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Abstract. The Pa2 pair is composed of two intertwined articulated parallelograms connecting in parallel two
links of a kinematic chain. This pair has two translational degrees of freedom leading to a translational plane
variable with the position. Currently, the Pa2 pair appears in conceptual designs presented in recent papers.
However, its practical application is very limited. One of the reasons for this can be the high number of redundant
constraints it has. But, it has to be considered that most of them can be eliminated by replacing wisely the
revolute joints by spherical joints. On the other side, the structure of the Pa2 pair contributes to increase the
global stiffness of the kinematic chain in which it is mounted. Also, its implementation is a promising alternative
to the problematic passive prismatic joints. In this paper, the Pa2 pairs are used in the design of a 3−PPa2 parallel
manipulator. The potentiality of this design is evaluated and proven after doing the following analyses: direct
and inverse kinematics, singularity study, and workspace computation and assessment.

1 Introduction

In the field of structural analysis of mechanisms, it is very
common to work with R (revolute) joints, P (prismatic)
joints, C (cylindrical) joints, etc. which are mechanical con-
nections between adjacent elements permitting some degrees
of freedom in their relative motion. Nevertheless, the idea of
kinematic joint or pair has always been a more general con-
cept than a simple mechanical coupling (Angeles, 2005). As
an example, we can think about the U (universal) joint, in
which the pair itself contains an intermediate moving ele-
ment, the cross shaft. This is the idea that underlies the kine-
matic joint named Pa joint (also known as 5 joint; Hervé
and Sparacino, 1992), and other more complex pairs, that can
be included in a further generalized concept first termed by
Hervé (1999) as liaison cinématique in French or mechanical
bond in English. Later on, Yu et al. (2009) renamed this type
of pairs, those that can be even formed by closed-loop kine-
matic chains, as complex joints (CJs), group in which the Pa
joint is included. In Yu et al. (2009), the authors present an
in-depth state of the art of these CJs and propose a new type
classification and mobility analysis for these special joints.

Regarding the Pa joint, it consists of an articulated par-
allelogram which permits a translational degree of freedom
(dof), and it is commonly used in the design of translational
parallel manipulators (Gogú, 2004). One of the first practi-
cal application of the Pa joint was in the Delta translational
manipulator (Clavel, 1988) designed by Reymond Clavel
for Pick & Place operations. A similar architecture was the
STAR parallel manipulator, proposed by Hervé and Spara-
cino (1992) in which this special kinematic pair was named
as5 joint. The CAPAMAN robot designed by Ceccarelli and
Ottaviano (2000) at the Laboratory of Robotics and Mecha-
tronics (Cassino) is also another practical example of a three
dof spatial parallel manipulator which incorporates an artic-
ulated parallelogram in each leg. A 2-D version of the Delta
robot, named the Diamond robot, which also incorporated
parallelogram linkages, was designed by Huang et al. (2004)
for quality inspection of rechargeable batteries. The robot
named Par4 (Pierrot et al., 2009), which is an enhanced de-
sign of the prior H4 (Pierrot and Company, 1999), incorpo-
rates the Pa joint not only in the legs of the manipulator but
also in the special moving platform the authors termed as
the traveling plate, allowing for a rotational dof in the end-
effector without the need of a telescopic chain as occurs in
the Delta design. Another robot with pure translational mo-
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Figure 1. Delta Robot (three translations t1, t2 and t3).

tion incorporating the Pa joint is the Micro Finger (Arai et
al., 1996), a 3 dof parallel platform intended for manipulat-
ing micrometer size objects.

We can find in the scientific literature more architectures
formed by the Pa joint, such as the two Schönflies designs,
the 4−RRPaR and 4−PRPaR, proposed recently by Li et
al. (2013) or the translational parallel manipulator presented
by Affi et al. (2004), formed by three prismatic legs and two
Pa joint based passive chains that eliminate the rotational ca-
pacity of the manipulator. However, it is quite notable the
limited use of double Pa joints, termed as the Pa2 joint. The
kinematic Pa2 joint is composed of two intertwined articu-
lated parallelograms which connect in parallel the two ele-
ments that the joint links together. It possesses two transla-
tional dof that result in a translational plane varying with the
position. A design with a double Pa joint, named by the au-
thor as the 52 joint, was proposed by Angeles (2004). In
the proposed design, the 52 joint consist of four in-parallel
bars connecting the fixed and moving platform with univer-
sal joints. This joint permits two translational dof, where the
moving platform traces a spherical translational motion with
respect to the fixed platform. Their kinematic characteristics
are equivalent to those of the Pa2 joint.

The first clear proposal of designs including Pa2 joints is
found in the Doctoral Thesis of Oscar Salgado (2008), where
two 4 dof parallel manipulators based on Pa2 joints are in-
vestigated by means of Theory of Group of Displacements.
Both robots are formed by four kinematic chains, each one
generating 5 dof, the connection of all kinematic chains re-
sulting in a Schönflies motion (3 translations and 1 rotation)
in the moving platform. Some works related to this Thesis
can be found in Salgado et al. (2007) where a parallelogram-
based 4 dof manipulator intended for aeronautical industry is
presented, and in Salgado et al. (2008) in which a new topol-
ogy of 3T1R fully-parallel manipulator intended for Pick and
Place operations is proposed.

With the purpose of evaluating the potential of a certain
design of a parallel manipulator including this type of Pa
joints, one of the main steps is to assess the operational
workspace the manipulator can reach. This study is included
in the last part of the present paper. As proposed in Macho

et al. (2008, 2013), a complete analysis of the workspace re-
quires the study of the singularity locus, as well as the de-
termination of the working modes and the singularity-free
regions associated with each working mode, so that an en-
larged workspace can be found. A general systematic proce-
dure to obtain all the singularity-free workspace regions in
parallel manipulators, so that strategies to enlarge the acces-
sible workspace can be planned, is presented in Macho et
al. (2009).

The outline of the paper is the following. Firstly, a detailed
description of the kinematic characteristics and current usage
of the Pa joint will be introduced, and, based on that, the dou-
ble Pa joint, that is, the Pa2 joint, will be described. Next, a
complete kinematic analysis of a new manipulator designed
using Pa2 joints will be presented, the 3−PPa2 parallel ma-
nipulator. This study includes the mobility analysis, the so-
lution of the direct and inverse position problems, the solu-
tion of the velocity problem, the singularity analysis and the
workspace computation. Finally, the main conclusions will
be presented.

2 The Pa2 kinematic bond in translational
parallel manipulators

The Pa joint is based on a planar four-bar linkage in a parallel
configuration (or articulated parallelogram). As it is known,
the four-bar linkage is a one degree of freedom mechanism
and in a general configuration, the coupler element has an in-
stantaneous rotation. However, in a parallel configuration, its
instantaneous center of velocity goes to infinity. In this case,
the coupler element moves following a permanent circumfer-
ential translation.

This is called the Pa joint, which has been successfully
used in some translational parallel manipulators. Maybe,
as pointed out in the introduction, the best-known exam-
ple is the Delta robot, shown in Fig. 1, which is built from
3−RRPaR kinematic chains joining in a parallel architecture
the fixed frame and the moving platform. The RRPaR kine-
matic chain has four degrees of freedom, three translations
and one rotation, that is, it is a Schönflies motion generator.
One translation comes from the Pa joint, while the remaining

Mech. Sci., 9, 25–39, 2018 www.mech-sci.net/9/25/2018/



A. Hernández et al.: Pa2 kinematic bond in translational parallel manipulators 27

Figure 2. Micro Finger manipulator (three translations t1, t2 and t3).

Figure 3. Pa2 joint. Modelization and associated motion.

three parallel rotation axes (r1, r2, r3 in Fig. 1) provide the
final rotation and the other two translations.

One of the main principles of the structural synthesis is the
fact that in a parallel manipulator the mobility of the mov-
ing platform is the intersection of mobilities of the kinematic
chains. This is the reason why in the Delta robot the rota-
tional degree of freedom is lost. Each chain allows just a
rotation around the direction of its parallel revolute joints.
Since such a direction is not the same in the three chains, no
rotation of the moving platform is possible when all chains
are assembled.

More than one Pa joint can be combined in the same chain.
As an example, the Micro Finger parallel manipulator, shown
in Fig. 2, is built from three chains containing each one two
Pa joints serially connected. This configuration provides at
each chain two translational degrees of freedom (u1, u2), that
is, a plane of translations. The kinematic chains of this exam-
ple contain these double Pa joints and two parallel revolute
joints (r1, r2), which provide the third translation and an ex-
tra rotational degree of freedom which is lost when all chains
assembled in parallel.

Finally, several Pa joints can be connected in order to build
the Pa2 joint, which will be used in the translational manip-
ulator of this work. As it can be seen in Fig. 3a, it is con-

stituted by two identical Pa joints (aIbIcIdI and aIIbIIcIIdII),
which are parallel one to the other, and there is also a third
Pa in a crossed orientation, eIfIeIIfII, connecting the previ-
ous ones. The axes of the revolute joints in the two parallel
Pa have the same direction, while the axes in the cross-linked
Pa are perpendicular to the previous ones. This assembly has
2 dof and 8 redundant constraints.

Taking into account the geometry of the resulting archi-
tecture, two imaginary planes appear, the fixed plane πf and
the coupler plane πm, which are always parallel, Fig. 3b. This
means that the two dof are translational, like in the previously
shown double Pa, but in this case, instead of being planar, this
translation is spherical. The two parallel Pa rotate an angle α
and the crossed Pa rotates angle β, Fig. 3c. The equation re-
lating the coordinates of reference points A and B is:

(xB − xA)2
+ (yB − yA)2

+ (zB − zA)2
= L2 (1)

Or alternatively, given a reference system as shown in the
figure:

xB − xA = Lsinβ
yB − yA =−Lcosβ sinα
zB − zA = Lcosβ cosα (2)
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Figure 4. PPa2 kinematic chain.

Next, the mobility analysis of two translational parallel ma-
nipulators proposed by the authors which include the Pa2

kinematic joint will be developed.

2.1 Mobility analysis in 3−PPa2 and 3−CP2R Parallel
Manipulators

2.1.1 3−PPa2 translational parallel manipulator

The PPa2 kinematic chain generates a translational motion in
space. Indeed, its corresponding kinematic bond is the prod-
uct of two translational kinematic bonds: one of dimension 1,
{Tu}, and another of dimension 2,

{
Tv,w

}
, where u, v and w

are three linearly independent vectors which represent their
associated translational directions.

The resulting De displacement is the product of both
bonds:

De = {Tu} ·
{
Tv,w

}
= {T3} (3)

Therefore, the displacement achieved in the end-effector of
the PPa2 chain belongs to the subgroup {T3} of translations
in space.

By linking three identical kinematic chains to a moving
platform we get a displacement of this moving platform. This
displacement or motion pattern results from intersecting the
displacements associated with each chain. That is:

De =

3⋂
i=1

{T3}i = {T3} (4)

This yields again a translational displacement of dimension
3.

2.1.2 3−CPa2R translational parallel manipulator

The kinematic bond of the CPa2R kinematic chain is the
product of three kinematic bonds. The one corresponding to
the cylindrical pair is a kinematic bond of dimension 2, {CA},
which includes a rotation around an A axis and a translation

Figure 5. 3−PPa2 parallel manipulator.

in the direction of that axis. The one corresponding to the
Pa2 pair,

{
Tv,w

}
, has been previously described; and the ro-

tation of the last revolute pair is a bond of dimension 1, {RB},
which includes a rotation around a B axis.

Hence, the resulting De displacement is the product of
three bonds:

De = {CA} ·
{
Tv,w

}
· {RB} = {T3} · {RA} · {RB} (5)

Under the assumption that the translational directions are in-
dependent one from another and, additionally, the rotational
ones, then the displacement generated in the end-effector of
the CPa2R chain has dimension 5, 3T2R three translations
and two rotations. These displacements constitute a subset of
solid element displacements of dimension 6, {De}. However,
it does not have group structure.

As before, by linking three identical kinematic chains to a
moving platform a displacement of this moving platform is
achieved. This displacement or motion pattern results from
intersecting the displacements associated with each chain.
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Figure 6. The eight existing working modes.

That is:

De =

3⋂
i=1

({T3} · {RA} · {RB})i = {T3} (6)

This yields again a translational displacement of dimension
3. This happens because the planes that contain the rotational
directions of each leg intersect at one point, so that there is no
rotational direction common to the three legs of the manip-
ulator. On the contrary, the three translations of the legs are
common to all of them and, thus, they remain in the motion
of the moving platform.

In comparison to the previous manipulator, this design has
six redundancies less that the first one. As both manipulators
have the same kinematics and knowing that the 3−PPa2 is
composed of a less number of joints, the constructive design
is simpler in the 3−PPa2 translational parallel manipulator,
which is the one that will be subsequently analyzed.

3 The 3 − PPa2 parallel manipulator

In references Hernandez et al. (2016a, b), a preliminary kine-
matic analysis of the manipulator under study was presented,
showing the potential this manipulator has. As it will be
shown in this section and subsequent ones, we present here
a reformulated kinematic analysis based on an equivalent
simplified manipulator. From this new formulation, a com-
plete workspace and joint-space analysis is accomplished by
means of obtaining the set of working modes and assembly
modes, the singularity-free regions associated with each of
the assembly modes and the enlarged operational workspace.

In the proposed 3−PPa2 manipulator, shown in Fig. 4,
one translation is provided by the prismatic P joint and the
remaining two ones by the Pa2 joint. The slider goes along
the direction of one Cartesian axis of the global reference
frame and the home position of the Pa2 is set as the pose
having all links perpendicular among them, as it is shown
in Figs. 3a and in 4a. The BC link of the moving platform
is normal to the coupler plane of the Pa2. The dimensional

parameters are just the lengths L and l. The coordinates of
point C are the output variables, while the distance s from
the prismatic slider to the origin is the input variable. The
closure loop equation relating all parameters can be obtained
in a very simple way particularizing Eq. (1) for this case.
Considering a vertical leg, as shown Fig. 4b:

((xC −h)− 0)2
+ ((yC −h)− 0)2

+ ((zC − 0)− s)2
= L2

(xC −h)2
+ (yC −h)2

+ (zC − s)2
= L2 (7)

As it can be seen in Fig. 5, it has been chosen a configuration
for the manipulator based on three identical chains with the P
sliders along the three Cartesian axes of the global reference
system (the three sliding directions intersecting at the origin
O).

To solve any kinematic problem, the first step is to pose
the position equations system of the assembled manipulator:

ec1 = (xC − s1)2
+ (yC −h)2

+ (zC −h)2
−L2

= 0
ec2 = (xC −h)2

+ (yC − s2)2
+ (zC −h)2

−L2
= 0

ec3 = (xC −h)2
+ (yC −h)2

+ (zC − s3)2
−L2

= 0
(8)

4 Position problem

The system of closure loop equations of the three chains con-
tains the input and output variables and is used to solve the
position problem.

The different solutions of the inverse position problem,
which are also called working modes of the manipulator, are
found in an easy way because they are decoupled. Given the
coordinates of the coupler point C, each chain can have inde-
pendently two different positions, or values of its input vari-
able.
s1 = xC ±

√
(yC −h)2+ (zC −h)2−L2

s2 = yC ±
√

(xC −h)2+ (zC −h)2−L2

s3 = zC ±
√

(xC −h)2+ (yC −h)2−L2
(9)
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Figure 7. Equivalent simplified manipulator.

Combining these two solutions for the three chains the ma-
nipulator presents a total of eight working modes. In Fig. 6, p
and n denote the positive or negative sign of the square root
involved in Eq. (9).

On the contrary, the direct position problem is not so de-
coupled. To solve this problem, some algebraic manipula-
tion on this Eq. (8) is required, to eliminate, for example, the
output variables yC and zC , and achieve the univariate poly-
nomial in the output variable xC . A quadratic polynomial is
obtained, whose coefficients depend on the input variables,
s1, s2 and s3:

ax2
C − (2ah+ c1)xC + ah2

+ c1h+ (s1−h)2b1

+

(
(s2−h)2

+ (s3−h)2
− 4L2

)
a2

23 = 0 (10)

Where:

a12 = (s1−h)(s2−h) a23 = (s2−h)(s3−h)
a31 = (s3−h)(s1−h)

b1 = a12
2
+ a31

2 b2 = a23
2
+ a12

2

b3 = a31
2
+ a23

2

a = 2(b1+ b2+ b3)= 4(a12
2
+ a23

2
+ a31

2)
c1 = 4(s1−h)b1 (11)

In this process, the values of the output coordinates yC and
zC as functions of inputs and xC are also obtained. Once xC
is obtained, the remaining output variables yield:

Figure 8. Theoretical workspace.

yC = h+
(s2−h)2

− (s1−h)2
+ 2(s1−h)xC

2(s2−h)

zC = h+
(s3−h)2

− (s1−h)2
+ 2(s1−h)xC

2(s3−h)
(12)

Obviously, for given values of the inputs there are two solu-
tions of the direct problem, also called assembly modes. The
final solutions of the direct position problem are:
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Figure 9. Real workspace.

xC = h+
(s1−h)b1± a23

√
1s

a/2

yC = h+
(s2−h)b2± a31

√
1s

a/2

zC = h+
(s3−h)b3± a12

√
1s

a/2
(13)

Being:

1s = (s1−h)2b1+ (s2−h)2b2+ (s3−h)2b3

+ 2(s1−h)2(s2−h)2(s3−h)2
−L2a (14)

Kinematic problems can be solved in an easier way making
use of a simplified equivalent manipulator, shown in Fig. 7.
To understand better the transformation, first an intermediate
schematic representation is done, Fig. 7b, where each Pa2

joint is depicted as a single bar of the same length L with
spherical joints. Next, the moving platform is merged into
a single point D, making null the length l, resulting in the
3−PSS parallel manipulator, Fig. 7c. This process implies
that each bar AB is translated to its new equivalent position
A′D a magnitude h along the direction of its slider, as shown
in Fig. 7d.

Since the directions of bars of the 3−PPa2 manipulator
and those of the 3−PSS are always parallel, from a kinematic
point of view both are fully equivalent, this is, both have the
same solutions and singularities. The relations between the
input and output variables of the real and the simplified ma-
nipulator are:

si = ri +h,i = 1,2,3 xC = xD +h,

yC = yD +h, zC = zD +h (15)

Then, for example, for the kinematic chain with vertical slid-
ing direction:

((xD +h)−h)+ ((yD +h)−h)2

+ ((zD +h)− (r3+h))2
= L2

xD
2
+ yD

2
+ (zD − r3)2

= L2 (16)

Using the equivalent manipulator, the solutions of the direct
position problem are obtained from:

(xD − ri)2
+ yD

2
+ zD

2
= L2

xD
2
+ (yD − r2)2

+ zD
2
= L2

xD
2
+ yD

2
+ (zD − r3)2

= L2
(17)

Then, the quadratic univariate polynomial in xD and the val-
ues of yD and zD are:(
r1

2r2
2
+ r2

2r3
2
+ r3

2r1
2
)

(2xD)2
− 2r13

(
r2

2
+ r3

2
)

2xD

+ r1
4
(
r2

2
+ r3

2
)
+

(
r2

2
+ r3

2
− 4L2

)
r2

2r3
2
= 0 (18)

2yD =
r2

2
− r1

2
+ r12xD
r2

2zD =
r3

2
− r1

2
+ r12xD
r3

(19)

And finally:

2xD =
r1

2(r22
+ r3

2)± r2r3
√
1r

r12r22+ r22r32+ r32r12

2yD =
r2

3(r32
+ r1

2)± r331
√
1r

r12r22+ r22r32+ r32r12

2zD =
r3

3(r12
+ r2

2)± r1r2
√
1r

r12r22+ r22r32+ r32r12 (20)

Where:

1r = r
4
1

(
r2

2
+ r3

2
)
+ r2

4
(
r3

2
+ r1

2
)
+ r3

4
(
r1

2
+ r2

2
)

+ 2r12r2
2r3

2
− 4L2

(
r1

2r2
2
+ r2

2r3
2
+ r3

2r1
2
)

(21)
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Figure 10. Direct singularity locus in the joint-space

Figure 11. Singular posture. All legs parallel to a plane (two different views).

5 Workspace

To end with the position analysis the workspace of the ma-
nipulator is presented. Considering the position equations as
they have been obtained, each chain theoretically generates a
cylinder parallel to the sliding direction of the prismatic joint.
Then, the theoretical workspace would be the intersection of
three mutually perpendicular cylinders, as shown in Fig. 8.

Nevertheless, the Pa2 joint imposes a limit in the motion
range. Since the two parallel Pa cannot lie in the same plane,
Fig. 9a, the actual workspace of each chain is just a half
cylinder, which produces a smaller real workspace of the
whole manipulator, as depicted in Fig. 9b and c.

6 Velocity problem and singularity analysis

To carry out the singularity analysis, the position equations
are derived with respect to time and the velocity equations
are obtained. The problem is linear in the input and output

velocities, so it can be expressed in a matrix form. In this ap-
proach, the Jacobian matrices are obtained. As it can be seen,
the rows of the direct Jacobian matrix Jx are the vectors AB
defining the directions of the Pa2 joints. The inverse Jaco-
bian matrix Jq is simpler because it is diagonal. The velocity
problem can be expressed as:

Jx · ẋ = Jq · q̇

Where:

ẋ = vC =


ẋC
ẏC
żC

 q̇ =


ṡ1
ṡ2
ṡ3

 (22)

The direct and inverse Jacobian matrices can be obtained
from the constraint equations, Eq. (8):
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Figure 12. Singular posture. Two and three legs in the same direction

Figure 13. Singular postures in the equivalent manipulator and corresponding singularity surfaces in the workspace.

Jx =


∂ec1

∂xC

∂ec1

∂yC

∂ec1

∂zC
∂ec1

∂xC

∂ec2

∂yC

∂ec2

∂zC
∂ec1

∂xC

∂ec3

∂yC

∂ec3

∂zC



Jq =−


∂ec1

∂s1

∂ec1

∂s2

∂ec1

∂s3
∂ec1

∂s1

∂ec2

∂s2

∂ec2

∂s3
∂ec1

∂s1

∂ec3

∂s2

∂ec3

∂s3

 (23)

By computing the terms inside Jx and Jq , it yields:

 xC − s1 yC −h zC −h

xC −h yC − s2 zC −h

xC −h yC −h zC − s3


ẋC
ẏC
żC



=−

 xC − s1 0 0
0 yC − s2 0
0 0 zC − s3


ṡ1
ṡ2
ṡ3

 (24)

Direct singularities occur whenever the determinant of the
direct Jacobian matrix vanishes. This means that a depen-
dence relation among the input velocities is verified. It is es-
sential to assess these positions because the controllability of
the manipulator is lost, so they must be avoided.

The determinant of the direct Jacobian matrix can be ob-
tained as:

|Jx | = xCs2s3+ yCs3s1+ zCs1s2− s1s2s3
−h (xCs2+ xCs3+ yCs3+ yCs1+ zCs1+ zCs2)

+h2 (xC + yC + zC + s1+ s2+ s3)− 2h3 (25)

Jx =

 xD − r1 yD zD
xD yD − r2 zD
xD yD zD − r3

 (26)
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Figure 14. Direct singularity locus in the workspace for the real manipulator.

But the expression is much simpler in the variables of the
equivalent manipulator:

|Jx | = xDr2r3+ yDr3r1+ zDr1r2− r1r2r3 (27)

Direct singularity surface in the joint-space (input variables
domain) is achieved by substituting in the equation |Jx | =
0 the obtained solutions of the direct position problem,
Eq. (20). On the one hand, doing this, firstly it is verified
that:

xDr2r3+ yDr3r1+ zDr1r2 = r1r2r3±
√
1r/2 (28)

So:

|Jx | = 0−→ r1r2r3±

√
1r

2
− r1r2r3 = 0−→1r = 0 (29)

This first condition, which is a surface in the 3-Dimensional
joint space1r (r1, r2, r3)= 0, Eq. (21), can be also expressed
in the input variables of the real manipulator1s (s1, s2, s3)=
0, Eq. (14).

On the other hand, apart from the nullity of 1r , looking at
Eq. (27), it is verified that |Jx | = 0 when any of the following

conditions is satisfied:
r1 = r2 = 0−→ s1 = s2 = h

r2 = r3 = 0−→ s2 = s3 = h

r3 = r1 = 0−→ s3 = s1 = h

(30)

These are the expressions of three lines. As it is known, it is
verified that direct singularities occur where the mechanism
has double solutions of the direct position problem (where
the two assembly modes merge). The surface and lines are
shown in Fig. 10.

In case of the proposed manipulator, considering the struc-
ture of Jx , along with the mathematical analysis made, a ge-
ometrical interpretation is possible. Direct singularities oc-
cur when the three chains are parallel to a plane, as shown
in Fig. 11, or when two chains have the same direction, as
shown in Fig. 12a. Obviously, this second case includes a
subcase that occurs when the three legs have the same direc-
tion, as depicted in Fig. 12b.

In the singularity locus obtained, the external continuous
surface 1s (s1, s2, s3) corresponds to the situation of three
legs parallel to a same plane (in the case of the equiva-
lent manipulator, all postures where the three bars lie in the
same plane). The three lines correspond to the three possi-
ble combinations of two parallel legs. For example, the line
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Figure 15. Direct singularity locus in the real workspace and correspondence with the joint-space.

s1 = s2 = h corresponds to the case in which the chains 1
and 2 have the same direction. In the case of the equiva-
lent manipulator, this situation (r1 = r2 = 0) implies that two
bars are coincident. The intersection point of the three lines,
s1 = s2 = s3 = h, corresponds to the subcase of three legs
parallel.

Singular postures in the equivalent manipulator are shown
next. In the cases of three legs parallel to a same plane,
Fig. 13a, or just two legs parallel, Fig. 13b, the rank of Jx
decreases in one (one dof appears with all inputs blocked). In
the subcase of the three legs in the same direction, Fig. 13c,
the rank of Jx decreases in two (two dof appear with all in-
puts blocked).

The direct singularity surface in the workspace (output
variables domain) can be also obtained by eliminating input
variables from |Jx |:

|Jx | = 0−→ 0µ (xD,yD,zD) ·0π (xD,yD,zD)= 0 (31)

In this case, two independent surfaces, 0µ and 0π , are ob-
tained. The first surface is:

0µ ≡ xD
2
+ yD

2
+ zD

2
−L2

= 0 (32)

This is a sphere centered at the origin and radius L. The sec-
ond surface is more complex:

0π ≡ L
14
− 3L12σ + 3L10σ 2

−L8 (46τ + γ )+ 32L6στ

+ 8L4τδ+ 80L2τ 2
− 16τ 2σ = 0 (33)

With:

σ = xD
2
+ yD

2
+ zD

2 τ = xD
2yD

2yD
2zD

2

γ = xD
6
+ yD

6
+ zD

6
+ 3(xD4yD

2
+ xD

2yD
4
+ yD

4zD
2

+ yD
2zD

4
+ zD

4xD
2
+ zD

2xD
4)

δ = xD
4
+ yD

4
+ zD

4
+ 6(xD2yD

2
+ yD

2zD
2

+ zD
2xD

2) (34)

But once obtained for the simplified equivalent manipu-
lator, both can be easily transformed to the output vari-
ables of the real manipulator, 0µ (xC,yC,zC), Fig. 14a, and
0π (xC,yC,zC), Fig. 14b. In Fig. 14c both surfaces are rep-
resented overlapped and a cross section has been given to
visualize the internal part (because 0π is inside 0µ).

All figures in this and next sections have been obtained for
L= 10 length units and h= 5 length units.
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Figure 16. Inverse singular posture.

Figure 17. Increased mobility singularity.

In the current domain (output variables), 0µ corresponds
to the situation where two legs i and j are parallel, i ‖ j −→
si = sj = h, and 0π where the three legs are parallel to a
plane. In addition, 0µ is the same surface for the three possi-
ble combinations, s1 = s2 = h, s2 = s3 = h, and s3 = s1 = h,
and also for the subcase where the three legs have the same
direction, s1 = s2 = s3 = h. An interesting way to understand
how is this possible is to start supposing a posture where
the three legs are all of them parallel, and from this posi-
tion make a working mode change in one chain. Doing this,
that leg is not any more parallel to the others, but the remain-
ing two legs are still parallel. This phenomenon is shown in
Fig. 12.

Finally, it is possible to depict the direct singularity locus
for the real size workspace (that one in Fig. 9, where real
motion limits are taken into account) and to obtain also the
corresponding actual portions of the theoretical joint-space.
In addition, it is possible to identify the specific geometrical
conditions associated with each portion as well as the cor-
respondence among the different portions in both domains,

making use of the GIM software as explained in Macho et
al. (2009). All this is shown in Fig. 15, where two different
views are provided in order to properly show all portions and
the existing associations between them.

Inverse singularities occur when the determinant of the
inverse Jacobian matrix vanishes. This happens when any
chain is in a completely extended position, that is, inverse
singularities define the workspace boundaries. Taking into
account that:

Jq =

 xC − s1 0 0
0 yC − s2 0
0 0 zC − s3


=

 xD − r1 0 0
0 yD − r2 0
0 0 zD − r3

 (35)

Then:∣∣Jq ∣∣= (xC − s1)(yC − s2)(zC − s3)
= (xD − r1)(yD − r2)(zD − r3) (36)

So:

∣∣Jq ∣∣= 0−→


xC = s1 −→ (yC −h)2

+ (zC −h)2
= L2

yC = s2 −→ (xC −h)2
+ (zC −h)2

= L2

zC = s3 −→ (xC −h)2
+ (yC −h)2

= L2

−→


xD = r1 −→ yD

2
+ zD

2
= L2

yD = r2 −→ xD
2
+ zD

2
= L2

zD = r3 −→ xD
2
+ yD

2
= L2

(37)

These are the same surfaces depicted in Fig. 8. In Fig. 16 is
shown the case of leg 2 totally extended, that is, a posture
where the working modes ⊗p⊗ and ⊗n⊗ meet (where ⊗
means p or n).
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Figure 18. Specific direct singularities for the different working modes in the workspace.

Figure 19. Singularity-free regions for two of the eight working modes (two different views for each one).

Increased mobility singularities occur when the complete
Jacobian matrix is rank deficient. The complete Jacobian is
defined as:

J
{
ẋ

q̇

}
= 0−→ J =

(
Jx

... − Jq
)

(38)

So, for the manipulator under study:

J=


xC − s1 yC −h zC −h

.

.

. −(xC − s1) 0 0

xC −h yC − s2 zC −h

.

.

. 0 −(yC − s2) 0

xC −h yC −h zC − s3

.

.

. 0 0 −(zC − s3)


(39)

Now, the specific conditions to verify the rank deficiency can
be found. Here it will be shown an example. Firstly, note that
when two legs are parallel, the locus of coupler point posi-
tions is a sphere centered at (h,h,h) and radius L. For legs 1
and 2 being parallel, s1 = s2 = h. Over this surface, defined
in the three output variables, the values of two variables can
be freely chosen. So, it is possible to set the posture where

xC = yC = h. For these values, from the positions equations,
Eq. (8), are obtained the values of zC and s3. Then, the pos-
ture of the manipulator, as well as the Jacobian matrix are
shown in Fig. 17. It is obvious that the rank of this matrix
decreases from 3 to 2.

7 Operational workspace

The direct singularity locus for the real size workspace was
depicted in Fig. 15. This surface comprises all existing work-
ing modes and this means that it cannot be directly used as it
has been obtained. The problem is that each point of such a
surface, which corresponds to a position of the coupler point
C, is, in fact, compatible with as many different postures of
the manipulator as existing working modes, but just one of
those working modes will be in a real direct singularity. In
other words, each working mode has its specific direct sin-
gularities, and the singularity locus that has been obtained
analytically is the overlap of all of them.
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Figure 20. Enlarged operational workspace for assembly mode ⊕ (two different views).

Then, it is necessary to identify the portions of the singu-
larity surface that are specifically associated with each work-
ing mode, that is, it is necessary to distribute the whole sin-
gularity locus among the eight existing working modes, eval-
uating the value of

∣∣Jq ∣∣ at each point of the singularity sur-
face for all existing working modes, as explained in Salgado
et al. (2008). The result of this process is shown in Fig. 18,
where in order to gain clarity, instead of the real manipulator,
the schematic kinematic chains have been represented. The
common situation for a parallel manipulator is having differ-
ent singularities for each working mode, but in this case, due
to the phenomenon previously described (the singularity sur-
face when three or two legs are parallel is the same) there are
four working modes sharing the same singularities.

Now, once the specific direct singularities of each working
mode have been identified, the singularity-free regions in the
workspace can be traced. For each working mode, the theo-
retical workspace is completely crossed by the singular sur-
face and is divided into adjacent regions associated with the
existing assembly modes. Both assembly modes can be iden-
tified as ⊕ and 	 because each one is associated with one
sign of |Jx | (and separated by positions where |Jx | = 0). For
each working mode, these singularity-free regions are con-
sidered the operational workspaces. In Fig. 19, the safe re-
gions for two working modes (ppp and npp) are shown, both
for a same assembly mode (⊕).

Although inverse singularities are positions where the plat-
form mobility is restrained, because a dependence relation
among output velocities is satisfied, they are not a problem
from the actuators control point of view. They can be reached
during the motion and, in fact, communicate the regions as-
sociated with the different working modes (for the same as-
sembly mode), so they can be used to enlarge the operational
workspace. When a workspace boundary (where two solu-
tions of the inverse position problem merge) is reached, the
manipulator can change its working mode and make a transi-

tion from one workspace region to another, maintaining the
same assembly mode, Macho et al. (2008, 2009, 2013).

Taking advantage of the possibility of carrying out this
type of transitions, all regions associated with the same as-
sembly mode, for all working modes, can be communicated
and therefore the operational workspace can be enlarged. In
Fig. 20 is shown the enlarged operational workspaces asso-
ciated with one of the two existing assembly modes.

8 Conclusions

In this paper, the potentiality of the use of the Pa2 pair as
an adequate kinematic chain to design translational parallel
manipulators is studied. After a deep kinematic analysis, it
is stated that the position and velocity equations are simpler
than those of chains based on revolute joints to obtain trans-
lational motion patterns. Additionally, the architecture based
on the Pa2 pair, is more robust than the designs based on two
consecutive floating prismatic joints avoiding the problems
of galling and blocking that can appear in the passive pris-
matic joints. Also, the Pa2 pair includes a structure based on
four parallel bars structure that provides the manipulator with
high stiffness and accuracy.

From a practical approach, the Pa2 pair is used in the de-
sign of a 3−PPa2 translational parallel manipulator which
is completely kinematically characterized by the solving of
the position and velocity problem, the singularity analysis
and the workspace computation. The results are obtained in
terms of simplicity of the architecture and the position and
velocity equations. The possibility of enlarging the opera-
tional workspace confirms the interest of the proposed ma-
nipulator design implementing the studied Pa2 pairs.

Given the potentiality of this manipulator, the design of
3−PPa2 could be enhanced regarding the dimensional syn-
thesis and optimization process, with the purpose of devel-
oping a real prototype in which also constructive considera-
tions, reliability, stiffness and easiness of assembly should
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be considered. Additionally, by studying the possibilities
of eliminating redundant constraints of the Pa2 pair, non-
redundant designs could be synthesized to reduce as much
as possible the influence of the manufacturing tolerances in
the kinematic and dynamic behavior of the translational ma-
nipulator.

Code availability. All the figures in the paper have been obtained
using GIM software (www.ehu.eus/compmech/software) with the
exception of Figs. 10 and 14 that have been obtained using com-
mercial mathematical software (MAPLE).
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