
Mech. Sci., 8, 385–392, 2017
https://doi.org/10.5194/ms-8-385-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Prediction of surface location error in milling considering
the effects of uncertain factors

Xianzhen Huang1, Fangjun Jia1, Yimin Zhang1, and Jinhua Lian2

1School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
2Technical Center, Taiyuan Heavy Industry Co., Ltd., Taiyuan, 030024, Shanxi, China

Correspondence: Xianzhen Huang (xzhhuang83@gmail.com)

Received: 10 October 2017 – Revised: 24 November 2017 – Accepted: 25 November 2017 – Published: 20 December 2017

Abstract. Machining accuracy of a milled surface is influenced by process dynamics. Surface location er-
ror (SLE) in milling determines final dimensional accuracy of the finished surface. Therefore, it is critical to
predict, control, and minimize SLE. In traditional methods, the effects of uncertain factors are usually ignored
during prediction of SLE, and this would tend to generate estimation errors. In order to solve this problem, this
paper presents methods for probabilistic analysis of SLE in milling. A dynamic model for milling process is
built to determine relationship between SLE and cutting parameters using full-discretization method (FDM).
Monte-Carlo simulation (MCS) method and artificial neural network (ANN) based MCS method are proposed
for predicting reliability of the milling process. Finally, a numerical example is used to evaluate the accuracy and
efficiency of the proposed method.

1 Introduction

Cutting vibrations can adversely affect machining accuracy
of a workpiece during the milling process. For example, vi-
brations between the tool and workpiece could result in er-
rors in finished surface. And these errors make workpiece
features differ from the original design (Bachrathy et al.,
2016; Li et al., 2014; Urbikain et al., 2017). Difference be-
tween desired and actual surfaces due to deviation in tool and
workpiece compliances from specifications is called surface
location error (SLE) (Schmitz and Ziegert, 1999; Mann et
al., 2005). Therefore, it is critical to build a dynamic model
to predict SLE in milling.

Mann et al.(2005) proposed an approach for simultaneous
prediction of SLE in milling using Temporal Finite Element
Analysis (TFEA). This method was then generalized for he-
lical end mills (Mann et al., 2008). Schmitz and Mann (2006)
presented an analytical method to compute SLE based on fre-
quency domain and harmonic balance analysis. Insperger et
al. (2006) decomposed the governing equation used to de-
scribe a typical milling process into two parts (ordinary dif-
ferential equation part and delay-differential equation part)
and obtained SLE by solving ordinary differential equa-
tions. Recently, Ding et al. (2011, 2015) generalized the full-

discretization method and harmonic differential quadrature
method to further improve efficiency of SLE prediction in
milling. Moreover, Eksioglu et al. (2012) utilized an integral
equation based method to predict SLEs in flexible milling
systems. Kiran et al. (2017) presented a two degree of free-
dom (DOF) closed-form frequency domain solution for SLE
prediction, which took into account tool and workpiece flex-
ibility.

The above methods have laid the foundation for SLE pre-
diction in milling. As a result, underlying principle of milling
dynamics is fairly well established. However, all these mod-
els assume that parameters of the milling process such as
depth of cut, feed per tooth and cutting force are determinis-
tic. Actually, these parameters are random in practical engi-
neering due to uncertainty factors in real manufacturing en-
vironment, which would in turn influence the milling process
(Sims et al., 2010; Graham et al., 2013; Hajdu et al., 2016).
In this paper, a practical method is proposed to predict SLE
in milling considering the effects of uncertain factors. First, a
mathematical model of milling dynamics considering regen-
erative effect is presented in a state space form. Next, a full-
discretization method (FDM) is used to calculate the SLE
in milling. This is followed by probabilistic analysis of SLE
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Figure 1. Dynamic model for the milling process. Ftj , Fnj – tangential and normal cutting force components for j th cutter tooth (N); ϕj
–angular position of the j th cutter tooth (rad); � – spindle speed (r min−1); ae – radial depth of cut (mm).

in milling using Monte-Carlo simulation (MCS) method and
artificial neural network (ANN) based MCS method. In the
end, a numerical application is provided to verify the accu-
racy and efficiency of the proposed approach.

2 SLE prediction in milling

As depicted in Fig. 1, governing equation of cutter dynamics
under dynamic milling force can be described as (Insperger
et al., 2006; Ding et al., 2011, 2015)

Mq̈(t)+Cq̇(t)+Kq(t)= apKc(t)[q(t)− q(t − T )] + apf 0, (1)

where, q(t)= [x(t),y(t)]T is a position vector; M, C and
K are modal mass, damping, and stiffness matrices; ap de-
notes axial depth of cut (mm); Kc(t) and f 0 are cutting force
coefficient matrix and steady force excitation, which are de-
fined as:

Kc(t)=
N∑
j=1

w
(
ϕj (t)

)
[
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where, sϕj = sinϕj (t), cϕj = cosϕj (t);
ϕj (t)= (2π�/60)t + 2π (j − 1)/N is angular position
of the j th cutter tooth; N is the number of cutter teeth;
Kt and Kn are tangential and normal linearized cutting force

coefficients; Kte and Kne are tangential and normal edge
coefficients; ft is feed per tooth; w(ϕj (t)) is called window
function which can be defined as:

w
(
ϕj (t)

)
=

{
1
0

if ϕst < ϕj (t)mod2π < ϕeX
otherwise , (4)

where, ϕst and ϕeX are start and exit angles of the j th cutter
tooth.

If p(t)=Mq̇(t)+Cq(t)/2 and x(t)= [q(t) p(t]T , then
Eq. (1) can be equivalently expressed as (Ding et al., 2011,
2015):

ẋ(t)= Ax(t)+B(t)(x(t)− x(t − T ))+f (t), (5)

where,

f (t)=
[

0 f 0(t)
]T
, (6)

A=
[
−M−1C/2 M−1

CM−1C/4−K −CM−1/2

]
, (7)

B(t)=
[

0 0
Kc(t) 0

]
. (8)

Equally divide T into r small discrete time units1t such that
T = r1t For any time unit, Eq. (5) is represented as:

ẏ(t)= Ay(t)+ B̃(t)(̃y(t)− ỹ(t − T ))+ f̃ (t), t ∈
[
tj , tj+1

]
, (9)

where,

B̃(t)= Bj+1+
Bj+1−Bj

1t

(
t − tj+1

)
, (10)
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ỹ(t)= yj+1+
yj+1− yj

1t

(
t − tj−1

)
, (11)

ỹ(t − T )= yj−m+1+
yj−m+1− yj−m

1t

(
t − tj+1

)
, (12)

f̃ (t)= f j+1+
f j+1−f j

1t

(
t − tj+1

)
, (13)

in which, B̃(t) is periodical coefficient matrix; f̃ (t) is static
force item; ỹ(t) and ỹ(t − T ) denote status item time-
delay item, respectively; Bj =B(tj ), yj = y(tj ), f j =f (tj ),
tj = j1t . Solving Eq. (9) over the discretization period [tj ,
tj+1] gives:

yj+1 =
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where,
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(17)
80 = e

A1t , 81 = A−1 (80− I) , 82 = A−1 (1t80−81) ,

83 = A−1
(
1t280− 282

)
. (18)

I is the identity matrix. The following discrete mapping rela-
tionship can be obtained by Eq. (14):

zj+1 = Djzj +EjGj , (19)

where,
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, (20)
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Ej = col
([

I−Fj+1
]−10, . . ., 0

)
. (22)

Now, transition relation over one periodic time interval
can be constructed by using sequence of matrices Dj , Ej ,
Gj (j = 0, . . . r − 1), i.e.,

yr =8y0+H (23)

where,

8= Dr−1Dr−2. . .D1D0, (24)

H = Er−1Gr−1+

r−2∑
j=0

(
Dr−1Dr−2. . .Dj+1EjGj

)
. (25)

Steady-state coefficients of the lth cycle can be calculated
similar to the TFEA method[5,6] for stable milling by substi-
tuting y∗l = yl = yl−1

y∗l = (I−8)−1H . (26)

Finally, SLE can be calculated using the steady-state co-
efficient vector. A concise definition of SLE in Schmitz
and Ziegert (1999) is used in this paper. As can be seen
from Fig. 1, in up/down-milling, SLE is calculated applying
steady-state vibration displacement of milling cutter with re-
spect to the ideal surface when a tooth enters/exits the work-
piece.

3 Probabilistic analysis of SLE

It is impossible to deterministically describe and exactly con-
trol physical parameters during the milling process. There-
fore, most of variables used to predict SLE in milling are
uncertain. For instance, machining deviation gives rise to the
uncertainty of the structural dimension of the milling cutter.
Milling parameters (e.g. depth of cut, feed per tooth and spin-
dle speed) keep changing with the change of working con-
ditions (e.g. power fluctuation, temperature change, process
difference).

In probabilistic analysis of SLE in milling, sources of un-
certainty are characterized and explicitly accounted for in the
computation of the reliability

R =

∫
· · ·

∫
g(x)>0

fX(x)dx, (27)

where, x= [Kt, Kn, cx , cy , kx , ky , mx , my , rc, ap, ft]
T

is a variable vector used to predict SLE in milling, as de-
scribed in section 2; The corresponding random vector is de-
noted with X and fX(x) denotes the probability density func-
tion (PDF); Z= g(x)= Slim− gSLE(x) is the response sur-
face function in which gSLE(x) is SLE obtained from Eq. (26)
and Slim is allowable value of SLE. Z= g(x)< 0 represents
for the failure domain with regard to x ∈X. In the failure
domain, SLE exceeds its allowable value. Z= g(x)> 0 rep-
resents for the security domain. In the security domain, SLE
is less than its allowable value. Z= g(x)= 0 0 represents for
the limit state. In general, neither analytical nor numerical
integration methods can easily solve the multiple integral in-
volved in Eq. (27) because of its complicated integrand and
high dimensionality.

3.1 Direct MCS

MCS is considered to be one of the most widely used meth-
ods for probabilistic analysis of mechanical systems due to
its high accuracy and easy of application (Tian et al., 2015;
Shen et al., 2013; Ahn et al., 2011). In the MCS tech-
niques, sampling for each random variable is randomly se-
lected based on distribution information of the random vari-
able. These sample values are used to calculate the sample
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Figure 2. Procedure of direct MCS.

values of the SLE. Reliability of the milling process is es-
timated as the ratio of samples that are located in the safe
domain.

As depicted in Fig. 2, the general procedure for probabilis-
tic analysis of SLE during milling process by MCS can be
summarized as follows: firstly, generate NMCS sets of ran-
dom samples using the information of mean, standard devia-
tion and PDF of random variables. Then, substitute each set
of samples xk(k= 1, 2, . . . NMCS) into Eq. (26) to obtain
values of SLEs. Finally, frequency can be used to estimate
reliability R of the milling process as follows:

R ≈
Nr

Nmcs
, (28)

where Nr is the number of samples which satisfy the condi-
tion gSLE(xk)<Slim, NMCS is the total number of samples.

3.2 ANN based MCS

Generally, a huge number (thousands to millions) of ran-
dom samples are needed to characterize the parameter space
adequately. Numerical simulation procedure introduced in
Sect. 2 to predict SLE in milling is used for probabilistic
analysis of the SLE in milling. Hundreds of seconds are
needed for each run. Therefore, this procedure can be time
consuming if MCS is directly used. In this section, an ANN
based MCS method is proposed for probabilistic analysis of
SLE in milling.

3.2.1 Architecture of ANN

After successful training in ANN, correlation of mathemat-
ical relationships between multi-dimensional input/output
data sets can be easily achieved (Arnaiz-González et al.,
2016; Aydin et al., 2014; Asiltürk, 2012). In this paper, an
ANN is used to fit the functional relationship between SLE
and random variables. Next, the trained ANN instead of CFD
is used for probabilistic analysis of SLE in milling. This al-
lowed reduction in the total number of iterations required for
numerical simulation.

There are a number of ANN paradigms. A multilayer feed-
forward back-propagation network (BP-ANN) (Gomes et al.,
2011; Elhewy et al., 2006; Chojaczyk et al., 2015) is used in
this study. The BP-ANN method is a well-known and widely
used ANN paradigm. Generally speaking, an ANN structure
usually consists of an input layer, one hidden layer, and an
output layer. Each layer has its corresponding processing el-
ements (PEs) and weight connections. Figure 3 shows a typ-
ical architecture of an ANN model. In the figure, the left col-
umn is input layer, right most column is output layer and
middle column is hidden layer.

Number of neurons or nodes in input and output layers
is determined by the number of input variables (x= [Kt,
Kn, cx , cy , kx , ky , mx , my , rc, ft]

T ) and SLE in milling
(y= gSLE(x)), respectively. Whereas, number of neurons in
the hidden layer was empirically determined. Using too few
neurons in the hidden layer may prevent convergence of
the training process. Alternatively, using too many neurons
would increase training time and/or result in ANN losing
its generalization attribute. In this study, number of nodes
in the hidden layer is chosen as n2= 2× n1+ 1 (Patuwo et
al., 1993), where n1 is number of input variables. Then, the
output of the ANN can be written as:

y = f

[
n2∑
j=1

wiψi(x)+ c

]
(29)

where, n2 is the number of nodes in the hidden layer, c is
a constant, wi denotes weight between ith PE in the hidden
layer and the output layer, ψi(x) is output function of ith PE
in the hidden layer, which can be defined as:
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Figure 3. Topological structure of BP neural network model.

ψi(x)= f

(
n1∑
k=1

wi,kxk + bi

)
(i = 1, . . .,n2) (30)

where, wi,k denotes weight between kth PE in the input layer
and ith PE in the hidden layer, bi is a constant. f (·) is activa-
tion function. Generally speaking, many kinds of functions
such as sigmoid, hyperbolic tangent and Gaussian can be
chosen as activation function. In this paper, sigmoidal func-
tions are used because they are continuous and allow net-
works to be trained more effectively. The activation function
used here can be defined as:

f (x)=
1

1+ exp(−βx)
, (31)

where, β is the sigmoid slope, usually β = 1.
Equations (29) and (30) are rewritten in matrix way as:

y = f

WT
2 ×

 I

f

(
W1×

[
I
x

]) (32)

where, I is the identity matrix, W1 and W2 can be repre-
sented as:

W1 =

 b1 w1,1 · · · w1,n1
...

...
. . .

...

bn2 wn2,1 · · · wn2,n1

 (33)

W 2 =
[
c w1 · · · wn1

]T
. (34)

As for developing an ANN model to predict SLE in mill, the
main goal is to obtain values of W1 and W 2 by training. The
back-propagation training technique is the most commonly
used neural network method and is the method used to train
all models in this study. Training is terminated as soon as the
model reached a predetermined accuracy. Then, the trained
ANN can be used for probabilistic analysis of SLE in milling
to improve process efficiency.

3.2.2 Training data generation

In probabilistic analysis of SLE in milling applications, accu-
racy of ANN based MCS method depends largely on quality
of trained ANN model. Furthermore, the accuracy of ANN
model is mainly determined by number and “representative”
of training samples. Several designs have been proposed in
literature to generate training data. These include methods
such as full factorial design (FFD) or random design.

The main drawback of FFD is associated with large size
of the total number of samples required for a high dimen-
sion problem. This is due to the fact that number of samples
needed for analysis grows exponentially with number of vari-
ables. Alternatively, training samples can also be generated
by a random generator. This method can obtain desired num-
ber of training samples follow a particular distribution. How-
ever, it cannot insure that the samples would fill the entire
parameter space uniformly. To overcome these drawbacks, a
partial factorial design like Latin Hypercube sampling (LHS)
was proposed. LHS methodology can be considered to be
an intermediate technique between FFD and random design.
This method is considered to be a stratified sampling tech-
nique that provides an efficient way to sample random vari-
ables from their entire distributions. LHS has been applied
to a wide range of probabilistic analysis problems, ranging
from estimation of reliability (probability of failure), coeffi-
cient estimation for polynomial chaos, neural network, and
other types of surrogate (Chojaczyk et al., 2015; Olsson et
al., 2003). In the present study, LHS scheme is employed to
generate random samples.

The conversion function used for the network is a sigmoid
function. Both ends of the output curve of this function are
smooth, but in the middle part, the curve varies drastically.
Therefore, it is necessary to normalize input and output vari-
ables by replacing the original data with corresponding val-
ues in the interval (0, 1) to achieve faster convergence rate.
Therefore, all training data is scaled using the following scal-
ing equation:

ξ =
x− xmin

xmax− xmin
(35)
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Figure 4. Procedure of the ANN-based MCS.

Table 1. Probabilistic features of the random variables.

Variable Mean Variation Distribution
coefficient type

Kt 6× 108 N m−2 0.05 Normal
Kn 2× 108 N m−2 0.05 Normal
cx 5.089 N s m−1 0.01 Normal
cy 5.089 N s m−1 0.01 Normal
kx 1.34× 106 N m−1 0.01 Normal
ky 1.34× 106 N m−1 0.01 Normal
mx 0.03993 kg 0.01 Normal
my 0.03993 kg 0.01 Normal
rc 0.6 0.01 Normal
ap 4× 10−4 m 0.01 Normal
ft 4× 10−5 m tooth−1 0.01 Normal

where, x and ξ represent unscaled and scaled values of the
training data, respectively, xmin and xmax are minimum and
maximum values of the training data.

As shown in Fig. 4, procedure of the probabilistic anal-
ysis of SLE in milling used the ANN-based MCS method
as follows: (1) generate training samples using LHS scheme;
(2) train ANN by back-propagation; (3) build explicit expres-
sion of SLE in milling using trained ANN model; and (4) cal-
culate reliability using the trained ANN model and MCS.

4 Numerical example

Consider the following variables for a milling process,
Kt andKn are normal cutting force coefficients; cx and cy are
modal damping coefficients; kx and ky are modal stiffness
coefficients; mx and my are modal masses; rc is radial im-
mersion ratio; ap denotes axial depth of cut; ft is feed per
tooth; and � is spindle speed; the total number of the cutter
teeth is 2; Probabilistic features (mean, standard deviation,
distribution) of the random variables are described in Table 1.

We can obtain the results of deterministic analysis by sub-
stituting mean values of the variables into Eq. (26). The re-
lationship between SLE and spindle rotation speed is indi-
cated in Fig. 5. As shown in Fig. 5, the maximum absolute

 

Figure 5. SLE in milling.

value of SLE is about 5.329× 10−5 m for a spindle speed of
1.387× 104 r min−1. From the results of deterministic anal-
ysis, we can learn that when the allowable value of SLE is
bigger than Slim= 5.329× 10−5 m, the milling process is re-
liable for a spindle speed of 1.387× 104 r min−1 and vice
versa. Probabilistic analysis of SLE within this speed range
is further analyzed.

The number of sample points needed to satisfactorily fit
the relationship between SLE and the variables using ANN
depend largely on the total number of random variables con-
sidered and nonlinearity of the milling process. Unfortu-
nately, there is not a specific guideline or procedure for de-
termining the number of sample points needed to obtain a
high accuracy of BP-ANN model till now (Chojaczyk et al.,
2015). As recommended, in this paper, ANN is trained with
500 sample points generated using Latin hypercube method.

A total of 100 samples uniformly distributed over the
range of [µxi − 3σxi , µxi + 3σxi ] are used to verify accu-
racy of the trained BP-ANN. These test samples are substi-
tute into the trained BP-ANN and CFD model to compute the
SLE in milling, respectively. Results are shown in Fig. 6. Fig-
ure 7 shows the relative error of the BP-ANN in comparison

Mech. Sci., 8, 385–392, 2017 www.mech-sci.net/8/385/2017/
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Figure 6. Comparison of BP-ANN and FDM results.

 

 

Figure 7. Relative error of the BP-ANN.

with the results obtained by CFD. These studies show that
the trained BP-ANN yields a good approximation of SLE
with less than 5 % prediction error. Therefore, the trained BP-
ANN instead of the CFD model can be used for probabilistic
analysis of SLE in milling.

Using the trained BP-ANN, reliability of the milling pro-
cess is calculated. Figure 8 depicts reliability curve of the
milling process when Slim= 5× 10−5 m. From the result, we
can see that the minimum value of reliability is about 0.7342
when the allowable value of SLE is 5× 10−5 m. Moreover, in
order to evaluate accuracy of the proposed approach, direct
MCS which widely used in probabilistic analysis of mechan-
ical systems is also applied to evaluate the reliability of the
milling process. As shown in Fig. 8, the reliability curve ob-
tained by direct MCS fits well with that derived from ANN
based MCS.

Figure 8. Reliability of the milling process.

5 Conclusion

Many traditional SLE prediction models ignore effect of un-
certain factors (such as machining, assembling and measure-
ment errors), which would tend to generate estimation errors.
Therefore, in practical milling applications, variation in pro-
cess parameters can cause the workpiece features to deviate
from the original design. This results in undesirable machin-
ing accuracy and poor surface roughness of the workpiece. In
this paper, MCS, ANN theory and machining dynamics prin-
ciples are used to develop methods for probabilistic analysis
of SLE in milling process. Compared with the conventional
approaches, randomness of parameters is taken into account
in the proposed approach, which makes the prediction of SLE
in milling more correspond to engineering practice.

A significant improvement can be made in SLE prediction
in milling, simply by taking parameter uncertainty into ac-
count. In addition, FDM is used to numerically predict SLE
in milling for a time duration of several hundred seconds. It
was observed that CPU time requirement for SLE prediction
using FDM is higher compared to methods using a network
model. In order to reduce total number of iteration for the
numerical simulation, a BP-ANN model is trained to predict
SLE in milling. Based on this, an ANN based MCS method
is applied to predict the reliability of the milling process.
This improvement dramatically shortens the time needed for
probabilistic analysis of SLE milling. Use of the proposed
ANN based MCS method would show its potential advan-
tages for applications where repeated calculations of relia-
bility are needed, for example, in reliability based design op-
timization of the processing parameter of milling.

Data availability. No data sets were used in this article.
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Asiltürk, İ.: Predicting surface roughness of hardened AISI 1040
based on cutting parameters using neural networks and multiple
regression, Int. J. Adv. Manuf. Technol., 63, 249–257, 2012.

Aydin, G., Karakurt, I., and Hamzacebi, C.: Artificial neural net-
work and regression models for performance prediction of abra-
sive waterjet in rock cutting, Int. J. Adv. Manuf. Technol., 75,
1321–1330, 2014.

Bachrathy, D., Munoa, J., and Stepan, G.: Experimental validation
of appropriate axial immersions for helical mills, Int. J. Mach.
Tools Manuf., 84, 1295–1302, 2016.

Chojaczyk, A. A., Teixeira, A. P., Neves, L. C., Cardoso, J. B., and
Soares, C. G.: Review and application of artificial neural net-
works models in reliability analysis of steel structures, Struct.
Saf., 52, 78–89, 2015.

Ding, Y., Zhu, L. M., Zhang, X. J., and Ding, H.: On a
numerical method for simultaneous prediction of stability
and surface location error in low radial immersion milling,
J. Dyn. Syst. Meas. Control-Trans. ASME, 133, 024503,
https://doi.org/10.1115/1.4003374, 2011.

Ding, Y., Zhang, X. J., and Ding, H.: Harmonic Differential Quadra-
ture Method for Surface Location Error Prediction and Machin-
ing Parameter Optimization in Milling, J. Manuf. Sci. Eng.-
Trans. ASME, 137, 024501, https://doi.org/10.1115/1.4028279,
2015.

Eksioglu, C., Kilic, Z. M., and Altintas, Y.: Discrete-time prediction
of chatter stability, cutting forces, and surface location errors in
flexible milling systems, J. Manuf. Sci. Eng.-Trans. ASME, 134,
061006, https://doi.org/10.1115/1.4007622, 2012.

Elhewy, A. H., Mesbahi, E., and Pu, Y.: Reliability analysis of struc-
tures using neural network method, Probab. Eng. Eng. Mech., 21,
44–53, 2006.

Gomes, H. M., Awruch, A. M., and Lopes, P. A. M.: Reliability
based optimization of laminated composite structures using ge-
netic algorithms and Artificial Neural Networks, Struct. Saf., 33,
186–195, 2011.

Graham, E., Mehrpouya, M., and Park, S. S.: Robust prediction of
chatter stability in milling based on the analytical chatter stabil-
ity, J. Manuf. Process., 15, 508–517, 2013.

Hajdu, D., Insperger, T., and Stepan, G.: Robust stability analysis of
machining operations, Int. J. Adv. Manuf. Technol., 88, 45–54,
2016.

Insperger, T., Gradišek, J., Kalveram, M., Stepan, G., Winert, K.,
and Govekar, E.: Machine tool chatter and surface location er-
ror in milling processes, J. Manuf. Sci. Eng.-Trans. ASME, 128,
913–920, 2006.

Kiran, K., Rubeo, M., Kayacan, M. C., and Schmitz, T.: Two degree
of freedom frequency domain surface location error prediction,
Precis. Eng.-J. Int. Soc. Precis. Eng., 48, 234–242, 2017.

Li, H., Jing, X., and Wang, J.: Detection and analysis of chatter oc-
currence in micro-milling process. Proc. Inst. Mech. Eng. Pt. B,
228, 1359–1371, 2014.

Mann, B. P., Young, K. A., Schmitz, T. L., and Dilley, D. N.: Simul-
taneous stability and surface location error predictions in milling,
J. Manuf. Sci. Eng.-Trans. ASME, 127, 446–453, 2005.

Mann, B. P., Edes, B. T., Easley, S. J., Young, K. A., and Ma, K.:
Chatter vibration and surface location error prediction for helical
end mills, Int. J. Mach. Tools Manuf., 48, 350–361, 2008.

Olsson, A., Sandberg, G., and Dahlblom, O.: On Latin hypercube
sampling for structural reliability analysis, Struct. Saf., 25, 47–
68, 2003.

Patuwo, E., Hu, M. Y., and Hung, M. S.: Two-Group Classification
Using Neural Networks, Decis. Sci., 24, 825–845, 1993.

Schmitz, T. and Ziegert, J.: Examination of surface location error
due to phasing of cutter vibrations, Precis Eng.-J. Am. Soc. Pre-
cis. Eng., 23, 51–62, 1999.

Schmitz, T. L. and Mann, B. P.: Closed-form solutions for surface
location error in milling, Int. J. Mach. Tools Manuf., 46, 1369–
1377, 2006.

Shen, Y. P., Luo, X., Liu, Y., and Chen, X. D.: A Monte Carlo anal-
ysis of uncertainty in supporting assembly of large-aperture op-
tical lenses, Proc. Inst. Mech. Eng. Pt. B, 227, 1504–1513, 2013.

Sims, N. D., Manson, G., and Mann, B.: Fuzzy stability analysis of
regenerative chatter in milling, J. Sound Vibr., 329, 1025–1041,
2010.

Tian, X. J., Liu, Y. H., Deng, W., Sun, P. F., Zheng, C., and Liu, Z.
K.: Sensitivity thermal analysis of electrical discharge machining
process based on probabilistic design system, Proc. Inst. Mech.
Eng. Pt. B, 229, 813–822, 2015.

Urbikain, G., Olvera, D., and de Lacalle, L. N. L.: Stability contour
maps with barrel cutters considering the tool orientation, Int. J.
Mach. Tools Manuf., 89, 2491–2501, 2017.

Mech. Sci., 8, 385–392, 2017 www.mech-sci.net/8/385/2017/

https://doi.org/10.1115/1.4003374
https://doi.org/10.1115/1.4028279
https://doi.org/10.1115/1.4007622

	Abstract
	Introduction
	SLE prediction in milling
	Probabilistic analysis of SLE
	Direct MCS
	ANN based MCS
	Architecture of ANN
	Training data generation


	Numerical example
	Conclusion
	Data availability
	Competing interests
	Acknowledgements
	References

