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Abstract. Owing to the changes in product requirements and development of new tool technology, traditional
tool selection approach based on the human experience is leading to time-consuming and low efficiency. Un-
der the cooperation of historical data resource accumulated by manufacturing enterprises, with human expert
resource, a new tool selection mechanism can be established. In this paper, we apply transfer learning to tool
selection issue. Starting from the foundation of migration, we showed a unified expression of expert experience
and process case in a multi-source heterogeneous environment. Then, we propose a transfer learning algorithm
(TLrAdaBoost) based on AdaBoost, which uses a small amount of target domain data (expert experience sample)
and a large number of source domain low-quality data (process case sample), to build a high-quality classification
model. Experimental results show the effectiveness of the proposed algorithm.

1 Introduction

Tool is the executive part of CNC machine, which directly
affects the machined surface. It needs to realize the func-
tion of CNC machine tool on the upper layer, and deter-
mines the processing quality of products on the lower layer.
Tool selection is reasonable or not, not only related to the
machine tool processing efficiency, workpiece size accuracy
and surface roughness or other related indicators, but also
plays an important role in production costs and enterprise
efficiency. In the traditional tool selection process, due to
the level of experience and knowledge of the process per-
sonnel uneven, there is a great difference in the cutting per-
formance of tools selected by different process personnel. In
other words, there is uncertainty in the selection results, re-
sulting in time-consuming and low efficiency. In recent years,
traditional tool selection based on the human experience is
increasingly unable to adapt to the development needs of
manufacturing enterprises, mainly for the following reasons:
(1) The growing demand for personalized products, which
leads to an increasingly diversified product type and product
structure of manufacturing enterprises, and the product cy-
cle changes rapidly (Car et al., 2009); (2) New tool materials

and structures continue to emerge, the general process per-
sonnel lack experience of tool selection, and need more help
from human experts. Therefore, for the celerity and accuracy
of tool selection, it is desirable to have a new tool selection
mechanism to make up for deficiencies above.

Manufacturing enterprises have accumulated a large
amount of historical data on the selection of tool, tool se-
lection knowledge exists in these massive data and informa-
tion, at the same time, machine learning and knowledge dis-
covery technology development makes using these data and
information possible. For example, Ahmad et al. (2010) pro-
pose a new system approach to optimize tool sequences using
genetic algorithms. Oral and Cakir (2004) define computer-
aided optimum operation and tool sequencing to be used in
the generative process planning system developed for rota-
tional parts. These literatures are mainly focused on tool se-
quence optimization. In addition, Geng et al. (2013) present
a new method for selecting the optimal multi-cutter set for
five-axis finish machining. Meng et al. (2014) present a new
method of the optimal barrel cutter selection for the flank
milling of blisk. These literatures are focused on tool geom-
etry selection or path generation. In this paper, we focus on
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identifying and extracting features from tool selection data
and information to learn a more intelligent selection method.

In order to identify and extract features, firstly, we need to
understand what kind of composition the data and informa-
tion has. They mainly come from the following two types of
resources: (1) Expert experience resources: the domain pro-
fessional knowledge and technical level is high, but domain
experts have the characteristics of scarcity, so the quality of
resources is high, but the number is less. (2) Process cases
resources: manufacturing enterprises have a large quantity
of process cases, so these resources are numerous but with
lower quality. It can be seen that these two types of resources
and the sample sets extracted from them will be unbalanced
in quantity and quality. Besides, within the same type of re-
sources, there is almost no guarantee that the number of sam-
ples collected for each tool is equivalent. Therefore, due to
the imbalance in the data source, our method for tool se-
lection is to solve an unbalanced problem. If we only use
a small number of high-quality expert experience resources
as training samples, it is not enough to learn a reliable clas-
sifier. Meanwhile, only using lots of low-quality process re-
sources as training samples can’t guarantee that the learned
classifier has a low error rate. Owing to the unbalanced na-
ture of the data sources, we try to apply transfer learning to
the knowledge balance and integration of expert experience
and process cases in tool selection.

The remaining sections are organized as follows: In the
next section, we present the literature review on tool selection
and transfer learning. After that, in Sect. 3, we generalize our
approach, explain its principles, and decompose it into two
main parts. In Sect. 4, we give a unified expression of multi-
source heterogeneous knowledge, establishing the basis of
transfer learning. In Sect. 5, we define some notations we will
use later and give our algorithm. Section 6 briefly introduces
the scene vector similarity calculation method. In Sect. 7, we
give examples to verify the validity of the method. Finally,
concluding remarks are given in Sect. 8.

2 Related work

Over the years, there has been some reported work on trans-
fer learning. At first, it is a key point to establish the basis of
transfer learning, which means we must get the unified repre-
sentation of the knowledge. It is difficult and laborious to ex-
tract empirical knowledge from human experts and formalize
the knowledge into decision rules that can characterize the
expert performance (Leake et al., 1996). But under certain
circumstances, it works well. According to the characteris-
tics that human experts diagnose the fault of transformer, Shi
et al. (2009) analyze and discuss the system structure, knowl-
edge representation and reasoning mechanism to build fault
diagnosis expert system of transformer. Besides, the struc-
tured characteristics of the case-based process system and
the large amount of process cases can help us to model well.

Therefore, we extract features from multi-source heteroge-
neous knowledge resource of tools, which contains expert
experience and process cases, and unify them to establish the
basis of transfer learning.

Secondly, transfer learning theory resolves the problem of
unbalanced learning and sample migration between differ-
ent domains, which is mainly used for internet applications,
like, text classification, clustering problem, collaborative fil-
tering, image recognition, emotion classification, etc. Cur-
rently, transfer learning has well resolved unbalanced prob-
lem (Pan and Yang, 2009). Transfer learning first appeared in
the field of human learning, mankind is able to quickly learn
new knowledge largely due to the ability of knowledge trans-
fer. For example, the knowledge transfer will occur between
cycling and riding motorcycles. It focuses on the knowledge
transfer between different but similar areas, tasks and distri-
butions. When the task from one new domain comes, new
domain samples are relabeled costly, and it would be a waste
to discard all the old domain data (Li et al., 2015). Wang
et al. (2014) propose a transfer learning method for col-
laborative filtering, called Feature Subspace Transfer (FST)
to overcome the sparsity problem in collaborative filtering.
Kuhlmann and Stone (2007) proposed a graph-based method
for identifying previously encountered games, and applied
this technique to automate domain mapping for value func-
tion transfer and speed up reinforcement learning on variants
of previously played games. Wu and Dietterich (2004) inte-
grated the source domain data in Support Vector Machine
(SVM) framework for improving the classification perfor-
mance. Argyriou et al. (2008) proposed a transfer learning al-
gorithm in heterogeneous environment, and presented meth-
ods for learning and expressing the heterogeneous environ-
ment structure. In this paper, the data source characteristics
of transfer learning are similar to those of the AdaBoost algo-
rithm, then we ameliorate the AdaBoost algorithm with con-
tinuous confidence output to make it have the ability of sam-
ple migration, and improve the classification performance, so
that it is successfully applied to the tool selection in the field
of industrial manufacturing.

3 Principle explanation

The new tool selection method we proposed is based on
transfer learning, we first identify and extract features from
multi-source heterogeneous knowledge resources of tools
and unify them to establish the basis of transfer learning.
And then, we ameliorate the traditional AdaBoost algorithm,
and propose our transfer learning algorithm TLrAdaBoost to
solve the problem of imbalance within and between domains
in the sample sets. Finally, we use the scene similarity match-
ing method to select the tool model or name. Based on this, a
new tool selection mechanism is established. The schematic
diagram is shown in Fig. 1.
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Figure 1. The selection principle of tools.

There are two key points in our approach: we establish
the unified expression of expert experience and process case.
Nevertheless, these two parts are multi-source heterogeneous
and require a uniform representation of knowledge from
different resources. By doing so, a large number of high-
quality training samples can be provided for selected algo-
rithm model. Secondly, TLrAdaBoost algorithm, using the
ideology of transfer learning, is proposed to deal with the
problem of unbalanced learning and sample migration be-
tween different domains. For learning an effective classifier
for tool selection problem, a sufficient number of high qual-
ity training samples are required. AdaBoost algorithm has a
solid theoretical basis and efficient computing performance,
its advantage is that after several iterations, it can easily pro-
vide such high-quality training samples, and thus improve
the classification performance of weak classifier, which has
made a great success in face recognition, such as Freund
and Schapire (1995), Schapire et al. (1998) and Schapire and
Singer (1999). However, it has two shortcomings when deal-
ing with the problem of tool selection: (1) AdaBoost is based
on the assumption that the distribution of the class within the
domain is roughly balanced, but the tool selection problem
is an unbalanced classification problem in one field. It will
lead to a decline in classifier performance. (2) AdaBoost re-
quires samples of training classifiers and test classifiers from
the same domain, which does not have the ability to migrate
samples from other areas and can’t solve the problem of im-
balance between domains. To resolve the existing problems
of AdaBoost algorithm, our TLrAdaBoost algorithm makes
a use of transfer learning theory, so that it has the ability to
deal with unbalanced classification learning and data migra-
tion. At the same time, we introduce the similarity matching
of scene vectors, and finally realize the selection of tools.

To sum up, we will introduce the core content of our algo-
rithm.

4 The unified representation of expert experience
and process case

Based on the above analysis, we firstly extract empirical
knowledge from human experts and formalize the knowl-
edge into clear representation. Empirical knowledge in broad
sense refers to people with the ability to identify and handle
problems, which contains cognitive elements and skill ele-
ments (Von Krogh and Roos, 1996). Cognitive elements of
problem identification are referred to as the “mental model”
by Johnson Laird (Polanyi, 1966), who believes that it is a
reflection of reasoning capability achieved in the practice of
dealing with the similar problems in brain. Skill elements
of solving problems mainly include specific knack, craft and
skill in a certain context. Empirical knowledge exists in the
various forms of “cases” in everyday life, which is generally
more obscure. The knowledge embedded in these “cases” has
three characteristics: operational, contextual, specific (Zhou
et al., 2010). We use these characteristics to describe “cases”,
which means that we use a scenario – “scene information” to
define general feature knowledge, and define specific knowl-
edge in the “cases” with the “sign information”. Then, we
further establish the knowledge expression model, so as to
solve the problem.

Tool selection expert experience refers to knowledge and
skills about tool selection of the experts from tool manufac-
turer and manufacturing enterprises, which exists in the brain
of these experts or their related discourses. According to the
method above, a tool selection expert experience can be rep-
resented as a “case” using the logical process of “scene infor-
mation+ sign information→ tool parameters→ tool type”.
The specific representation, which contains four elements, is
as follows.

I = {E,S,C,B}

I – indicates a case; E – is a finite set which represents scene
information; S – is a finite nonempty set that represents sign
information; C – is a finite nonempty set that represents the
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Figure 2. Data structure of expert experience and process cases.

information of tool parameters; B – is a nonempty set that
represents the name or type of the cutting tool.

Scene information: it refers to the information about ma-
chine tool, workpiece, process, etc, related to a specific pro-
cessing work step.

Sign information: it refers to a detailed description of the
main signs of different processing problem under a certain
scene information. The basic form of processing will be the
sign information here.

Cutting tool parameter information: it refers to the at-
tribute features of the selected tool under requirements of
actual processing work step, including toolbar information,
the clamping way of blade, blade information.

Name or type of cutting tool: it refers to the experts se-
lect the cutting tool parameter information according to the
specific scene and sign information, and then determines the
tool type for the actual machining. Such as cylindrical turn-
ing tool (CTGNR2020K12).

For example, in the selection of CNC turning tool, the in-
stances of expert experience can be expressed in four mem-
ber groups which mainly include the characteristic items in
Table 1.

Process case is referred to the results of cutting tool selec-
tion by the technicians according to the specific production
requirements. It exists in a large number of CNC machin-
ing process cards and cutter specification cards. It is not hard
to find those two parts including all the information of the
above four-member group. Therefore, the representation of
a process case can be referred to the representation of ex-
pert experience. Tool selection of expert experience and pro-
cess cases can be expressed by a data structure as shown in
Fig. 2. The arrow reflects the internal logical relationship of
the structure.

Through the above data structure, the sample set of expert
experience and process cases can be expressed by vector I =

{E,S,C,B}. In the two groups of samples, sign information
S only has one characteristic attribute. Taking the selection
of CNC lathe tool as an example, characteristic attribute S
refers to the basic processing form that has 5 attribute values.
Most of the models of the CNC lathe tool can be divided into
these 5 categories based on the basic processing form, so the
sign information S can be used as the label information of
samples.

5 TLrAdaBoost algorithm

5.1 Relevant definition

In order to make the algorithm more clearly, we give the def-
initions related to the problem. This algorithm is concerned
with the migration of instances between the similar domains,
sharing the same classification objectives between domains.

5.1.1 Basic symbols

– Xa is Target Sample Space,Xb is Source Sample Space.

– Y = {1,2, . . .,C} is Class Space.

– Function c: X→ Y , Samples x ∈X are mapped to real
class labels c(x) ∈ Y .

5.1.2 Test data set

– S = {x1, . . .,xm}, S ∈Xa , m is the number of elements
in the collection.

5.1.3 Training data set

– TT = {x
a
i c(x

a
i )}, xai ∈Xa , i = 1, 2, . . ., d

– TS = {x
b
j c(x

b
j )}, xbj ∈Xb, j = 1, 2, . . ., q

c(x) is true label of x, TT is target training data set, TS is
source training data set and including TS1TS2, . . .,TSK .

5.2 Description

The description of the TLrAdaBoost algorithm is as follows:
Input: Tagged data set: TT, TS1TS2, . . .,TSK ; Test data set

S; Basic classification algorithm “Learner”; Iteration number
N .

– Step 1. Merge all source domain training set and target
domain training set.

T = TS1 ∪ TS2 ∪ . . .∪ TSK ∪ TT

– Step 2. Initialization:

w1
i (xi)= 1/ |T | , (xi,yi) ∈ T

– Step 3. Do For t = 1, 2, . . ., N

1. Based on the weights wti of the training set, call
the basic classification algorithm “Learner”, train-
ing weak classifier.
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Table 1. The characteristic items contained in expert experience (CNC turning tool).

Primary characteristics Secondary characteristics characteristic item

E The machine information Machine type, clamping way, spindle power, tool accessories.
Workpiece information Blank type, workpiece material, workpiece geometry, size.
Processing information Machining accuracy, surface quality, cutting depth, cutting feed.

S Processing type Cylindrical/Surface processing, hole processing, thread machining,
spherical surface machining, groove machining.

C Cutter bar type Section of cutter bar, cutter bar width, cutter bar length, cutting groove
type.

Clamping system Lever type, upper-clamping, hole clamping, sunk screw clamping, pull
clamping, hook pin clamping.

B Blade information Blade material, blade shape, cutting edge shape, cutter head shape, back
angle of blade, cutting direction, height of tool nose, blade length, blade
accuracy.

Tool model Such as: cylindrical turning tool (CTGNR2020K12).

a. Class distribution: pl =
∑
i:yi=l

wti , l = 1, 2, . . .,

C;
b. To redivide T : T = T t1 ∪ T

t
2 ∪ . . .∪ T

t
nt

, and

compute the sum p
j,l
t =

∑
i:(xi∈T tj ,yi=l)

wti of the

weights of l ∈ {1, . . .,C} class samples in T tj ;

c. ht (x): x ∈ T tj , ht (x, l)= ln(pj,lt /pl),
j = 1, . . .,nt ;

d. To select ht (x) and make Zt =
nt∑
j=1

C∏
l=1

(pj ·lt /pl)pl the minimum;

e. To computer the Transfer Efficiency of each
source training data set and the target training
data set: akt , k = 1, . . ., K .

2. To adjust sample weight:

wt+1
i =



wti exp(−ht (xi,yi)+
C∑
l=1
plht (xi, l)

+αtk)/Zt , (xi,yi) ∈ Si
wti exp(−ht (xi,yi)

+

C∑
l=1
plht (xi, l))/Zt , (xi,yi) ∈ TT

– Output: Strong Classifier: H (x)= argmaxl {f (x, l)}

In the formula, f (x, l)=
T∑
t=1
ht (x, l).

5.3 Analysis

TLrAdaBoost, based on real-AdaBoost that has continu-
ous confidence output, is proposed, which is able to deal

with data migration and sample imbalance among different
classes.

The training sample set collected from the whole sample
space is S = {(x1,y1) , . . ., (xm,ym)}, for multi-classification
problem yi ∈ {1,2, . . .,C}, the confidence level of label l is
ht (x, l) that is the output of weak classifier ht (x). The strong
classifier that has better classification performance consists
of T (t = 1, . . .,T ) weak classifiers ht (x) in some way. Lin-
ear combination is the most commonly used combination so

we use combination function f (x, l)=
T∑
t=1
ht (x, l) and the

strong classifier H (x)= argmaxl{f (x, l)}. The strong clas-
sification algorithm always hopes that the training error rate
Eq. (1) is the least:

ε =

m∑
i=1

w1
i

[[
H (xi) 6= yi

]]
(1)

In the formula, w1
i = 1/m, the value of

[[
H (xi) 6= yi

]]
is 1 if

the conditions meet, otherwise is 0.
When the class distribution is unbalanced, assuming that

the prior probability of different labels is pl = Prx∈S
[
y = l

]
,

a reasonable approach is to change the average confidence

value to f (x)=
C∑
l=1
plf (x, l). It is proved that when T is

very large, ht (x) is independent of each other and ht (x, l)
is uniformly bounded, so the error rate of the training error
rate expressed by the symbolic function can be transformed
into the extreme value problem of the exponential function.
In other word, Eq. (1) can be approximated as Eq. (2).

ε =

m∑
i=1

w1
i

[[
H (xi) 6= yi

]]
≤

m∑
i=1

w1
i

T∏
t=1

exp(−ht (x,yi))

+

C∑
l=1

plht (xi, l)) (2)
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By training ht (x) to make Eq. (1) minimum is transformed
into making Eq. (2) minimum. The extremum of Eq. (2)
can be done by training ht (x) one by one in a recur-
sive way, specifically by selecting ht (x) such that Zt =
nt∑
j=1

L∏
l=1

(pj,lt /pl)pl is minimized. Zt is called as the normal-

ization factor. Therefore, the training error rate can be esti-
mated as Eq. (3).

ε ≤

T∏
t=1

(∑nt

j=1

(
L∏
l=1

(pj,lt /pl)
pl

))
(3)

Transfer Efficiency is a measure of the performance of the
target task before and after the migration. In the T itera-
tion process, the algorithm first will be trained on the tar-
get field training set for weak classifier ht (x) that obeys
the distribution of w(TT)/‖w(TT)‖, while ‖v‖ is the L1
norm of feature vector. Then, each source training set is
combined with the target training set in turn to generate
a new training set TSI i ∪ TT that obeys the distribution of
w(TSi ∪ TT)/

∥∥w(TSi ∪ TT)
∥∥. On the basis of this, the new

classifier h∗t (x) is trained. Weight error of the training set can
be calculated by Eq. (4).

ε =
∑

(xi ,yi )∈TT

wt (xi) |h (xi)− yi |/‖wT (TT)‖ (4)

Calculated by the formula, εt is the weight error of ht (x), and
ε∗it is the weight error of h∗t (x). The transfer efficiency is de-
fined as the difference of the weight error that is αit = εt−ε

∗i
t .

If TSI i is the positive migration, there is exp(αit )ε (1, e], or
exp(αit )ε (1/e, 1] when it is the negative migration, other-
wise exp(αit )= 1.

6 Scene information vector similarity calculation

The ultimate goal of tool selection is to select a tool that can
meet the requirements of machining according to the scene
information of a practical application of the CNC cutter. TL-
rAdaBoost algorithm only achieves the preliminary classifi-
cation of tools, it is necessary to select a specific tool name
or model by measuring the similarity between the scene
information vector of all the sample samples in the class
space and the actual application scene vector. Vector simi-
larity refers to the degree of similarity between two equal di-
mension vector objects. There are two kinds of measurement
methods: distance measure method and similarity function
method (Zhang et al., 2009). In this paper, the angle cosine
method (Eq. 5) is used to measure the degree of similarity
between two vectors.

sim(x,y)= cos(x,y)= (x,y)/ (‖x‖ · ‖y‖)

=

n∑
i=1

xi · yi/(
n∑
i=1

x2
i ·

n∑
i=1

y2
i )1/2 (5)

Figure 3. Shaft parts process diagram.

The geometric significance of the cosine angle is the cosine
value of two vectors in N -dimensional space consisting of N
elements. Each element in a vector needs to be dimensionless
before using it, so that the elements are positive and the range
of cosine value is [0,1]. The larger the value is, the smaller
the angle between two vectors is and the more similar the
two vectors are. When two vectors are exactly the same, the
value is 1 (Tian and Xie, 2006).

7 Instance verification

Our method based on transfer learning, which is different
from the traditional one, automatically selects tools through
the computer, ensuring the rapid and accurate selection of
tools. The method is verified by an example as follows.

A process diagram of shaft parts is shown in Fig. 3. Ma-
chining inner holes of ∅ 28× 25 is a step in the processes.
Requirements: turning, rough machining, the workpiece ma-
terial is cast steel. For the sake of convenient calculation,
we give parametric representation and construct the train-
ing sample set only for machine type, workpiece material,
machining accuracy, basic processing form, blade shape and
tool number. The results are shown in Tables 2, 3.

We use the sample set of target domain and the sample set
of source domain as the input data, and the basic process-
ing form as the class label. Meanwhile, the TLrAdaBoost
algorithm is used to study the training samples, the train-
ing results are 6 kinds of samples: inner hole turning, end
surface turning, spherical turning, threading, groove turning,
end milling, groove milling. And inner hole turning is in line
with the requirements of instances. Its parametric matrix is
A:
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Table 2. Target domain sample set (Expert experience sample set).

Number Characteristics Representation

1 Lathe+ cast steel+ rough turning+ turning inner hole+T-blade+ 2# (1, 2, 1, 2, 1, 2)
2 Lathe+ cast steel+ rough turning+ turning the end+S-blade+ 4# (1, 2, 1, 1, 2, 4)
3 Lathe+ cast steel+ rough turning+ turning spherical+T-blade+ 5# (1, 2, 1, 5, 1, 5)
4 Lathe+ cast iron+finish turning+ threading+A-blade+ 3# (1, 1, 2, 6, 3, 3)

Table 3. Source domain sample set (Process case sample set).

Number Characteristics Representation

1 Lathe+ cast irion+ rough turning+ turning groove+S-blade+ 4# (1, 1, 1, 5, 4, 4)
2 Miller+ cast steel+finish milling+milling the end+ face milling cutter+ 10# (2, 2, 1, 1, 1, 10)
3 Lathe+ cast steel+finish turning+ turning inner hole+T-blade+ 2# (1, 2, 1, 3, 1, 2)
4 Lathe+ cast steel+ rough turning+ threading+A-blade+ 3# (1, 2, 1, 6, 3, 3)
5 Miller+ cast steel++finish milling+milling groove+ face milling cutter+ 10# (2, 2, 1, 5, 1, 10)
6 Lathe+ cast iron+ rough turning+ turning inner hole+S-blade+ 4# (1, 1, 1, 2, 2, 4)

A=

 1 2 1
1 2 1
1 1 1

2 1 2
3 1 2
2 2 4


The first 4 columns of the matrix are the scene information
matrix

B=

 1 2 1
1 2 1
1 1 1

2
3
2

 .
The parameterized representation of the scene information
vector is C = [1 2 1 2]. According to Eq. (5), the angle co-
sine of each row vector in matrix B and vector C is calculated
separately. And the final result shows that the scene “num-
ber 1” in the target domain sample set is exactly the same
as instance scene. Therefore, the “T-blade+ 2#” is the final
selection of CNC tool. The results proved to be correct.

We also choose groove processing tool selection as an ex-
perimental validation. The dataset comes from Xi’an Win-
way Tools Co. Ltd., including tool design drawings, process
files, and expert experience data. For the sake of data repre-
sentation and experiment convenience, 12 properties of tool
selection knowledge representation were selected as the sam-
ple shared attribute space, covering the machine tool factors,
process factors and workpiece factors, as shown in Table 4.

A total of 50 sets of samples are used in the experiment, of
which 35 groups are in the form of turning and the rest are in
the form of milling. During training, samples A0001–A0049
are randomly input to the classifier and the number A0050 is
used as a test sample to verify the feasibility of the algorithm.
Sample data set as shown in Appendix A. Table A1 shows
tool selection scene information and tool model of the sample
dataset, Table A2 shows tool design drawings corresponding
to the tool model.

In order to ensure the unity of presentation of tool selec-
tion scene information, data pre-processing is required before
tool selection. Discrete attributesX1–X5,X9–X11 need to be
binarized. Table 5 uses the clamping method X2 as an ex-
ample. Other discrete attributes are handled in the same way.
Continuous attributes X6–X8 uses K-means clustering to di-
vide continuous attribute space into six intervals, and then
uses different integer values to represent the data falling in
each sub-interval. The representation of scene information is
shown in Appendix B. In Table B1, the clustering center val-
ues represents the continuous attributes X6–X8.

The scene information selected for test sample A0050
is: turning, screw fastening form, A03550, bar, cutting per-
formance 2.5, diameter 21.00 mm, groove deep 0.75 mm,
groove width 2.40 mm, finishing, Ra1.6. The size of the
part slot is shown in Fig. 4. Continuous attributes diame-
ter, groove depth and groove width are divided into appropri-
ate clustering intervals according to the value of the distance
from the clustering center. Therefore, the scene information
of No. A0050 can be expressed as a vector:

PV = [0000010 11]

The basic processing form X11 is as a class label space,
scene vector PV ’s class label of test sample A0050 is pre-
dicted with the learned classifier. Then, we get its class la-
bel is cylindrical groove machining. Finally, the sample data
set under the same class label is extracted, including A0002,
A0003, A0012, A0014, A0016, A0026, A0027, A0031 and
A0040. These samples are pre-processed to form a tool scene
information matrix KV, expressed here as integer values.
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Table 4. Dataset properties.

Machine Tool clamping Workpiece Blank Cutting Diameter
type X1 method X2 material X3 shape X4 performance X5 X6/mm

Groove deep
X7/mm

Groove width
X8/mm

Processing
accuracy X9

Surface rough-
ness X10/µm

Basic processing
form X11

Tool model X12

Table 5. Discrete attribute clamping method X2.

Screw fastening Press plate Lever fastening Integrated Wedge block Compound
form form form form fastening form fastening form

Integer value 0 1 2 3 4 5
Binary value 000 001 010 011 100 101

Figure 4. Test sample A0050 part slot size.

KV=



0 0 0 0 0 1 2 0 1 1
0 0 4 0 2 5 4 2 1 1
0 1 3 0 2 5 4 1 0 3
0 1 4 0 2 5 3 0 1 0
0 0 4 0 2 4 3 1 1 1
0 1 2 0 1 5 5 1 0 3
0 0 4 0 2 3 5 1 0 3
0 0 5 0 3 4 2 2 1 1
1 0 4 0 2 3 1 0 0 3


According to Eq. (5), the angle cosine valueMi between each
row vector in the matrix KV and vector PV , where KV and

Figure 5. Sample A0002 part slot size.

PV are converted to binary, is calculated respectively, and
the result is shown in Table 6.

Among them, the similarity between the scene of sample
A0002 and the experimental scene is greater than 85 %, that
is, the selection results of No. A0002 may conform to the test
sample scene, and the tool scheme drawing is shown in Ap-
pendix A, Fig. A1. After inquiry from the technical depart-
ment of Xi’an Winway Tools Co. Ltd, the tool of No. A0002
can process the slot of test sample A0050. The correspond-
ing tool type is Winway CFIL2525P1902-GK-20XD. The
actual selection result of the test sample A0050 is Winway
CFIL2525P04-T0881, as shown in Appendix A, Fig. A2.
Comparing the two processing scenarios (Figs. 4 and 5), it
can be found that the two tools have some interchangeability
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Table 6. Similarity calculation results.

M1 = 0.8660 M2 = 0.6124 M3 = 0.3651 M4 = 0.4082 M5 = 0.4082
M6 = 0.3651 M7 = 0.3849 M8 = 0.3849 M9 = 0.4082

due to the similar processing factors and the non-conflicting
spatial position constraints.

8 Conclusion

We apply transfer learning to tool selection issue in the field
of industrial manufacturing in this paper. Starting from the
foundation of migration, we showed a unified expression of
expert experience and process case in a multi-source het-
erogeneous environment. In addition, we proposed a trans-
fer learning algorithm (TLrAdaBoost) based on AdaBoost,
which uses a small amount of target domain data (expert ex-
perience sample) and a large number of source domain low-
quality data (process case sample), to build a high-quality
classification model. In this process, the imbalance data prob-
lem that AdaBoost can’t solve is resolved. Finally, we use the
scene similarity matching method to select the tool model
or name. The results show that the proposed method using
TLrAdaBoost can effectively classify samples by learning
cross-domain knowledge.

Data availability. Data are not publicly available.
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132 J. Zhou et al.: Tool Selection Method Based on Transfer Learning for CNC Machines

Appendix A

Figure A1. Sample No. A0002 cutting tool scheme.

Figure A2. Sample No. A0050 cutting tool scheme.
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Table A2. Sample tool data set.

Tool model X12 Tool schematic

CER2532RU4R-M254200  

CFIL2525P1902-GK-20XD

 

 

 

CGIR2020M03-T0505

 

 

CFIR2525P06-WW-C20  

C6-CFIR-45065-03080035

 

 

HW-2D162-615
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Table A2. Continued.

Tool model X12 Tool schematic

MR6-ISO1.0-048-6R1

 

 

A32R-CGIR4004-T0920

 

 

 
CFIR1212H03-T0870

 

 

E05E-1.25ISO-10-NR-S9354

 

 

E05E-1.0ISO-15-NR-S9354

 

 

CGIR2525P1604-WWWYL
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Table A2. Continued.

Tool model X12 Tool schematic

ZY15R04-62758

 

 

 

CFIL2525KNB3-T0904

 

 

 

NB3R-2.5-T0449  

CFIR3225M03-T0359

 

 

S32S-NB4L-4.3-250L-T0857

 

 

CFIR3232P08-T0910

 

 

CNR0050U16AHD
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Table A2. Continued.

Tool model X12 Tool schematic

A40T-CGGL06-WW

 

 

 

SNGR12Q08SC-T0572

 

 

 

CGIL2525M03-T0984

 

 

 

CGIL2525M03-T0986

32 

 

 

 

CNR0050U16AHD-T0056

 

 

SCD2.6-10-65-0002
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Table A2. Continued.

Tool model X12 Tool schematic

S(C)VJBL2532P22-FVD-PRSH992

 

 

CGHR2525P06-T1052

 

 

CFIR2525M02L-T0215

 

 

NB3R-1.0M0

 

 

S40T-MVUNR16  

CFIR3225P08-T0994  

CFIR2525M04-T0911
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Table A2. Continued.

Tool model X12 Tool schematic

S12U-SDRCP07-D

 

 

CGIL3225P02R650700-QW

 

 

 

WWM254150-DJ-X32R.4

 

 

BF-D34D34.1-CC06-CF50

 

 

 

TM-MJ11X1.25-10R1-SP-E0560

 

 

1/4-28UNJF-3B-8876
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Table A2. Continued.

Tool model X12 Tool schematic

BR-D44.6D45.1-CC09-B50

 

 

SMT-40-125-25SF

 

 

 

CNL0040H22Q-12-20SF  

WWGMC3597-DJ-X28R40D

 

 

MST-D18.5-4.2-90-SF20-E0392

 

 

SM20.2-15-80-SF20
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Table A2. Continued.

Tool model X12 Tool schematic

M5-10-3F-60-D6

 

 

WWDBLHP-DJ-T45.1C

 

 

1/4-28UNJF-L16-SP

 

 

 

WWGLY15T-DJ-T15.75A15

 

 

 

MCA-16-C45-SP05-SF20

 

 

 

 

CFIL2525P04-T0881
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Appendix B

Table B1. Representation of scene information.

Attributes: Integer value

Machine type X1 Turning: 0 Milling: 1
Tool clamping
method X2

Screw fastening
form: 0

Press plate
form: 1

Lever
fastening
form: 2

Integrated
form: 3

Wedge block
fastening form:
4

Compound fas-
tening form: 5

Workpiece mate-
rial X3

Aluminum
alloy: 0

Medium carbon
steel: 1

Alloy steel:
2

Titanium
alloy: 3

Heat treated al-
loy steel: 4

High-
temperature
alloy: 5

Blank shape X4 Bar: 0 Square: 1
Cutting perfor-
mance X5

2.5: 0 3: 1 3.5: 2 4: 3

Diameter X6/mm 8.70: 0 21.10: 1 42.33: 2 59.72: 3 86.93: 4 109.54: 5
Groove deep
X7/mm

0.86: 0 1.69: 1 2.74: 2 4.25: 3 6.40: 4 10.00: 5

Groove width
X8/mm

2.39: 0 4.92: 1 8.38: 2 14.65: 3 26.71: 4 36.00: 5

Processing accu-
racy X9

Roughing: 0 Finishing: 1

Surface rough-
ness X10/µm

0.8: 0 1.6: 1 3.2: 2 6.3: 3 12.5: 4 25: 5

Basic processing
form X11

Cylindrical
groove machin-
ing: 0

End groove ma-
chining: 1

Internal
groove
machining:
2

Thread ma-
chining: 3
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