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Abstract. The mechanisms of one degree of freedom can be dynamically analysed by setting out a single
differential equation of motion which variable is the generalized coordinate selected as independent. In front of
the use of a set of generalized dependent coordinates to describe the system, the method exposed in this work has
the advantage of working with a single variable but leads to complex analytical expressions for the coefficients of
the differential equation, even in simple mechanisms. The theoretical approach, in this paper, is developed from
Eksergian’s method and Lagrange’s equations. The equation of motion is written by means of a set of parameters
– reduced parameters – that characterize the dynamic behaviour of the system. These parameters are function
of the independent coordinate chosen and its derivative and can be obtained numerically by direct calculus or
by means of a kinetostatic analysis, as is proposed. Two cases of study of the method are presented. The first
example shows the study of pedalling a stationary bicycle used in a rehabilitation process. The second one shows
the analysis of a single dwell bar mechanism which is driven by an electric motor.

1 Introduction

Analysis of mechanisms from the kinematic point of view
is, in general, not difficult to make except in the singular
configurations and their environment. There are a number of
programs that facilitate it or directly carry out it in lesser or
greater extent: Geogebra (Geogebra, 2016) whose main ob-
jective is the dynamic geometry, CAD programs including
a kinematic analysis module or a number of specific pro-
grams (Kurtenbach et al., 2014). The kinetostatic or inverse
dynamic analysis, in which the mechanism has as many actu-
ators as degrees of freedom and all movements are imposed,
requires extra effort, both conceptual and operational. This
fact is particularly difficult when trying to determine the con-
straint actions in the kinematic pairs of the mechanism. There
are also a number of programs that perform kinetostatic anal-
ysis, such as PAM – Program of Analysis of Mechanisms –
of Mechanical Engineering Department of UPC (Clos and
Puig-Ortiz, 2004; Cardona et al., 2006), SAM – Synthesis
and Analysis of Mechanisms – by ARTAS Engineering Soft-
ware (SAM, 2016), WinMecC of Mechanical Engineering
Department of Malaga University (WinMecC, 2016) and oth-
ers. Finally, the direct dynamic analysis, in which the mech-

anism has fewer actuators than degrees of freedom, repre-
sents a qualitative leap in difficulty of implementation. To
the algebraic manipulation of the above analysis the solution
of differential equations must be added. There are different
applications that carry out direct dynamic analysis. The use
of such applications is not always justified because of their
complexity and because they are not trivial to use, even for
the simulation of a system of one degree of freedom. Their
use may be not recommended or even unfeasible in some
cases, such as when the study of the mechanism must be per-
formed in real time, as part of the simulation and control of a
production process. In these cases, there should be a low-cost
model both computational and in implementation.

In the world of robotics it is usual to use reduced inertial
parameters to minimize the time of calculation and simula-
tion. Several authors have proposed methods to determine
and to reduce the number of parameters to be used in the in-
verse dynamics of manipulators (Fogarasy and Smith, 1997;
Ebrahimi and Haghi, 2013; Díaz-Rodríguez et al., 2010; Ros
et al., 2012; Chen and Beale, 2003; Yoshida et al., 1995) as
well as to determine the minimum number of required pa-
rameters (Gautier and Khalil, 1988). It has also been inves-

Published by Copernicus Publications.



92 S. Cardona Foix et al.: Reduced inertial parameters in system of one degree of freedom

tigated the possibility that the parameters vary over time to
facilitate manoeuvrability of manipulators in singular config-
urations (Parsa et al., 2015). With the aim of describing the
inertial behaviour of mechanisms, it seems a good idea to use
inertial parameters that vary over time.

The dynamic analysis equations of mechanisms are ob-
tained usually by means of Lagrangian formulation (Foga-
rasy and Smith, 1997), Newtonian formulation and virtual
work principle (Wu et al., 2008).

In this paper, similarly to other works of the authors (Car-
dona et al., 2009; Jordi et al., 2008), the direct dynamic anal-
ysis of a mechanism of one degree of freedom by using its
reduced inertial parameters and reduced forces and moments
is proposed. Both types of parameters are function of the
independent generalized coordinate, taken for kinematic de-
scription of the mechanism, and may be obtained, for exam-
ple, using applications that perform the kinetostatic analysis.
With these parameters, the direct dynamic analysis leads to
a single second order differential equation, equation of mo-
tion, which is easily integrated to obtain the time evolution of
the generalized coordinate employed. Each constraint action,
force or moment, is given by an algebraic expression that in-
cludes the reduced parameters associated with such action
and the first two derivatives of the coordinate, obtained inde-
pendently in the process of integration of the equation of mo-
tion. In some of the mentioned works, all the reduced inertial
parameters are obtained from the Lagrangian formulation. In
this study, these parameters, as well as the reduced forces
and moments present in the equation of motion, are intro-
duced from the energy theorem or Eksergian’s method (Ek-
sergian, 1930; Doughty, 1988). This approach allows the in-
corporation, in a simple way conceptually and operationally,
of motors and passive resistances described by means of the
dissipated energy.

The determination of reduced inertial parameters and re-
duced forces is performed by using the mentioned programs
that allow static, kinematic and kinetostatic analysis of planar
mechanisms controlled by actuators, angular or linear.

2 Dynamics of a mechanism of one degree
of freedom

To obtain the equation of motion of a mechanism of one de-
gree of freedom, the use of energy theorem in differential ver-
sion or Eksergian’s method (Eksergian, 1930) is proposed:

Ėc = P (1)

Being Ec the kinetic energy of the mechanism and P the
sum of the power of the external forces which act on it, and
the power of the no-constrain internal forces that make no-
null work, as motors or passives resistances, which are not
modelled as an explicit function of constrain forces.

For a system of one degree of freedom, kinetic energy Ec
can be expressed in terms of the independent generalized co-

ordinate q and its time derivative, so that:

Ec =
1
2
m (q) q̇2

→ Ėc =m (q) q̈q̇ +
1
2
mq (q) q̇2q̇

Where m(q) is the inertia reduced to the coordinate q and
mq (q) its derivative with respect to the coordinate q.

The total power P of all the forces acting on the mecha-
nism can be expressed in terms of the reduced force F (q, q̇)
to the independent coordinate as:

P = F (q, q̇) q̇

Thus from Eq. (1), the equation of motion is obtained:

m (q) q̈ +
1
2
mq (q) q̇2

= F (q, q̇) (2)

For the systems of one degree of freedom and the holonomic
ones with more than one degree of freedom described by a
set of n independent generalized coordinates, the equations
of motion can be obtained by means of the ordinary Lagrange
equations:

d
dt
∂Ec

∂q̇i
−
∂Ec

∂qi
= F ∗i i = 1. . .n (3)

Being F ∗i , the generalized force, associated to the coordinate
qi , of all forces acting on the mechanism.

By developing Eq. (3), for a system of one degree of free-
dom, an identical equation to Eq. (2) is obtained. This fact
shows that the reduced force and generalized force coincide.

When it is possible to use Eksergian’s method, the inclu-
sion of not mechanical phenomena, as motors and passives
resistances, in the motion equation is conceptually simple. It
can be done by means of the power that these phenomena ex-
change with the system, and that is described with mechani-
cal state variables. In the Lagrange’s formulation, these phe-
nomena must be introduced by means of generalized forces
associated to the non-conservative forces.

If in the dynamic study of the mechanism is desired to de-
termine a constraint action, the kinematic condition imposed
by the constraint is substitutable, conceptually, by an actua-
tor that ensures it – constraint actuator. Figure 1 shows a four
linkage bar mechanism activated by an angular actuator Tact
on the crank OP and how to determine the vertical force Fe
at the R joint. This joint is replaced by a slider guide which
leaves free the vertical movement, which is now constrained
with the actuator. Replacing a constraint condition by an ac-
tuator, although conceptually, means that the initial mech-
anism of one degree of freedom must be studied as a new
holonomic mechanism of two degrees of freedom with two
independent coordinates q1 and q2. The first coordinate q1
associated with the actual movement of the mechanism and
the second q2 with the movement prevented by the constraint.
Thus, the motion equation describing temporal evolution of
q1 can be determined by Eq. (2) obtained with Eksergian’s
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Figure 1. Original mechanism and with a constraint condition replaced by a constraint actuator.

method. The constraint force or moment can be determined
with the obtained expressions from Lagrange’s method.

For the new system of two degrees of freedom, the kinetic
energy is (Jordi et al., 2008; Eksergian, 1930; Cardona and
Clos, 2000):

Ec =
1
2
m1 (q1, q2) q̇2

1 +
1
2
m2 (q1, q2) q̇2

2

+m12 (q1, q2) q̇1q̇2 (4)

Applying Lagrange equations to this mechanism, and par-
ticularizing for the movement imposed by the constraint ac-
tuator q̈2 = 0 and q̇2 = 0 the algebraic equation including
the generalized force F ∗2 is obtained. It contains, besides the
forces of known formulation, the constraint force or moment
desired. In summary, for the example of the original mecha-
nism of Fig. 1 the equation of motion obtained with Eq. (2)
is:

m1 (q1) q̈1+
1
2
m1q1 (q1) q̇2

1 = Tact (5)

In general, Tact is the reduced force associated to the coordi-
nate q1 of all the forces different from the constraint forces.

The constraint force obtained with Eq. (3) is:

m12 (q1) q̈1+

(
m12q1 (q1)−

1
2
m1q2 (q1)

)
q̇2

1 = F
∗

2 (6)

Being m1q1 =
∂m1
∂q1

; m12q1 =
∂m12
∂q1

; m1q2 =
∂m1
∂q2

and F ∗2 =Fe.
The coefficients of the Eqs. (5) and (6), which are reduced

inertial parameters, can be determined from the calculation
of the kinetic energy or, as it will be discussed below, us-
ing kinetostatic simulation programs as PAM, SAM or Win-
MecC.

The kinetostatic analysis allows to determine Tact given
q(t). Taking the system of one degree of freedom of Fig. 1
as an example, to determine the reduced parameters of the
equation of motion the following kinetostatic analyses are
performed:

i. q̈1 = 0 and q̇1 6= 0; som1q1 (q1)= 2Tact
/
q̇2

1 is obtained.

ii. q̈1 6= 0 and q̇1 = 0;
so m1 (q1)=

(
Tact−

1
2m1q1 (q1) q̇2

1

)/
q̈1 is obtained.

The parameters of the Eq. (6) are obtained by the kinetostatic
analyses of the same system, so that:

i. q̈1 = 0 and q̇1 6= 0,
me1q (q1)=

(
m12q1 (q1)− 1

2m1q2 (q1)
)
= F ∗2

/
q̇2

1 .

ii. q̈1 6= 0 and q̇1 = 0, me1 (q1)=m12 (q1)
=

(
F ∗2 −

(
m12q1 (q1)− 1

2m1q2 (q1)
)
q̇2

1

)/
q̈1.

With programs as PAM, the first analysis is easily imple-
mented using an actuator with a polynomial movement law
and imposing the above condition with constant velocity
(q̈1 = 0 and q̇1 6= 0). This analysis is performed for a set of
uniformly distributed instants of time and thus sweep the en-
tire range of values of interest of q1. So, values of m1q1 and
me1q are obtained for values of q1 equispaced.

The necessary conditions of the second analysis (q̈1 6= 0
and q̇1 = 0) are impossible to perform with an actuator with
a polynomial movement law. So, if you want to get the values
of m1 and me1 for the same values of q1 of the first analysis,
a strategy should be used. This may be the use of an actuator
that controls q1 according to a temporal function with two
parts: one polynomial and another one harmonic, so that:

q1 (t)= (c1+ c2t)+ (c3 cos(c4t + c5))

where c1. . .c5 are constants which are chosen so that the con-
ditions q̈1 6= 0 and q̇1 = 0 occur at points of interest. In short,
a continuous function for the actuator is defined and properly
sampled provides the required conditions in the desired q1
configurations.

SAM has a utility that facilitates the realization of the two
analyses evaluated at the same instants of time. You can per-
form a kinetostatic analysis by loading a file in which the
temporary values, the value of the coordinate q1 and its first
two derivatives are specified. So, for doing the two analyses
two input files have to be created. These files must contain,
for the range of values of interest of q1, the values of this vari-
able equally spaced at time regular intervals. In the first file,
these values are associated to a speed q̇1 = 1 and acceleration
q̈1 = 0, and in the second file these values are associated to
a speed q̇1 = 0 and acceleration q̈1 = 1. The values of speed
and acceleration have the default units used in the analysis.
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Figure 2. Proposed process for dynamic analysis of a system of one degree of freedom.

The process presented for the determination of the con-
straint action is extensible to find simultaneously as many ac-
tions as desired. In this case, as many constraint actuators as
constraint actions to determine must be defined to obtain the
corresponding equations. In order not to increase the com-
plexity of the system, as many independent systems of two
degrees of freedom as constraint actions to determine must
be defined. Each system provides an equation for the con-
straint action and an equation of motion, that is obviously the
same for all systems. Thus, two reduced parameters for the
equation of motion and two parameters for each constraint
action to determine are obtained. Figure 2 shows a schematic
of the process to be followed for determining the constraint
actions desired.

3 Cases of study

The procedure described in the previous section is used to
study two cases: the pedalling a stationary bicycle used in a
rehabilitation process and the analysis of a single dwell bar
mechanism which is driven by an electric motor.

3.1 Pedalling a stationary bicycle used in a
rehabilitation process of knee damage

The dynamics of the pedalling in a stationary bicycle in a re-
habilitation process (Cardona et al., 2009; Jordi et al., 2008;
Curià, 2010) is studied. The mechanism of Fig. 3 represents
the model for this study. It is assumed that the ankle is fixed
to the pedal, so the model has only one degree of freedom.
The geometric characteristics and inertial parameters, ob-
tained experimentally by Curià (2010), are shown in Fig. 3a.
The translation kinetic energy of the bicycle and the cyclist
plus the rotation kinetic energy of the wheels of a conven-
tional bicycle are substituted by the kinetic energy of a fly-
wheel fixed to the pinion. Some aspects as the action of sev-
eral muscles, that can be modelled as simultaneous actuators,
are not taken into account.

The most reasonable kinetostatic analysis to determine re-
duced parameters is the one that uses an actuator controlling
the rotation angle of the pedals ϕp because this coordinate
does not have dead-points (Fig. 3b). In this analysis, the vari-
ations of potential energy associated to the thigh and the leg
are not taken into account.
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Figure 3. Model for the stationary bicycle and the inferior extremities of the cyclist.

The motion equation of the system of Fig. 3a can be ob-
tained by means of Eksergian’s method. The kinetic energy
of the system is:

Ec =
1
2

(
I1+m1

(
l1

2

)2
)(
ϕ̇2

m1+ ϕ̇
2
m2

)
+

1
2
IFW

(
r1

r2

)2

ϕ̇2
p

+
1
2
m2

(
v2

G21+ v
2
G22

)
+

1
2
I2

(
ω2

21+ω
2
22

)
Where ϕ̇m1 and ϕ̇m2 are the angular velocities of the two
thighs, ϕ̇p is the angular velocity of the pedals, vG21 and vG22
are the velocities of the centre of mass of the legs and ω21 and
ω22 are the angular velocities of the legs. Obviously, all these
kinematics variables are related by means of the kinematic
constrain equations. With this approach, the motion equation
can be obtained. If an additional objective of the analysis is to
determine some constrain action it is necessary to use Eq. (6)
that has been demonstrated with Lagrange’s method. It is in-
teresting to remark that the proposed method consists of re-
placing a constrain by an actuator instead of using Lagrange
multipliers method.

The objectives of this analysis are to determine the motion
equation and the force in the knee in the leg direction Fknee
when a torque of passive resistances Tpr is acting on the fly-
wheel. So, it is necessary to obtain the generalized forces F ∗ϕp

and F ∗x associated to the rotation of the pedal ϕp and to the
extension x of the constraint actuator.

The expressions of generalized forces are obtained, for ex-
ample, by means of the following virtual movements:

i. ϕ̇∗p 6= 0 and ẋ∗ = 0. This virtual movement is compat-
ible with the constraints of the original system. The
relationship between velocities is obtained from the
kinematic analysis of the initial mechanism, that is the
same as the mechanism with the constrain actuator with
ẋ= 0. The generalized force is:

F ∗ϕp
= Tm

ϕ̇m

ϕ̇p

∣∣∣∣
ẋ=0
+ Tpr

ϕ̇flywheel

ϕ̇p

∣∣∣∣
ẋ=0

.

ii. ϕ̇∗p = 0 and ẋ∗ 6= 0. The generalized force is:

F ∗x = Fknee+ Tm
ϕ̇m

ẋ

∣∣∣∣
ϕ̇p=0

.

In this movement, the mechanism has two degrees of
freedom because the restriction x = l2 is not consid-
ered. The relationship between velocities is obtained for
a movement of the mechanism with the constrain actu-
ator with ϕ̇p = 0.
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Figure 4. Inertial reduced parameters for pedalling a stationary bicycle.
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Figure 5. Angular velocity of the pedal and force in the knee in leg direction.

The terms ϕ̇m
ϕ̇p

, ϕ̇flywheel
ϕ̇p

and ϕ̇m
ẋ

are obtained directly from the
kinematic analysis of the mechanism with the corresponding
conditions: only one generalized velocity not null.

In order to finish the analysis, the equations have to be
solved; so it is necessary to obtain the values of Tm and Tpr.
The torque Tpr, introduced by the dynamic brake of the sta-
tionary bicycle, is assumed as constant and its value has been
calculated in order that lost power will be 125 W, when the
pedalling rhythm is 1 Hz. The torque Tm, applied to each
thigh, is assumed as constant and not null only in the de-
scent phase of the movement of the thigh. Its value has been
determined using the described procedure in order to achieve
a pedalling stationary regime with the torque Tpr previously
obtained. The value obtained is Tm = 69.7 N m. The equa-
tions to solve are:{
m1
(
ϕp
)
ϕ̈p+m2

(
ϕp
)
ϕ̇2

p = F
∗
ϕp

me1
(
ϕp
)
ϕ̈p+me2

(
ϕp
)
ϕ̇2

p = F
∗
x

(7)

Figure 4 shows the inertial reduced parameters for one revo-
lution of the pedal obtained by means of the exposed proce-
dure of Sect. 2. Calculations have been made with Scilab and
simulations with PAM and WinMecC. The results from the
simulation have been obtained with intervals of 10◦ which
are sufficient due to the form of the functions. For their use
in Scilab, polynomial functions defined with splines of third
order have been used.

Figure 5 shows the rotation velocity of the pedal obtained
by means of the integration of the equation of movement.
Its mean value remains nearly constant because m1

(
ϕp
)

has
higher values in front of m2

(
ϕp
)
. The figure also shows the

force in the knee in the leg direction. The low values of the
force correspond when the leg is driven, the high values cor-
respond when the leg is the driving one and the higher value
corresponds to the dead-point ϕm.
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Figure 7. Prototype of the single dwell bar mechanism.

3.2 Single dwell bar mechanism

The procedure described in the Sect. 2 is used to study the
dynamics of a single dwell bar mechanism. The mechanism
and its characteristics, both geometric and inertial, are shown
in Fig. 6 which represents the model for this study. The pro-
totype shown in Fig. 7 is designed, among other functions, to
check the temporal movement law of the crank AB, ϕ(t), in
order to achieve the prescribed movement law of the rocker
QR, θ (t). A dual axis gyroscope IOG 500 is attached to the
rocker to check the accuracy of the result. Even though, in
this work, the exposed method in Sect. 2 is used to determine
the reduced parameters of this mechanism.

The orientation of the rocker QR is maintained substan-
tially constant for a certain interval of movement of the crank
AB. The crank AB is considered balanced so that its centre
of inertia coincides with the fixed joint A. The centre of iner-
tia of the connecting-rod BP is at C and the centres of inertia
of the rockers OC and QR are at their midpoint. The centre
of inertia of the slider coincides with the articulation P.

The motion equation of the system of Fig. 6 can be ob-
tained by means of Eksergian’s method. The kinetic energy
of the system is the sum of the kinetic energies of the crank

j

q
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l1
l3
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P

R
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h

Constraint
actuator

s

Figure 8. Prototype of the single dwell bar mechanism.

AB, the connecting-rod BP, the two rockers OC and QR and
the slider. As in the previous example, if some constrain ac-
tion must be determined it is necessary to use the same pro-
cedure of the previous example.

Also in this case, first of all, reduced parameters are deter-
mined by kinetostatic simulation programs mentioned and,
for a set of time instants, the kinematic and dynamic vari-
ables for calculating inertial parameters and reduced forces
are obtained. The actuators used in these analyses are an an-
gular actuator that controls the angle ϕ rotated by the crank
AB and a constraint actuator in the prismatic pair as shown
in Fig. 8.

From these analyses, the inertial behaviour of the mecha-
nism is obtained. This must be linked with the external forces
acting on it, that is the torque of the motor applied in the
crank AB Tmotor and of the passive resistances Tpr. In order to
take into account these external forces, the generalized forces
associated to the coordinates corresponding to the crank an-
gle and the displacement of the constraint actuator must be
calculated. The expressions of generalized forces F ∗i are ob-
tained by means of the following virtual movements:

i. ϕ̇∗ 6= 0 and ḣ∗ = 0. This virtual movement is compati-
ble with the constraints of the original system. For this
virtual movement the generalized force F ∗ϕ is obtained:

F ∗ϕ = Tmotor+ Tpr
∂θ̇

∂ϕ̇
.
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ii. ϕ̇∗ = 0 and ḣ∗ 6= 0. For this virtual movement the gen-
eralized force F ∗h is obtained:

F ∗h = Tpr
∂θ̇

∂ḣ
+Fe.

The terms ∂θ̇
∂ϕ̇

and ∂θ̇

∂ḣ
are obtained directly from the kinematic

analysis of the mechanism.
The differential equation of movement for the coordinate

ϕ that must be integrated is:

m1 (ϕ) ϕ̈+m1ϕ (ϕ) ϕ̇2
= F ∗ϕ (8)

The equation for finding the constraint force in the prismatic
pair, from the values of ϕ obtained by means of the integra-
tion of Eq. (8) and its derivatives, is:

me1 (ϕ) ϕ̈+me1ϕ (ϕ) ϕ̇2
= F ∗h (9)

The motor used to determine the reduced parameters is a DC
motor with permanent magnets. The operation of this type of
motors can be described by the following equations:

U = R i+Li+K ϕ̇motor

Tmotor =K i

where U is the tension of the armature, i is the intensity that
flows through it, R and L are the resistance and inductance
in terminals of the armature, K is the constant of the torque,
Tmotor is the generated torque and ϕ̇motor is the angular veloc-
ity of the motor.

The motor chosen in this application is a model Dunker-
motoren GR 63× 55 powered 12 V with the following
characteristics: R = 0.6�, L= 1.5 mH, K = 64 mN m A−1,
Imot = 75 kg mm2. In order to adjust the velocity of rotation
of the motor to that necessary in the entrance shaft of the
mechanism, the use of a gear reducer is proposed. The cho-
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sen one is PLG 52 of the same brand with a transmission
ratio τred = 0.125 and an inertia momentum reduced to the
entrance shaft Ired= 20 kg mm2.

The passive resistances have been considered concentrated
in bar QR and are modelled as:

Trp =−T0sign(θ )− cθ̇

where T0 = 0.1 N m and c = 0.03 N m (rad s−1)−1.
Figure 9 shows the inertial reduced parameters for one

revolution of the crank AB obtained by means of the ex-
posed procedure of Sect. 2. Calculations have been made
with Scilab and simulations with PAM and SAM. All the re-
sults agree among them.

Figure 10 shows the rotation velocity of the crank obtained
by means of the integration of Eq. (8) and the constraint force
in the prismatic pair obtained with Eq. (9). Rotation velocity
and force are periodic. Although the value of motor torque
is almost constant the considerable variation of the rotation
velocity is consequence of the great variation of the inertial
parameters.

4 Conclusions

The proposed approach for doing the dynamic analysis of
one degree of freedom mechanisms (not necessary planar)
based on the use of reduced parameters leads to a simple and
efficient procedure for their study.

This approach enlarges the possibilities and utilities of
easy use programs that cannot do direct dynamic analysis.
In particular, the inertial reduced parameters have been ob-
tained with programs PAM, SAM and WinMecC and the re-
duced parameters for calculating the generalized forces with
PAM.

This approach is useful when the study of the mechanism
must be performed in real time, as part of the simulation
and control of a production process. A comparison between
the time used to integrate two cycles of stationary regime of
the example 1 with a commercial software and with the pro-
posed method has been performed. The computation time on
a PC with Windows7 operating system and 64-bit processor
Intel Core i7 have been 658 ms with commercial software
and 68 ms with the proposed method. The results support the
statement that this method can be used in real-time simula-
tions more efficiently.

The inertial reduced parameters are obtained as a table
of values. So, the integration algorithm for the equation of
movement must access to them by means of an interpolation
function.

The use of Eksergian’s method allows the incorporation, in
a simple way conceptually and operationally, of motors and
passive resistances described by means of the exchanged en-
ergy, instead of doing it by means of non-conservative forces.

The exposed procedure is easily extensible to conservative
forces, that only depend on position. The generalized forces

associated to those can be obtained by kinetostatic analysis.
Forces that depend on velocity must be dealt directly in the
equation of movement. This type of forces can also be re-
duced to the coordinate, but the associated generalized force
is, then, function of position and velocity and its determina-
tion by means of a kinetostatic analysis is not operative.

Data availability. All the data used in this manuscript can be ob-
tained by requesting from the corresponding author.
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