A computational design tool for notch flexure hinges 399

(a) (b) (c) (d)

Figure 2

(a) (b) (c)

Figure 3

(a) (b) (c)

Figure 4

(a) (b) (c) (d)

Figure 9

1

Figure 9. Example results of the deformed neutral axis and the outer fiber strain distribution for a force load computed for an angle input of
|ϕ| = 5◦ (βL = 2, βl = 1, βh = 0.03; result values see Table 3): (a) circular contour, (b) elliptical contour, (c) power function-based contour
with n= 4, (d) corner-filleted contour.

(a) (b) (c) (d)

Figure 10. Example results of the deformed neutral axis and the outer fiber strain distribution for different force load inputs to equal
εadm = 0.5% (βL = 2, βl = 1, βh = 0.03): (a) circular contour with |ϕmax| = 2.72◦, (b) elliptical contour with |ϕmax| = 3.81◦, (c) power
function-based contour with n= 4 and |ϕmax| = 5.56◦, (d) corner-filleted contour with |ϕmax| = 11.73◦.

In another case study, which is presented in Fig. 10, the
same four flexure hinges are regarded but with different anal-
ysis settings. For this application example, the maximum an-
gular deflection that is derived from the previous example
is taken as an input for ϕ. The maximum angular deflection
varies for each hinge in accordance to the compliance distri-
bution. The circular flexure hinge (Fig. 10a) offers the lowest
possible angular deflection in this case with ϕmax = 2.72◦

due to the highest bending stiffness compared to the corner-
filleted contour (Fig. 10d) with ϕmax = 11.73◦. Nevertheless,
the circular flexure hinge realizes the lowest shift of the axis
of rotation. When applying ϕmax, the maximum elastic strain
equals the admissible elastic strain as it is visible in the strain
distribution diagrams in Fig. 10. According to the non-linear
theory the deformation of the neutral axis in ξ -direction is
obvious, especially for the corner-filleted flexure hinge (cf.
Sect. 2). Design tool users may adjust the hinge contour, the
dimensional or contour-specific parameters to influence the

maximum possible angular deflection, the maximum elastic
strain or the rotational stiffness and precision to suit the flex-
ure hinge design to their needs.

5 FEM-based verification

To confirm the analytical design tool-based results and there-
fore the usability of the provided PC program, finite elements
method is considered to compare and verify the implementa-
tion of the non-linear deformation theory. For the FEM-based
3-D structural simulation ANSYS Workbench 18.2 was used.
The CAD model and FEM model are shown in Fig. 11. For
the determination of the rotational precision in FEM, the
same approach as it is described in Sect. 3.4 is considered
by adding an additional part onto the CAD model according
to the chosen fixed center approach (cf. Fig. 5) to measure
the distance between C and C′ (Fig. 11a). The FEM model is
considered with a fixed support on one side and it is free on
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Table 3. FEM-based verification and comparison of the contour-specific and load-dependent results for a discrete angular deflection of
|ϕ| = 5◦ (βL = 2, βl = 1, βh = 0.03, βw = 0.6) with specification of the relative deviations to the analytical design tool solution.

Hinge contour Method Moment load Force load

M [Nm] v [µm] εmax [%] |ϕmax| [◦] F [N] v [µm] εmax [%] |ϕmax| [◦]

Circular with R = 5 mm
analytical 0.0592 1.411 0.914 2.736 5.944 4.358 0.919 2.720
FEM 0.0622 1.428 0.892 2.803 6.240 5.020 0.894 2.796
deviation 5.1 % 1.2 % 2.4 % 2.4 % 5.0 % 15.2 % 2.7 % 2.8 %

Corner-filleted with r = 0.1l
analytical 0.0098 5.485 0.151 16.534 0.987 54.675 0.213 11.727
FEM 0.0102 5.367 0.166 15.060 1.025 54.720 0.228 10.965
deviation 4.1 % 2.2 % 9.9 % 8.9 % 3.9 % 0.1 % 7.0 % 6.5 %

Elliptical, with rx = 2ry = 0.5l
analytical 0.0420 1.943 0.649 3.854 4.235 7.843 0.656 3.811
FEM 0.0446 1.906 0.641 3.900 4.481 8.551 0.639 3.912
deviation 6.2 % 1.9 % 1.2 % 1.2 % 5.8 % 9.0 % 2.6 % 2.7 %

Power function with n= 1.5
analytical 0.1614 0.741 2.490 1.004 16.076 1.660 2.481 1.008
FEM 0.1557 0.825 2.476 1.010 15.632 2.310 2.478 1.009
deviation 3.5 % 11.3 % 0.6 % 0.6 % 2.8 % 39.2 % 0.1 % 0.1 %

Power function with n= 2.0
analytical 0.0818 1.042 1.263 1.979 8.217 2.585 1.269 1.970
FEM 0.0852 1.138 1.368 1.827 8.555 3.140 1.369 1.826
deviation 4.2 % 9.2 % 8.3 % 7.7 % 4.1 % 21.5 % 7.9 % 7.3 %

Power function with n= 3.0
analytical 0.0402 1.680 0.620 4.029 4.038 5.650 0.634 3.946
FEM 0.0427 1.758 0.694 3.602 4.285 6.242 0.694 3.602
deviation 6.2 % 4.6 % 11.9 % 10.6 % 6.1 % 10.5 % 9.5 % 8.7 %

Power function with n= 4.0
analytical 0.0278 2.226 0.428 5.839 2.785 9.459 0.450 5.562
FEM 0.0294 2.190 0.414 6.039 2.946 9.980 0.439 5.695
deviation 5.9 % 1.6 % 3.3 % 3.4 % 5.8 % 5.5 % 2.4 % 2.4 %

Power function with n= 8.0
analytical 0.0156 3.599 0.240 10.412 1.561 23.792 0.279 8.954
FEM 0.0164 3.651 0.270 9.259 1.643 24.180 0.298 8.389
deviation 5.4 % 1.4 % 12.5 % 11.1 % 5.2 % 1.6 % 6.8 % 6.3 %

Power function with n= 16.0
analytical 0.0115 4.718 0.178 14.050 1.157 40.568 0.228 10.963
FEM 0.0119 4.731 0.198 12.658 1.207 40.738 0.236 10.593
deviation 3.2 % 0.3 % 11.0 % 9.9 % 4.3 % 0.4 % 3.5 % 3.4 %

the opposite side, while the free end is loaded with a moment
or a directionally constant transverse force load (Fig. 11b).
The evaluation of two points on the free end guarantee an
accurate approximation of the deflection angle ϕ. Therefore,
the relations M(ϕ) and F (ϕ) may be outlined. Further, the
maximum angular deflection ϕmax can be determined in de-
pendence of the analyzed maximum equivalent elastic strain.

According to literature, flexure hinges with very variable
dimensions are generally modeled as a 3-D solid structure
(Zettl et al., 2005) and if possible with adjacent link segments
(Yong et al., 2008) in all FEM simulations in this paper. The

latter accounts for the considerations for the analytical char-
acterization in Sect. 3, too. Moreover, large deflections are
also considered in the FEM analysis settings for an accu-
rate comparison with the analytical calculations due to the
non-linear beam theory. Other assumptions are a linear ma-
terial behavior and a comparable and fine discretization of
the hinge for all the different contours. The mesh of the FEM
model is chosen to be finely divided in areas of the notch and
especially in areas of the minimum hinge height h (Fig. 11b).

In an example FEM analysis for typical geometric parame-
ter values (βL = 2, βl = 1, βh = 0.03, βw = 0.6) and all four
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Figure 11. FEM-based characterization of a flexure hinge: (a) CAD model, (b) FEM model with deformed hinge and mesh details.

hinge contours, the moment or force load is iterated until the
deflection angle equals exactly ϕ = 5◦ (Table 3) or ϕ = 10◦

(Fig. 11b) for all investigations. Other than that, an aluminum
alloy AW 7075 is chosen as a material which has been used
for multiple high-precision engineering applications and sur-
veys before (e.g. Gräser et al., 2017). The power function-
based contour is investigated for different exponent values
n. In total, nine different flexure hinge contours are regarded
and compared using both approaches in Table 3. The bending
stiffness, rotational precision, maximum elastic strain and the
maximum rotational angle are mentioned for a moment and a
force load at the free end of each hinge. In addition, the per-
centage deviation of the FEM results to the analytical design
tool results is indicated, too.

Generally, the results are in good correlation with one an-
other. Regarding the bending stiffness, the maximum devi-
ation of the FEM results compared to the analytical results
is 6.2 % which is indicated to be very precise. Regarding the
three criteria load (M or F ), εmax and ϕmax, the errors slightly
increase, while these higher errors occur for the maximum
elastic strain. This is based on the fact, that in the analytical
approach only the bending moment Mζ is taken into con-
sideration while in the FEM analysis other effects are taken
into account, too. For example, within the finite-elements cal-
culations shear deformation is taken into account which is
neglected in the analytical approach. Likewise, especially in
dependence of the flexure hinge width, minimum height and
curvature radius, non-linear anticlastic bending (Campanile
et al., 2011) may result which is not considered in the used
theory. Furthermore, the von-Mises criterion is considered
for the FEM-based maximum strain values. Nevertheless, the
results do correlate well with deviations of only 12.5 % at
maximum.

In particular, greater differences may be found in terms
of the rotational precision, especially when the hinge is de-
flected with a force load. With reference to the rotational pre-
cision it becomes clear that smaller absolute values for the
axis shift in the micrometer range generally lead to higher
deviations between FEM and analytical approaches. For ex-
ample very small values of approximately v = 2 µm, in case
of a power function-based contour with n= 1.5 for a force

load, lead to a deviation of 39.2 %. In contrast to that, for a
corner-filleted contour with the same dimensions the devia-
tion is only 0.1 % whilst the absolute value is approximately
v = 54 µm.

Another reason for these differences may be the fact that in
the analytical approach no elongation of the neutral axis by
tensile forces is considered, whereas they are possible in the
FEM analysis. Because these strains are of the same mag-
nitude as the axis shift, the discrepancy may be explained.
In addition to that, the results in Table 3 provide insight in
a correlation between the necessary load for achieving a de-
flection angle of ϕ = 5◦ and the deviation of the rotation pre-
cision between the FEM result and the analytical solution.
The more concentrated the compliance along the hinge con-
tour is designed, e.g. for the circular contour or the power
function-based contour with n= 1.5, the higher the bending
stiffness and the more load is necessary to deflect the hinge
with ϕ = 5◦. In the case of higher necessary loads, the tensile
forces in FEM increase and so do the deviations to the ana-
lytical solution in terms of the rotational axis shift because of
the higher elongation of the neutral axis in FEM.

Another investigation is exemplarily done for corner-
filleted hinges with regard to the bending stiffness for a
force load and different total hinge length ratios βL =

{1,2,10,20}, hinge width ratios βw = {0.1,1} and minimum
hinge height ratios βh = [0.03,0.1] to illustrate the percent-
age deviation between FEM and analytical design tool solu-
tion for a larger parameter value range (Fig. 12). Though the
design tool enables calculations for deflection angles of up
to 45◦, the presented stiffness deviations have been derived
for an angular deflection of 10◦, due to the fact that these
deflections are typically sufficient in precision engineering
applications. The investigation of the error of the force load
1F shows a strong dependence of the dimensional parame-
ters βL, βw and βh. For example it becomes obvious that very
narrow flexure hinges (βw = 0.1) generally lead to lower de-
viations and that the deviation increases with βh in this case.
This is due to the fact, that for low minimum hinge height
ratios the theory, which requires small dimensions of the
cross sections compared to the rod length, is fulfilled more.
With regard to the influence of the overall length βL it needs
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Figure 12. Parameter study of a corner-filleted flexure hinge with βl = 1 under the parameter variations βL = {1,2,10 and βh = [0.03,0.1]
showing the force deviation 1F of the FEM results compared to the design tool results computed for an angle input of |ϕ| = 10◦: (a) βw =
0.1, (b) βw = 1.

to be noted that against the general recommendations (cf.
Sect. 2) for small values very short adjacent links (βL = 1)
are present. In this case, the requirements of the theory of
rod-like structures are again met more accurately.

Overall, the stiffness errors are in a range of 0.1 % and
9.4 %. Thus, the non-linear analytical approach used within
the design tool may be accounted appropriate for the imple-
mented typical parameter value ranges. It may be expected
to receive larger deviations between FEM and the analytical
method for deflection angles larger than 10◦, because the in-
creasing tensile forces on the neutral axis are not considered
in the developed program. Nevertheless, it is possible to re-
ceive a first estimate of the flexure hinge deformation and
motion using the given design tool for large angular deflec-
tions, too.

6 Conclusions

In this paper a non-linear analytical approach for modeling
various notch flexure hinges realizing an in-plane rotation
is considered and implemented in the form of a design tool
using the theory for large deflections of rod-like structures.
The design tool was developed with MATLAB as a stand-
alone software application which only requires the license-
free Runtime environment. Four different certain hinge con-
tours are chosen and implemented in the design tool, the
circular, corner-filleted, elliptical and power function-based
contour. Various geometric and material parameters may be
realized to allow for a broad usability in different cases. The
analysis is possible for a moment and a transverse force load
case as well as both loads combined for different lengths of
both hinge sides. All three cases may be computed with a
given load or deflection angle up to 45◦. A variety of out-
put parameters are outlined and the main hinge performance
properties like the deformed neutral axis, the bending stiff-

ness, the rotational precision and the elastic strain distribu-
tion are illustrated in the form of diagrams. Furthermore, a
preview of the hinge geometry and instant visualization of
input changes is realized in the GUI. Also, values for the
angle or load, axis shift, strain distribution, maximum strain
and maximum possible angle are obtained. Depending on the
contour the bending stiffness deviation between FEM results
and the design tool results is in the range of 0.1 % and 9.4 %
for a deflection angle of 10◦ and a corner-filleted contour.
The results of both approaches coincide well. Thus, the pro-
gram enables a wide variety of different geometry, material,
and contour selections as well as multiple analysis criteria
and settings so that numerous notch flexure hinges for di-
verse tasks not only in precision engineering industry and
research may be accurately analyzed within a few seconds
with respect to the geometric restrictions.

The presented design tool contributes to an accelerated
contour-specific quasi-static analysis of the elasto-kinematic
properties of notch flexure hinges with no need for itera-
tive and time-consuming simulations. It therefore may be
used for the systematic angle-dependent synthesis of com-
pliant mechanisms with differently optimized flexure hinges
(Linß et al., 2015; Gräser et al., 2018). Further research may
earmark a synthesis part in the design tool so that required
hinge properties may be predefined and an appropriate hinge
contour with its suitable geometric parameter values will be
proposed by the design tool. Other considerations like shear
deformation, which make the program results more accu-
rate, especially for specific cases of non-typical geometries,
may be implemented, too. The influence of geometric scal-
ing which is important for precision applications may also
be considered (Linß et al., 2018). Additional features like the
import of existing arbitrary geometries are possible.
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