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Abstract. Buckling of nonuniform carbon nanotubes are studied with the axial load taken as a combination of
concentrated and axially distributed loads. Constitutive modelling of the nanotubes is implemented via nonlocal
continuum mechanics. Problem solutions are obtained by employing a weak formulation of the problem and the
Rayleigh-Ritz method which is implemented by using orthogonal Chebyshev polynomials. The accuracy of the
method of solution is verified against available results. Solutions are obtained for the cases of uniformly dis-
tributed and triangularly distributed axial loads. Contour plots are given to assess the effect of nonuniform cross-
sections and the small-scale parameter on the buckling load for a combination of simply supported, clamped and
free boundary conditions.

1 Introduction

Superior properties of carbon nanotubes (CNT) led to their
use in a number of technologically advanced fields such as
biotechnology, nanocomposites and nanoelectronics. Even
though CNTs have high stiffness and large failure strain,
they are prone to buckling under compressive loads due to
their slenderness which results in limiting their use in ap-
plications involving compressive axial loads. Thus, in many
applications of CNTs, buckling becomes of primary inter-
est as this could be the dominant failure mode. Such appli-
cations include nano-mechanical devices, drug delivery and
nanocomposites. This resulted in buckling of CNTs being an
active area of research for a number of years and the subject
has been investigated extensively due to its importance (El-
ishakoff et al., 2012; Shima, 2012; Wang et al., 2010). Recent
works on the buckling of CNTs with uniform cross-sections
and subject to a concentrated axial load include Pradhan et
al. (2011), Ansari et al. (2011), Hosseini-Ara et al. (2012),
Zidour et al. (2014), and Ebrahimi et al. (2016). Studies on
the stability of uniform CNTs under distributed axial loads
include buckling of CTNs under their own weight (Wang
et al., 2004, 2016; Mustapha and Zhong, 2012) and under
uniformly and triangularly distributed axial loads (Robinson
and Adali, 2016). Nonuniform CNTs are employed in the

design of nanostructures such as nanoscale sensors and ac-
tuators and their vibration characteristics have been studied
in Murmu and Pradhan (2009), Lee and Chang (2010, 2011),
and Tang et al. (2014). Studies on the buckling of nonuni-
form nanotubes seem to have been restricted to nanocones
which are of interest in atomic force microscopy and elec-
troanalysis (Chen et al., 2006; Sripirom et al., 2011) as the
tip structure of nanocones can be used to achieve mechan-
ical properties which cannot be obtained by uniform nan-
otubes. A number of studies have been directed to elucidating
the mechanical and physical properties of nanocones (Wei
et al., 2007; Ansari and Mahmoudinezhad, 2015). Buckling
and post-buckling behaviors of nanocones have been studied
in Liew et al. (2007), Yan et al. (2013). Molecular mechan-
ics was employed in Fakhrabadi et al. (2012) to investigate
the buckling behavior of nanocones and a computational ap-
proach was used in Yan et al. (2012) to compute the buckling
loads of nanocones. In the above studies buckling loads were
specified as concentrated axial loads.

Present study involves the buckling of nonuniform nan-
otubes under variable axial loads employing a nonlocal con-
tinuum model and extends the results of Robinson and
Adali (2016) to nonuniform nanotubes. Axial loads acting
on the nanotube are taken as a combination of concentrated
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and distributed loads. Distributed loads can be uniform cor-
responding to self-weight or triangular. The method of solu-
tion involves the weak variational formulation of the problem
and employing the Rayleigh-Ritz method using orthogonal
Chebyshev polynomials. Numerical results are given for var-
ious combinations of boundary conditions in the form of con-
tour plots and line graphs to study the effect of the problem
parameters on buckling loads.

2 Nonlocal problem formulation

In the nonlocal formulation of the constitutive equations of
continuum mechanics, the stress at a point depends not only
on the strain at that point but also on strains at all other
points in the domain. As such stress-strain relations of nonlo-
cal elasticity differs from those of classical elasticity and the
general form of these relations are expressed as an integral
over the domain (Fernández-Sáez et al., 2016; Taghizadeh et
al., 2015). Nonlocal formulation has the advantage of taking
into account the small scale effects in the form of a material
parameter making it suitable for the study of nano scale com-
ponents. In the one-dimensional case, differential equation
form of the integral constitutive relation can be expressed as

σ (x)− (e0a)2 ∂
2σ (x)
∂x2 = Eε(x) (1)

where σ (x) is the stress, ε(x) the strain, e0a is the small scale
parameter and E is the Young’s modulus. Bending moment
at a point x can be computed as

M(x)=
∫ ∫
A

zσ (x) dA (2)

with A denoting the cross-sectional area. Using Eqs. (1) and
(2), the differential equation for M(x) can be obtained in
terms of the deflection w(x) as

M − (e0a)2M ′′ =−EI (x)w′′ (3)

where a prime denotes differentiation with respect to x and
I (x) is the moment of inertia of the nonuniform cross-
sectional area A(x). The classical (local) elasticity equation
for M(x) corresponds to Eq. (3) with e0a = 0. The equation
governing the buckling of a nanotube subject to a distributed
axial load Ni(x) can be expressed in terms of moment M(x)
and deflection w(x) as

M ′′−
(
Ni(x)w′

)′
= 0 (4)

In Eq. (2), the compressive load Ni(x) acting on the nan-
otube consists of a concentrated load P and a distributed load
Qi(x) as shown in Fig. 1 and can be expressed as

Ni(x)= P +Qi(x), 0≤ x ≤ L (5)

Figure 1. Clamped-free columns under tip loads and distributed ax-
ial loads, (a) uniformly distributed load, (b) triangularly distributed
load.

where L is the length of the nanotube. In the present
study two different distributed axial loads will be consid-
ered, namely, uniformly distributed load Q1(x)= q̄1(L− x)
(Fig. 1a) and triangularly distributed load Q2(x)= 1

2 q̄2(L−
x)2 (Fig. 1b).

Substituting the second derivative of M(x) from Eq. (4)
into Eq. (3), the expression for the nonlocal moment is com-
puted as

M =−EI (x)w′′+ (e0a)2(Ni(x)w′
)′ (6)

From Eqs. (4) and (6), the differential equation governing the
buckling of a nonuniform nanotube can be obtained as

D(w)=
(
EI (x)w′′

)′′
+
(
Ni w

′
)′

− (e0a)2(N ′i w′+Ni w′′)′′ = 0 (7)

3 Weak formulation

The weak form of the problem corresponds to an integral
expression combining the differential equation and the natu-
ral boundary conditions. It provides a suitable approximation
technique using polynomials as the approximating functions.
Derivation of the weak form of Eq. (7) is outlined next by
first noting that

L∫
0

D(w)w dx = 0 (8)

since D(w)= 0. Each term in Eq. (8) is expressed as

4∑
i=1

Ui(w)= 0 (9)

in order to incorporate the natural boundary conditions into
the formulation. In Eq. (9), the expressions for Ui(w) are
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Table 1. Comparison of buckling loads p (concentrated load only) with existing results for four boundary conditions with EI (X)= EI0(1−
βX)4 and µ= 0 (local beam).

SS CS CC CF

β Present Wei et
al. (2010)

Present Wei et
al. (2010)

Present Wei et
al. (2010)

Present Wei et
al. (2010)

0.0
0.2
0.4
0.6
0.8

9.869
6.317
3.553
1.579
0.398

9.870
6.317
3.553
1.579
0.395

20.191
12.922
7.269
3.231
0.815

20.191
12.922
7.269
3.230
0.807

39.478
25.266
14.212
6.317
1.583

39.478
25.266
14.212
6.316
1.547

2.467
1.883
1.309
0.7567
0.265

2.467
1.884
1.309
0.757
0.265

given by

U1(w)=

L∫
0

(
EI (x)w′′

)′′
w dx,

U2(w)=

L∫
0

(
Ni w

′
)′
w dx (10)

U3(w)=−(e0a)2

L∫
0

(
N ′i w

′
)′′
w dx

U4(w)=−(e0a)2

L∫
0

(
Ni w

′′
)′′
w dx (11)

Expressions forUi(w) are transformed to integral and bound-
ary terms by integration by parts, viz.,

U1(w)=

L∫
0

EI (x)
(
w′′
)2 dx

+

[(
EI (x)w′′

)′
w−EI (x)w′w′′

]x=L
x=0

(12)

U2(w)=−

L∫
0

Ni
(
w′′
)2dx+Niw′w

∣∣x=L
x=0 (13)

U3(w)=−(e0a)2

L∫
0

N ′i w
′w′′dx

− (e0a)2
[(
N ′iw

′
)′
w−N ′iw

′2
]x=L
x=0

(14)

U4(w)=−(e0a)2

L∫
0

Ni w
′′2dx

− (e0a)2
[(
Niw

′′
)′
w−Niw

′′w′
]x=L
x=0

(15)

The moment expression is given by Eq. (6) and the shear
force by

V (x)=
(
EI (x)w′′

)′
+Ni w

′

− (e0a)2
[(
N ′i w

′
)′
+
(
Ni w

′′
)′] (16)

Then Eq. (8) can be expressed as

L∫
0

{
EI (x)w′′2−Ni w′

2
− (e0a)2

[
N ′i w

′w′′+Ni w
′′2
]}

dx

+
(
V (x)w+M(x)w′

)∣∣x=L
x=0 = 0 (17)

where M(x) and V (x) are defined by Eqs. (4) and (16), re-
spectively. Boundary conditions for various cases can be ex-
pressed as follows:

Simply supported boundary conditions:
w(0)= 0,M(0)= 0,w(L)= 0,M(L)= 0 (18)

Clamped-clamped boundary conditions:

w(0)= 0,
dw
dx

∣∣∣∣
x=0
= 0,w(L)= 0,

dw
dx

∣∣∣∣
x=L

= 0 (19)

Clamped-simply supported boundary conditions :

w(0)= 0,
dw
dx

∣∣∣∣
x=0
= 0,w(L)= 0,M(L)= 0 (20)

Clamped-free supported boundary conditions :

w(0)= 0,
dw
dx

∣∣∣∣
x=0
= 0,M(L)= 0,V (L)= 0 (21)

Let I (x)= I0g(x) where I0 is a dimensional reference
constant and g(x) is a nondimensional function of x. Non-
dimensional form of the formulation can be obtained by in-
troducing the dimensionless variables defined as

X =
x

L
W =

w

L
µ=

e0a

L
p =

PL2

EI0

qi =
q̄iL

2+i

EI0
ni =

NiL
2

EI0
(22)
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Table 2. Comparison of buckling loads under distributed loads with existing results for four boundary conditions with µ= 0 (local beam).

q1 q2/2

BC Present Duan and
Wang (2008)

Wang et
al. (1988)

Present Eisenberger
(1991)

SS
CS
CC
CF

18.569
52.504
74.643
7.837

18.569
52.501
74.629
7.837

18.58
53.91
78.96
7.84

23.239
78.983
107.823
16.101

23.239
78.983
107.823
16.101

Figure 2. Contour plot of p with respect to β and µ, (a) SS, (b) CS.

Nondimensional form of Eq. (16) can be expressed as

1∫
0

{
g(X)W ′′2− ηiW ′

2
−µ2

[
η′iW

′W ′′+ ηiW
′′2
]}

dx

+
(
v(X)W +m(X)W ′

)∣∣X=1
X=0 = 0 (23)

where

m(X)=
L

EI0
M =−g(X)W ′′+µ2(niW ′)′ (24)

v(X)=
L2

EI0
V (x)=

(
g(X)W ′′

)′
+ ηiW

′

−µ2
[(
η′iW

′
)′
+
(
η′iW

′′
)′] (25)

n1(X)= p+ q1(1−X), n2(X)= p+
1
2
q2(1−X)2 (26)

4 Method of solution

Polynomial approximation of the solution is obtained by im-
plementing the Rayleigh-Ritz method which involves ap-
proximating the non-dimensional deflection function W (X)
in terms of Chebyshev polynomials. Accurate results can
be obtained as the approximating polynomials are complete
in the function space and convergence is tested. To satisfy
the geometric boundary conditions, Chebyshev polynomials
are multiplied by suitable boundary functions corresponding
to the specific boundary condition. Deflection W (X) is ex-

Figure 3. Contour plot of q1 with respect to β andµ, (a) SS, (b) CS.

pressed as

W (X)=Xr (1−X)s
N∑
j=1

cjfj−1(X) (27)

where r and s take the values 0, 1 or 2 for free, simply sup-
ported and clamped boundaries, respectively. Parameters cj
are determined as part of the solution of an eigenvalue prob-
lem which yields the buckling load as the minimum eigen-
value. In Eq. (22), fj (X) is the j th Chebyshev polynomial
with f0(X)= 1 and f1(X)=X. The remaining terms are ob-
tained from

fj+1(X)= 2Xfj (X)− fj−1(X) (28)

To verify the accuracy of the present method, it was ap-
plied to the buckling of a nonuniform column subject to a
tip load only, i.e., p > 0 and q(x)= 0, as given in Duan and
Wang (2008). The column has a square cross-section and
its stiffness is given by EI (X)= EI0(1−βX)4 (Wei et al.,
2010). The results are given in Table 1. It is observed that
the present method implemented by using Chebyshev poly-
nomials give accurate results. Next the method is applied to
columns subject to distributed axial loads and the results are
shown in Table 2. The present method is observed to be accu-
rate also in the case of buckling with distributed axial loads.

5 Numerical results

Numerical results are given for the boundary conditions SS,
CS, CC and CF which are given by Eqs. (17)–(20). The range
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Figure 4. Contour plot of q2 with respect to β andµ, (a) SS, (b) CS.

Figure 5. Contour plot of q1 with respect to p and β with µ= 0.1,
(a) SS, (b) CS.

of the small scale parameter µ is taken as 0≤ µ≤ 0.4. The
cross-section is specified as a square and the moment of iner-
tia is taken as I (X)= I0(1−βX)4. The contour plots of the
buckling load p with respect to µ and β are shown in Fig. 2
for simply supported and clamped-hinged nanocolumns. It is
observed that the buckling load decreases as the small-scale
parameter increases. The corresponding results for uniformly
distributed axial load and triangularly distributed axial load
are shown in Figs. 3 and 4, respectively. It is observed that,
the effect of the non-uniformity parameter β on the buckling
load is more pronounced for the concentrated load p.

Next the buckling under the combined axial loads of a
concentrated load p and a distributed load is investigated.
Contour plots for the buckling load q1 corresponding to
the uniformly distributed axial load are given in Fig. 5
with respect to p and β for simply supported and clamped-
hinged nanocolumns and in Fig. 6 for clamped-clamped and
clamped-free nanocolumns with µ= 0.1.

Corresponding results for q2 (triangularly distributed ax-
ial load) are given in Figs. 7 and 8. Figures 5–8 show the
numerical differences in the buckling loads in the case of
uniformly and triangularly distributed axial loads for nonuni-
form nanocolumns. The effect of the boundary conditions on
the buckling loads can be observed from these figures. Buck-
ling parameters q1 and q2 are least affected by the change in
the stiffness EI (x) as indicated by β in the case of clamped-
free columns (Figs. 6b and 8b) and most affected in the case
of clamped-clamped columns (Figs. 6a and 8a). Similarly,

Figure 6. Contour plot of q1 with respect to p and β with µ= 0.1,
(a) CC, (b) CF.

Figure 7. Contour plot of q2 with respect to β and p with µ= 0.1,
(a) SS, (b) CS.

the buckling loads q1 and q2 decrease most by an increase
in the tip load p in the case of clamped-free columns as ex-
pected (Figs. 6b and 8b). In fact q1 and q2 become nega-
tive, i.e., change from compression to tension, above a cer-
tain value of p (Figs. 6b and 8b).

6 Conclusions

Buckling of nonuniform nanotubes subject to concentrated
and variable axial loads was studied. In particular, uni-
formly distributed and triangularly distributed axial loads
and nonuniform shapes with moment of inertia proportional
to (1−βX)4 were investigated. The results are obtained by
Rayleigh-Ritz method employing Chebyshev polynomials of
first kind as the approximating functions for a combination
of simply supported, clamped and free boundary conditions.
The accuracy of the method was verified by comparing the
solutions with available results in the literature. Chebyshev
polynomials are used extensively in the solution of engi-
neering problems due to their fast convergence and accuracy
as compared to other orthogonal functions as noted in Sari
and Butcher (2010), Filippi et al. (2015). Moreover they are
easy to programme in symbolic form and the required accu-
racy can be attained by the number of polynomials (Sari and
Butcher, 2010).

The effects of non-uniformity of the cross-section and the
small-scale parameter on the buckling loads were investi-
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Figure 8. Contour plot of q2 with respect to β and p with µ= 0.1,
(a) CC, (b) CF.

gated by means of contour plots. These plots indicate the
sensitivity of the buckling loads to problem parameters and it
was observed that buckling load under concentrated tip load
is more sensitive to the change in the cross-section. On the
other hand buckling load is more sensitive to the magnitude
of the tip load for the clamped-free boundary conditions.

Data availability. All the data for this paper are given in the form
of tables and figures.
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