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Abstract. In the present paper, we investigate a modified pseudo-rigid-body (MPRB) modeling approach for
compliant mechanisms with fixed-guided beam flexures by considering the nonlinear effects of center-shifting
and load-stiffening. In particular, a fixed-guided compliant beam is modeled as a pair of fixed-free compliant
beams jointed at the inflection point, where each fixed-free beam flexure is further modeled by a rigid link con-
nected with an extension spring by a torsion spring, based on the beam constraint model (BCM). Meanwhile, the
characteristic parameters of the proposed MPRB model are no longer constant values, but affected by the applied
general tip load, especially the axial force. The developed MPRB modeling method is then applied to the anal-
ysis of three common compliant mechanisms (i.e. compound parallelogram mechanisms, bistable mechanisms
and 1-DOF translational mechanisms), which is further verified by the finite element analysis (FEA) results.
The proposed MPRB model provides a more accurate method to predict the performance characteristics such as
deformation capability, stiffness variation, as well as error motions of complaint mechanisms with fixed-guided
beam flexures, and offers a new look into the design and optimization of beam-based compliant mechanisms.

1 Introduction

Compliant mechanisms are flexible structures that trans-
mit motions or forces through elastic deformations with
the advantages of low-cost and high-performance by effec-
tively eliminating the impacts of frictions, wears and back-
lashes (Howell, 2001; Turkkan and Su, 2016). Thanks to
the capability to deliver high precision motions, compliant
mechanisms have been widely explored in advanced ap-
plications of precision engineering including micro/nano-
manipulating systems, biological cell manipulations and pre-
cision instruments (Liu et al., 2015; Ding et al., 2017). Mean-
while significant research efforts have been devoted to the
design and analysis of compliant mechanisms (Liu and Yan,
2015; Hao, 2016).

In particular, the fixed-guided beam flexure is a represen-
tative type of flexible segments in compliant mechanisms re-
ceiving increasing attentions in research literatures due to
their potential to achieve large translational motions such as

bistable mechanisms (Chen and Ma, 2015), compliant paral-
lelogram mechanisms (Luo and Liu, 2014), and compound
compliant parallelogram mechanisms (Hao and Li, 2016).
With one end remaining a constant angle, the deflected con-
figuration of the fixed-guided beam carries at least one inflec-
tion point, where axial deflections and axial forces have sig-
nificant impacts on its mechanical properties. In particular,
the equivalent stiffness will change and the rotational center
will shift with respect to the connected links in the presence
of load applications and the subsequent deflections. Conse-
quently, complaint mechanisms with fixed-guided beams in-
evitably suffer from performance tradeoffs in terms of travel
range, static stiffness and motion precision, see Hao and Li
(2016), Teo et al. (2010), Ma and Chen (2017) and the refer-
ences therein.

Various methods have been developed for the analysis
and design of complaint mechanisms with beam flexures,
such as the finite element analysis, elliptical integrals, beam
constraint model, as well as topological synthesis. Consid-
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ering the complicated calculation of these approach, How-
ell (2001) proposed the pseudo-rigid-body (PRB) modeling
method to provide a simplified approach to analyze the de-
flection of beam flexures, which consists of two rigid links
joined at a pin joint with a torsion spring. Based on the con-
cept of PRB, Midha et al. (2015) presented a viable method
of analyzing a fixed-guided compliant beam with an inflec-
tion point for various boundary conditions. To further ap-
proximate tip deflection of cantilever beams subject to com-
bined end forces and moments, the PRB 2R (revolute) (Yu
et al., 2012) and 3R (Su, 2009) have been explored to im-
prove the analysis accuracy. However these PRB models can
only describe bending deformation, without capturing the
axial deformation of the beams. To this end, the PRB PR
(prismatic-revolute) (Yu et al., 2015), PRR (Yu et al., 2016)
and 3-Spring model (Venkiteswaran and Su, 2016) have been
developed by adopting a prismatic pair with a linear spring
to describe the axial deformations. Note that the PRB param-
eters are usually optimized over a large range of deflections.
These models demonstrate significant modeling error for the
small deflection beams adopted in the nano-manipulating
systems, especially when the nonlinear effect caused by axial
forces and deformations is addressed.

In this paper, we focus on the pseudo-rigid-body mod-
eling of the fixed-guided beams employed in the nano-
manipulating systems, where the transverse displacements is
an order of magnitude less than the beam length but gener-
ally greater than the beam nominal thickness. Based on the
beam constraint model (BCM) (Awtar et al., 2007), a mod-
ified pseudo-rigid-body (MPRB) modeling approach is pro-
posed for the fixed-guided beam flexures by taking the im-
pacts of nonlinear center-shifting and load-stiffening into ac-
count, where extension springs representing the axial stiff-
ness and torsion springs accounting for the bending stiff-
ness are adopted. Different from the existing PRB models,
the PRB parameters of the proposed MPRB model are de-
termined by the general tip loads. The model is success-
fully applied to the analysis of the compound parallelogram
mechanism, the bistable mechanism and the 1-DOF transla-
tional mechanism, where the analytical results and FEA re-
sults demonstrate the effectiveness and accuracy of the pro-
posed MPRB method.

In the rest of the paper, the BCM is first recalled in Sect. 2.
In Sect. 3, the MPRB modeling method for a fixed-free beam
flexure is developed. Section 4 establishes the MPRB model
for the fixed-guided beam flexure, where the FEA analysis
is also deployed to verify the effectiveness of the proposed
method. In Sect. 5 the proposed MPRB modeling approach
is applied to three common compliant mechanisms as case
studies, where comparisons with existing methods are also
provided. Finally, some concluding remarks are summarized
in Sect. 6.

Figure 1. Deflection of a cantilever beam subject to a combined
end force and moment.

2 Beam constraint model

We start with a fixed-free beam with generalized end forces
as depicted in Fig. 1. Note that we would like to focus on the
deformed configuration that the transverse displacements are
an order of magnitude less than the beam length but gener-
ally greater than the beam thickness, which agrees with many
actual applications of nano-manipulating systems (Parmar et
al., 2014). Therefore, the beam curvature can be linearized by
assuming small slopes. Based on the Euler-Bernoulli equa-
tion, we have

M(x) = EI
dθ
ds
= EI

d2y

dx2 , (1)

M(x) = M +F (l+1x − x)−P (1y − y), (2)

whereM(x) is the equivalent bending moment applied at the
arbitrary cross section, F , P and M are the applied trans-
verse force, axial force and bending moment, x is the dis-
tance along the undeflected beam axis, y is the transverse de-
flection, θ is the angular deflection, dθ/ds is the change rate
of the angular deflection along the beam, E is the Young’s
modulus, I is the inertia moment, l is the initial length of the
beam, 1x and 1y are the axial and transverse deformations
of the tip point, respectively.

The above equations can be solved by applying the bound-
ary conditions that y = 0, dy

dx = 0 at x = 0 and d2y

dx2 =M/EI ,
d3y

dx3 = (P dy/dx−F )/EI at x = l+1x . The results can be
further approximated by recalling Awtar et al. (2007) as

δy =
1y

l
≈

5f
3(5+ 2p)

+
12m

2(12+ 5p)
, (3)

δθ ≈
12f

2(12+ 5p)
+

48(10+p)m
5p2+ 208p+ 480

, (4)

δx =
1x

l
=
xe

l
−
xk

l
, (5)

δxe =
xe

l
=
t2p

12
, (6)

δxk =
xk

l
≈

420−p
700

δ2
y −

70−p
700

δyδθ

+
420− 11p

6300
δ2
θ , (7)
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where f = F l2

EI
, p = P l2

EI
and m= Ml

EI
are the normalized

forces and moment applied at the tip point, t = T
l

is the di-
mensionless thickness, δx , δy and δθ are the normalized de-
flection parameters, respectively. It is obvious that the axial
displacement 1x is comprised of a purely elastic component
xe resulting from the elastic stretch and a kinematic compo-
nent xk from the conservation of beam arc-length, as depicted
in Fig. 1.

Accordingly, we can safely assume that the deformation of
the beam can be divided into the following two steps:

1. The beam flexure stretches to l+ xe under the action of
axial force.

2. The beam flexure with the length of l+ xe bends under
the action of the generalized force.

3 MPRB model for fixed-free beam flexures

In this section, we consider a simple case for a fixed-free
beam flexure with the length of l subject to a combined force
[F,P ], as shown in Fig. 2a. Based on the BCM model, the
deformations of the free end D can be easily derived by in-
serting m= 0 into Eqs. (3)–(7).

Inspired by the PRB models proposed in Midha et al.
(2015), Yu et al. (2016), a modified PRB model subject to a
combined end force is proposed as depicted in Fig. 2b, which
is composed of a rigid link OD of length γ l and an exten-
sion spring joined by a pin jointO with a torsion spring. The
undeflected length of the extension spring is (1−γ )l. We as-
sume that the extension spring is not capable to bend to rep-
resent the axial stiffness, and the torsion spring represents the
bending stiffness.

As illustrated in Fig. 2b, the extension spring is stretched
by xe with the axial force P , i.e., the rigid link OD shifts to
O ′D′′. Thus the equivalent stiffness of the extension spring
can be derived as

ke =
p

δxe
=

12
t2
, (8)

Ke =
keEI

l3
, (9)

where ke is defined as the normalized stiffness of the exten-
sion spring.

Then the free end D′′ rotates to D′ around the pin joint
O ′ under the combined end force. From Fig. 2b, we have the
following equations:

tan
2

2
=
δxk

δy
, (10)

γ sin
2

2
=

√
δ2
xk+ δ

2
y

2
, (11)

where 2 is denoted as the PRB angle and γ is the character-
istic radius factor.

It follows by Eqs. (3)–(7) and m= 0 that

γ =
Bf f

2

12600(5p+ 12)2(2p+ 5)2 +
8750(5p+ 12)2

Bf
, (12)

2=
fBf

5250(5p+ 12)2(2p+ 5)
, (13)

where

Bf = 25(420−p)(5p+ 12)2

+ 90(p− 70)(2p+ 5)(5p+ 12)

+ 36(2p+ 5)2(420− 11p).

The equivalent normalized torque Tf applied at the torsion
spring can be expressed as

Tf = f γ cos2−pγ sin2≈ γ
(
f

(
1−

22

2

)
−p2

)
, (14)

where sin2 and cos2 are approximated by 2 and 1− 22

2
respectively because 2 is small enough.

Accordingly, the equivalent stiffness of the torsion spring
can be calculated as

kθ =
Tf

2
≈ γ

(
5250(5p+ 12)2(2p+ 5)

Bf
−p

)
, (15)

K2 =
kθEI

l
, (16)

where kθ is defined as the normalized stiffness of the torsion
spring.

Meanwhile the location of the torsion spring (i.e., pin point
O) can be derived as

xO = (1− γ )l, (17)

xO ′ = (1− γ )l+ xe = (1− γ +
t2p

12
)l. (18)

It is straightforward that the location of the torsion spring
is not only determined by the characteristic radius factor γ ,
but also the axial force P . The PRB parameters (characteris-
tic radius factor γ and the equivalent torsional stiffness K2)
are no longer constant values, but determined by the com-
bined force. With this, the nonlinear characteristics of center-
shifting and load-stiffening are incorporated in the modified
PRB model. Note that the MPRB model proposed in this pa-
per can capture the nonlinear effect of the axial deforma-
tions and forces on the equivalent torsional stiffness with
some simplifications compared with the BCM. More impor-
tantly, the proposed MPRB model inherits the advantage of
the PRB models, which makes a wealth of existing rigid-
body mechanism analysis and synthesis knowledge available
to the treatment of compliant mechanisms and is convenient
for the mechanism design, kinematic synthesis, as well as
the structure parameter optimization. It is also worth point-
ing out that due to the limitation of the BCM, the proposed
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Figure 2. Fixed-free compliant beam. (a) Deflected configuration. (b) MPRB model.

Figure 3. Deformation of the fixed-guided beam flexure with a sin-
gle inflection point.

MPRB model can be only applied to the modeling of beam
flexures with intermediate deflections where the transverse
displacements are with an order of magnitude less than the
beam length.

4 MPRB model for fixed-guided beam flexures

In this section, we consider the modeling of the fixed-guided
beam flexures, as illustrated in Fig. 3. Because the slope of
the beam is equivalent at the fixed and guided ends, there
must be at least one point of inflection in the deformation
curve. At every point of inflection, the internal moment van-
ishes. Without loss of generality, the initially-straight fixed-
guided beam with only one inflection point is considered in
this work. Note that the methodology can be extended to the
cases with more inflection points, which promises the capa-
bility of predicting the second mode bending of fixed-guided
beams.

4.1 Location of the inflection point

As shown in Fig. 3, the fixed-guided beam flexure suffers
from the generalized end force including lateral force F , ax-
ial force P and moment M such that the end section remains
a constant angle in the process of deformation. According to
Eqs. (1) and (2), we can obtain the curvature at the fixed end
A and guided end D as

dθ
ds

∣∣∣∣
x=0
=M +F (l+1x)−P1y, (19)

dθ
ds

∣∣∣∣
x=l+1x

=M. (20)

If the deformed beam has one inflection point B, the cur-
vature at A and D must be opposite due to the same slope.
Accordingly, we can derive the moment M applied on the
guided end as

M =
P1y −F (l+1x)

2
. (21)

It is easy to verify that the equivalent moment applied at
the midpoint of the deformation curve and the corresponding
curvature equals to zero, which demonstrates that the inflec-
tion point is located at the mid-length of the fixed-guided
beam.

4.2 MPRB modeling of the fixed-guided beam

An inflection point is characterized by a zero curvature and
a zero moment, which allows it to be modeled as an instan-
taneous pin joint. Therefore, the fixed-guided beam flexure
can be modeled as two fixed-free compliant segments with
individual length of l/2 joined at the midpoint B, as depicted
in Fig. 4a. One of the two segments is fixed at the origin A
of the fixed-guided beam, and the other is fixed at the guided
end D. Each segment can be simplified as a MPRB model
with three dimensionless parameters γ , ke and kθ . Accord-
ingly, the fixed-guided beam flexure is modeled as a rigid
link of length γ l joined with two linear springs of stiffness
Keg by two pin joints with two torsion springs of stiffness
Kθg , as show in Fig. 4b.

Similar to the fixed-free beams, we define the normalized
parameters for the fixed-guided beam flexures as

f =
F l2

4EI
, p =

P l2

4EI
, t =

2T
l
.

The characteristic radius factor γ and the PRB angle 2 of
the MPRB for fixed-guided beam flexures can be achieved
by substituting the above load parameters into Eqs. (12) and
(13). Then the equivalent stiffness can be calculated as

Keg =
keEI(
l
2

)3 = 96EI
l3t2

, (22)
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Figure 4. Fixed-guided beam. (a) Two fixed-free compliant segments. (b) MPRB model.

Table 1. Geometric parameters of the fixed-guided beam flexure.

Parameters l (mm) b (mm) T (mm)

Value 30.0 10.0 0.5

Kθg =
kθEI

l
2

=
2γEI

(
5250(5p+ 12)2(2p+ 5)−pBf

)
lBf

. (23)

Hence the displacement of the guided end D can be de-
rived as

1y = γ l sin2= γ l2=
γ lBf f

5250(5p+ 12)2(2p+ 5)
, (24)

1x = 2
(
P

Keg
−
γ l

2
(1− cos2)

)
= l

(
pt2

12
−
γ22

2

)
. (25)

It is clear that the proposed MPRB model is capable of
capturing the load-dependent property of the fixed-guided
beam flexures. Compared with the recent developed Bi-BCM
model for fixed-guided beams (Ma and Chen, 2017), the pro-
posed MPRB model demonstrates a similar change trend and
prediction accuracy, as demonstrated in Fig. 5, where the key
structure parameters of the fixed-guided beam are listed in
Table 1. The small discrepancy is caused by some simplifica-
tions in the MPRB model. With the proposed MPRB model,
the traditional kinematic and dynamic analysis methods for
rigid-body mechanisms can be extended to the synthesis of
the fixed-guided beams based compliant mechanisms.

4.3 Model verification with FEA

In this section the developed MPRB modeling method for
fixed-guided beam flexures is verified by the FEA software
ANSYS. According to the structure illustrated in Fig. 3, the
finite element model of fixed-guided beam flexure model is
established with the key structure parameters listed in Ta-
ble 1, where b is the width of the beam flexure. The alu-
minum alloy Al7075-T6 with Young’s modulus of 71 GPa is

Table 2. The maximum error for the tip point (mm).

Cases MPRB PRB 1R 3-Spring PRR

F = 5 N 0.02 0.17 0.07 0.06
P = 0 N 0.04 0.12 0.08 0.07
P = 20 N 0.02 0.17 0.14 0.13
P =−20 N 0.11 0.24 0.17 0.13

adopted as the material. In addition, one end of the beam is
fixed and the slope angle of the other end is constrained to
zero.

A constant transverse force F = 5 N with axial forces P
ranging from −40 to 40 N are applied at the guided end. As
demonstrated in Fig. 6c, the equivalent torsional stiffness of
the beam flexure increases with the increase of the axial force
due to the load-stiffening effect. Compared with the FEA
results, the y-axial deflection error of the proposed MPRB
modeling method is less than 1.1% and the maximum error
for the tip point is about 0.1 % of the beam length as shown
in Fig. 6b.

It is also interesting to compare the proposed MPRB
model with the existing PRB models. In particular, the
PRB 1R model (Midha et al., 2015), PRB 3-Spring
model (Venkiteswaran and Su, 2016) and PRB PRR
model (Yu et al., 2016) are adopted to model each fixed-free
segment. The corresponding results are plotted in Fig. 6. It
is obvious that the maximum error for the tip point obtained
by the MPRB method is improved by 88.2, 71.4 and 66.7 %
compared with PRB 1R, 3-Spring and PRR modeling meth-
ods.

Moreover, Fig. 7 shows the simulated (FEA) and approx-
imated (MPRB, PRB 1R, 3-Spring and PRR) tip loci for
three cases: P = 0, P =−20 N and P = 20 N, respectively.
As listed in Table 2, the errors between the proposed MPRB
model and the FEA analysis are less than 0.4 % of beam
length in the presence of axial compression and 0.1 % in the
presence of axial tension. Compared with PRB 1R, PRB 3-
Spring and PRB PRR modeling methods, the modeling pre-
cision of the proposed MPRB is improved by 54.2, 35.2 and

www.mech-sci.net/8/359/2017/ Mech. Sci., 8, 359–368, 2017
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Figure 5. Comparisons between the proposed MPRB model and Bi-BCM model. (a) F = 5 N with different axial forces. (b) P = 20 N with
different transverse forces.

Figure 6. The deflection loci of the fixed-guided beam flexure with F = 5 N. (a) Y -axial deflection. (b) Deflection loci of the guided end.
(c) Normalized torsional stiffness.

15.4 % for axial compression and 88.2, 85.7 and 84.6 % for
axial tension, respectively.

5 Case studies

In this section, the proposed MPRB model is further applied
to the analysis of three compliant mechanisms with fixed-
guided beams, including a compound parallelogram mecha-
nism, a bistable mechanism and a 1-DOF translational mech-
anism, where the impacts of the axial deformations and the
axial forces cannot be ignored.

5.1 Compound compliant parallelogram mechanism

As depicted in Fig. 8a, the compound compliant parallelo-
gram mechanism consists of two parallelogram mechanisms
connected in parallel. With the action of the driving force
Fy , each beam deflects in an “S”-shaped form. Based on the
proposed modeling approach, we establish the MPRB model
of the compound compliant parallelogram mechanism, as
demonstrated in Fig. 8b.

We here define Fb and Pb as the lateral force and axial
force applied at each beam respectively. According to the
equilibrium condition of forces, we can achieve the following

relationship as

Fb =
Fy

4
, fb =

Fbl
2

4EI
, pb =

Pbl
2

4EI
,

where fb and pb are the normalized lateral and axial force,
respectively.

According to the modeling process for the fixed-guided
beams, we can derive the output displacement 1y and the
equivalent stiffness Ky in the direction of motion (y-axis) of
the compound compliant parallelogram mechanism as

1y = γ l2=
γ lBf fb

5250(5pb+ 12)2(2pb+ 5)
. (26)

Ky =
Fy

1y
=

84000EI (5pb+ 12)2(2pb+ 5)
γ l3Bf

, (27)

where the corresponding axial force (Pb and pb) can be fur-
ther calculated by letting Eq. (25) to 0 since the horizontal
length remains unchanged.

Based on the above results, the deflection-force curve can
be obtained as depicted in Fig. 9, which shows a strong non-
linearity of the equivalent stiffness, which agrees well with
FEA results with a discrepancy less than 2.1 %. To be spe-
cific, the equivalent stiffness increases with the output dis-
placement. Meanwhile the changing rate of the equivalent
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Figure 7. The deflection loci of the fixed-guided beam flexure. (a) P = 0. (b) P = 20 N. (c) P =−20 N.

Figure 8. (a) Compound compliant parallelogram mechanism. (b) MPRB model

Figure 9. Output displacements of the compound compliant paral-
lelogram mechanism.

stiffness also increases with the output displacement. For
comparison purposes, the results obtained by PRB 3-Spring
and PRR models are also plotted in Fig. 9, which demon-
strates a modeling error of 7.9 and 9.1 % respectively. The
reason behind the discrepancies (of the existing methods)
is that the axial tensile force applied to each beam flex-
ure increases with the output displacement and significantly
changes the stiffness of the beam flexures.

Figure 10. Fixed-guided bistable compliant mechanism.

5.2 Bistable mechanism

Another commonly investigated compliant mechanism with
fixed-guided beam flexures is the compliant bistable mech-
anism. Figure 10 shows a typical bistable compliant mecha-
nism consisting of four identical fixed-guided straight beams,
where the impact of axial force cannot be ignored in case of
deformed configurations. A fixed-guided beam taken from
the bistable compliant mechanism is plotted in Fig. 11a.
The geometric parameters of the beam are listed in Table 3.
Again, Al7075-T6 is adopted as the material.

We introduce the coordinate frame such that X-axis is
along the beam with the origin at the fixed end, as shown in
Fig. 11a. For a given vertical displacement 1y at the guided
end, the corresponding deflection parameters in the XY co-
ordinate frame can be normalized as

δY =
21Y
l
=

21y cosζ
l

, (28)

www.mech-sci.net/8/359/2017/ Mech. Sci., 8, 359–368, 2017
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Figure 11. A fixed-guided beam in the bistable mechanism. (a) Schematic diagram. (b) MPRB model.

Figure 12. The force-deflection curves of the bistable mechanism. (a) Positive displacement. (b) Negative displacement.

Table 3. Key geometric parameters of the bistable compliant mech-
anism.

Parameters l (mm) b (mm) T (mm) ζ (◦)

Value 30.0 10.0 0.5 5.5

δX =
21X
l
=−

21y sinζ
l

, (29)

where ζ represents the angle between the horizontal line and
the undeformed beam configuration.

According to the proposed modeling method, we can es-
tablish the PRMB model for the fixed-guided beam of the
bistable mechanism, as depicted in Fig. 11b, where Fby and
Fbx represent the lateral force and axial force applied at the
guided end of the beam flexure respectively. According to the
equilibrium condition of forces, we can achieve the normal-
ized load parameters as

fby =
Fby l

2

4EI
=

(Fb cosζ −Pb sinζ )l2

4EI
, (30)

pbx =
Pbx l

2

4EI
=−

(Pb cosζ +Fb sinζ )l2

4EI
, (31)

where Fb and Pb are the vertical and horizontal forces ap-
plied at each beam flexure shown in Fig. 11a.

Similar to the modeling procedure of the compound com-
pliant parallelogram mechanism, we can substitute f = fby ,
p = pbx and the dimensionless thickness t = 2T

l
in Eqs. (24)

and (25), and derive the load-deflection curve for the bistable
mechanism.

We first let the input displacement δy increase from 0
to 5 mm. The resulting load-deflection curve is plotted in
Fig. 12a. Compared with the FEA results, the proposed
MPRB model can efficiently describe the nonlinear relation-
ship between the driving force and the output displacement
of the bistable mechanisms with an error less than 4.2%.
The existing methods such as PRB 3-Spring and PRR models
considering the effect of axial deformations shows an mod-
eling error of 9.3 and 9.6 % respectively. It is worth pointing
out that there are two stable equilibrium positions and an un-
stable equilibrium position of the bistable mechanism shown
in Fig. 12a. The proposed MPRB method works well at both
stable and unstable equilibrium positions.
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Figure 13. (a) 8-beam flexures based 1-DOF translational mechanism. (b) The force-deflection curves.

On the other hand, we apply negative displacement rang-
ing from 0 to −2 mm to the bistable mechanism. As illus-
trated in Fig. 12b, the equivalent stiffness significantly in-
creases with the increase of the displacement. Compared
with FEA results, the proposed MPRB demonstrates a mod-
eling error less than 1.1 %, while the maximum modeling er-
rors of the PRB 3-Spring and PRR models are 3.0 and 6.2 %
respectively. The comparison results indicate the effective-
ness and accuracy of the proposed MPRB model to predict
the nonlinear behavior and the unstable equilibrium positions
of the bistable mechanism.

5.3 1-DOF translational mechanism

As depicted in Fig. 13a, a symmetric and compact 1-DOF
mechanism presented by Hao (2016) consists of 8 fixed-
guided wire beams. Under the constraint of the wire beams,
the motion stage can achieve precise translation along z-
axis. In this section, the finite element model of the 1-DOF
mechanism is established with these key structure parame-
ters: L= 30 (mm), T = B = 1 (mm). Al7075-T6 is also se-
lected as the material.

Note that each wire beam of the 1-DOF translational
mechanism deflects in an “S”-shaped form where the hori-
zontal length remains unchanged. Through the similar mod-
eling process for the compound compliant parallelogram
mechanism, we can establish the MPRB model for the 1-
DOF mechanism. The corresponding force-deflection curve
can be derived as plotted in Fig. 13b, which agrees well with
the FEA results with an error less than 2.2 %. The results also
indicate a significant nonlinear load-stiffening effect during
the deformations, which should be considered during the
modeling process. Compared with the existing PRB 3-Spring
and PRR models, the modeling precision is improved by 85.5
and 73.2 % respectively.

6 Conclusions

In this paper, we took the nonlinear effect (center-shifting
and load-stiffening) caused by axial deformations and forces
into consideration and developed a modified pseudo-rigid-
body modeling method for compliant mechanisms with
fixed-guided beam flexures. Based on the BCM, the fixed-
free beam flexure was modeled as a rigid link and an exten-
sion spring joined by a pin joints with a torsion spring, where
the PRB parameters including the characteristic radius factor
and the equivalent torsional stiffness were shown to be deter-
mined by the general tip loads, instead of a constant value.
Accordingly, a fixed-guided beam flexure was modeled as a
pair of two fixed-free beam flexures jointed at the inflection
point, where each fixed-free beam flexure was modeled by
the proposed MPRB method. FEA simulations and three case
studies, including a compound parallelogram mechanism,
a fully compliant bistable mechanism and a 1-DOF trans-
lational mechanism, demonstrated significant improvement
over existing results to predict performance characteristics
of the compliant mechanisms with fixed-guided beams. It is
worth pointing out that the proposed MPRB can be extended
to the cases with more inflection points, which promises the
capability of predicting the second mode bending of fixed-
guided beams. Also note that the proposed MPRB modeling
method is only suitable for capturing the deflection behavior
of fixed-guided beam flexures with known inflection points
and intermediate deformations, due to the limitation of the
BCM. Future extensions along this line of research include
the pseudo-rigid-body modeling for the case of larger defor-
mations and more generalized flexure hinges (both notched
hinges and beam flexures) by considering the influence of the
axial force.
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