
Mech. Sci., 8, 221–234, 2017
https://doi.org/10.5194/ms-8-221-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Nonlinear modelling and dynamic stability analysis of a
flexible Cartesian robotic manipulator with base

disturbance and terminal load

Jinyong Ju, Wei Li, Mengbao Fan, Yuqiao Wang, and Xuefeng Yang
School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, P.R. China

Correspondence to: Wei Li (cmeecumt512@yahoo.com)

Received: 5 December 2016 – Revised: 29 March 2017 – Accepted: 29 June 2017 – Published: 26 July 2017

Abstract. The flexible Cartesian robotic manipulator (FCRM) is coming into widespread application in indus-
try. Because of the feeble rigidity and heavy deflection, the dynamic characteristics of the FCRM are easily
influenced by external disturbances which mainly concentrate in the driving end and the load end. Thus, with
the influence of driving base disturbance and terminal load considered, the motion differential equations of the
FCRM under the plane motion of the base are constructed, which contain the forced and non-linear paramet-
ric excitations originated from the disturbances of base lateral and axial motion respectively. Considering the
relationship between the coefficients of the motion differential equations and the mode shapes of the flexible
manipulator, the analytic expressions of the mode shapes with terminal load are deduced. Then, based on mul-
tiple scales method and rectangular coordinate transformation, the average equations of the FCRM are derived
to analyze the influence mechanism of base disturbance and terminal load on the system parametric vibration
stability. The results show that terminal load mainly affects the node locations of mode shapes and mode fre-
quencies of the FCRM, and the axial motion disturbance of the driving base introduces parametric excitation
while the lateral motion disturbance generates forced excitation for the transverse vibration model of the FCRM.
Furthermore, with the increase of the base excitation acceleration and terminal load, the parametric vibration
instability region of the FCRM increases significantly. This study will be helpful for the dynamic characteristics
analysis and vibration control of the FCRM.

1 Introduction

Cartesian coordinate robot is a common structure of indus-
trial robots, which has been widely applied in handling op-
eration, surface mount technology (SMT), welding opera-
tion and CNC machine (Park et al., 2013; Wu and Zhang,
2014; Srinivasan et al., 2015; Qian et al., 2016). With the
development of modern machinery equipment to integration
and lightweight, the flexible Cartesian robotic manipulator
(FCRM) has received increasing attention. Compared with
rigid structure, the FCRM has many advantages such as low
energy consumption and heavy load. However, due to the low
mode frequency and structure damping, the FCRM easily ex-
hibits elastic vibration during the operation process, which
has a heavy influence on the positioning accuracy and ser-
vice life of the whole system, especially in high-speed oper-

ations (Neto et al., 2013). Thus, the dynamic characteristics
and vibration control of the FCRM should be further ana-
lyzed (Feliu et al., 2014; Kiang et al., 2015).

The FCRM system is composed of driving unit, flexi-
ble manipulator, and end effector, which is a typical multi-
coupling system. And the flexible manipulator can be as-
sumed as a flexible beam to describe its dynamic character-
istics (Mann et al., 2014). The calculated results by Zhang et
al. (1995) showed that the results of the traditional modelling
method were divergent when the base rotation frequency of
the slender beam reached or exceeded the fundamental fre-
quency of the beam. The origin of this phenomenon was that
the rigid-flexible coupling effect of the flexible beam caused
the total stiffness of the traditional zero-order approximation
system model less than zero under the high-speed motion of
the base (Feng and Hu, 2002; Duc et al., 2016). Then, with
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the modern robot technology developing to high-speed, the
high-order coupling terms between the large overall motion
of the base and the elastic vibration of the flexible manip-
ulator for the modelling of the FCRM should be taken into
consideration. On this basis, it is obvious that the base mo-
tion has a significant impact on the dynamic response of the
FCRM.

Unfortunately, most of the existing literatures mainly ana-
lyze the parameters of the FCRM itself on its dynamic char-
acter by assuming that the output speed or torque of the driv-
ing unit are constant. Qiu (2012) studied the nonlinear vibra-
tion control for a Cartesian flexible manipulator by ignoring
the torque ripple of the driving motor. The trajectory plan-
ning of the base was applied for the vibration control of a
?exible Cartesian robot manipulator with the assumption that
the base motion can completely in accordance with the speci-
fied manner (Abe, 2011). The eigenspectrum and eigenfunc-
tions of a flexible manipulator are investigated by ignoring
the disturbance of the base movement (Coleman and Mc-
sweeney, 2004). However, considering the coupling fact of
the flexible manipulator and the driving base, there are some
inadequacies for the dynamic analysis of the flexible manip-
ulator in existing research. Taking the motor drives as an ex-
ample, it is difficult for the driving base to move with uniform
velocity or constant axial force under the influence of power
harmonics, motor rotor eccentricity and mechanism gap.

With the fluctuation components of the transmission ve-
locity or axial force of the driving base considered, the
FCRM may appear large amplitude vibration of paramet-
ric excitation and present complex dynamical characteristics.
Atsumi et al. (2005) analyzed the influence of the transmis-
sion error on the servo accuracy and the results indicated that
the high frequency components had a significant effect. Liu
et al. (2015) derived the analytical solutions of a harmonic-
disturbance exciting system for a translational flexible-link
manipulator. Accordingly, the influence of base disturbance
and other external factors on the dynamic characteristics of
the flexible manipulator is obvious. With the development
of nonlinear dynamics theory, the vibration mechanism of
the flexible manipulator has been deeply understood. Based
on Lie group theory, Özkaya and Pakdemirli (2002) ana-
lyzed the vibration stability of an Euler beam with time-
varying velocity motion. By multiple scales method, Chen
and Yang (2005) investigated the dynamic stability problems
of an axially accelerating beam under the conditions of com-
bination and principal parametric resonance. Similarly, with
an added mass placed at an intermediate position, Pratiher
and Bhowmick (2011) investigated the nonlinear dynamic
characteristics of a Cartesian manipulator. De Luca and Si-
ciliano (1991) analyzed the influences of the payload on the
first-order mode shapes of the link-1 and link-2 for a pla-
nar multilink lightweight robot, but this research did not fur-
ther study the impact of the payload on the system dynam-
ics stability. Through the summary of the existing literature,
it is obvious that the model parameters of the flexible ma-

Figure 1. Schematic diagram of the FCRM system under large
overall motion.

nipulator are closely related to its mode shapes. However,
there is very little research about considering the influence
of terminal load on the mode shapes, especially the high-
order modes, of the flexible manipulator before the dynamics
stability analysis, which may cause dynamic instability phe-
nomenon and unstable response. The FCRM is designed to
operate the appropriate objects. Due to the structure charac-
teristics, the terminal load, especially the variable load con-
ditions, can significantly affect the mode frequency and vi-
bration mode of the flexible manipulator. Thus, during the
nonlinear dynamics and stability analysis of the FCRM, the
impact of terminal load should be taken into consideration
firstly.

The objectives of this paper are to construct the nonlin-
ear dynamics model of the FCRM with combining the high-
order coupling terms between the large overall motion of
the driving base and the elastic vibration of the flexible ma-
nipulator. Considering the influence of terminal load on the
boundary conditions, the mode shapes of the flexible manip-
ulator are deduced. Based on multiple scales method, the im-
pact mechanisms of terminal load and driving base distur-
bance on the nonlinear dynamics and vibration stability of
the FCRM are analyzed. The structure of this paper is or-
ganized as follows. The nonlinear dynamic modelling of the
FCRM is given in Sect. 2. Section 3 analyzes the influence
of terminal load on the mode shapes of the flexible manip-
ulator. Section 4 provides the nonlinear response analysis of
the FCRM, including the amplitude-frequency characteris-
tics and parametric vibration stability of the FCRM. Finally,
conclusions are drawn in Sect. 5.

2 Nonlinear dynamic modelling

The structural diagram of the FCRM is shown in Fig. 1,
where OXY denotes inertial coordinate system and oxy de-
notes follow-up coordinate system moving with the FCRM
system. The motion range of the driving base is 0.8 m× 1 m,
which is large overall motion relative to the elastic vibration
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displacement of the flexible manipulator. The flexible manip-
ulator undergoing large overall OXY-plane motion is fastened
to the driving base, which is driven by a permanent magnet
AC servomotor and screw-nut pairs. It is necessary for dy-
namics modelling to assume that: (1) The flexible manipu-
lator satisfies the Euler-Bernoulli beam assumptions; (2) for
the flexible manipulator, the material is homogeneous and
the areas of the cross sections are equal; (3) sections of the
flexible manipulator perpendicular to the axis that are plane
before deformation remain plane after deformation, and the
shear and torsion effect perpendicular to the axis are ne-
glected; (4) under large overall motion, the flexible manip-
ulator occurs medium and small deformation and the axial
deformation, relative to the lateral deformation, is small de-
formation; (5) The connection between the base and the flex-
ible manipulator is pure rigid.

Only the tensile and bending deformations of the FCRM
are considered. Then, according to deformation geometry
condition, one can obtain:

x+ωu =

x∫
0

√(
1+

dωx
dξ

)2

+

(
dωy
dξ

)
dξ. (1)

Spreading Eq. (1) by Taylor series and keeping to
O(dωx/dx) and O((dωy/dx)2) items (Zi and Zhou, 2016),
one can obtain:

ωu = ωx +ωg

= ωx +
1
2

x∫
0

(
dωy
dσ

)2

dσ . (2)

The axial force and lateral bending moment of the flexible
manipulator can be expressed as:

P = EA
∂ωu

∂x
, (3)

M = EI
∂2ωy

∂x2

(
1− 2

∂ωu

∂x
+

1
2

(
∂ωy

∂x

)2
)
−EI

∂2ωu

∂x2
∂ωy

∂x
. (4)

Then, the elastic potential energy of the FCRM system can
be further shown as:

U =

L∫
0

P 2

2EA
dx+

L∫
0

M2

2EI
dx. (5)

Under large overall plane motion, the radius vector after
deformation of H (x,y) on the flexible manipulator can be
written as:

R = ro+ rc+ zo+ω, (6)

where, r0 = (Rx , Ry)T is the radius vector of the base cen-
troid with respect to the inertial coordinate OXY, rc = (a,
0)T is the radius vector of the base centroid with respect

to the initial deformation position of the flexible manipu-
lator, z0 = (x, y)T is the radius vector of H (x,y) with re-
spect to the follow-up coordinate oxy before deformation
and ω = (ωu, ωy)T is the deformation displacement vector
of H (x,y).

Differentiating Eq. (6) with respect to time yield, the speed
vector of H (x,y) can be expressed as:

Ṙ = ṙo+ ω̇. (7)

Moreover, the radius vector of the terminal operated object
can be written as:

Rmt = ro+ rc+ zmt +ωmt , (8)

where, zmt = (L, 0)T is the radius vector of the terminal op-
erated object with respect to the follow-up coordinate oxy be-
fore deformation and ωmt = (ωu(L,t), ωy(L,t))T is the de-
formation displacement vector.

Differentiating Eq. (8) with respect to time yield, the speed
vector of the terminal operated object can be shown as:

Ṙmt = ṙo+ ω̇mt . (9)

Then, the kinetic energy of the FCRM system can be ex-
pressed as:

T =
1
2

∫
V ρṘ

T ṘdV +
1
2
mbṙ

2
o+

1
2
mtṘ

T
mt
Ṙmt . (10)

Based on Rayleigh-Ritz method (Huang and Li, 2010), the
longitudinal and transverse vibration of the FCRM can be
obtained as:

ωx (x, t)= ψ (x)Q (t)=
N1∑
i=1

ψi (x)Qi (t) , (11)

ωy (x, t)=8 (x)q (t)=
N2∑
i=1

φi (x)qi (t) . (12)

The second Lagrange equation expression can be written
as:

d
dt

(
∂T

∂ϑ̇

)
−
∂T

∂ϑ
+
∂U

∂ϑ
= Fϑ . (13)

By substituting Eqs. (1) and (10)–(12) into Eq. (13), the
coupling dynamic model of the longitudinal and transverse
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vibration for the FCRM system can be deduced as:A L∫
0

ρψkψ
T
k dx+mtψ

2
k (L)

Q̈k +

L∫
0

EAψk,xψ
T
k,xdxQk

−

N2∑
i=1

N2∑
j=1

A L∫
0

ρψkαijdx+mtψk (L)βij

 (q̇i q̇j + qi q̈j )

+

A L∫
0

ρψkdx+
1
2
mtψk (L)

 R̈x = 0

k = 1,2, . . .N1 (14)

−Aρ

N2∑
i=1

 L∫
0

αikdx+mtβik

qiR̈x
+

Aρ L∫
0

φkdx+
1
2
mtφk (L)

 R̈y
+

Aρ L∫
0

φkφ
T
k dx+mtφ

2
k (L)

 q̈k +EI L∫
0

φk,xxdxqk

+Aρ

N2∑
i=1

N2∑
j=1

N2∑
h=1

 L∫
0

αijαhkdx+βijβhk

qi (qj q̈h+ q̇j q̇h)

+

N2∑
i=1

N2∑
j=1

N2∑
h=1

EI
(
νjkβih+ νikβjh

)
qiqjqh = 0

k = 1,2, . . .N2, (15)

where, (∗)i,x shows (∗)i/dx, αij =
x∫
0
φi,ξ (ξ )φTj,ξ (ξ )dξ ,

βij =
L∫
0
φi,xφ

T
j,xdx and νij =

L∫
0
φi,xx (x)φTj,xx (x)dx.

One may note that the coupling dynamic
model of the FCRM system contains inertia(
Aρ

N2∑
i=1

N2∑
j=1

N2∑
h=1

(
L∫
0
αijαhkdx+βijβhk

)
qi
(
qj q̈h+ q̇j q̇h

))

and cubic geometric (
N2∑
i=1

N2∑
j=1

N2∑
h=1

EI
(
νjkβih+ νikβjh

)
qiqjqh)

nonlinear terms. From Eqs. (14) and (15), it is obtained that
the axial and lateral motions of the driving base generate
non-linear parametric excitation and forced excitation for
the transverse vibration model of the FCRM, respectively.
And the axial motion of the driving base introduces forced
excitation for the longitudinal vibration model of the FCRM.

Because there is small deformation in the longitudinal vi-
bration compared with the transverse vibration, the effect
caused by the longitudinal vibration is not taken into consid-
eration. Compared with the forced vibration, the parametric
excitation is more complex and has a greater impact on the

FCRM system (Yan et al., 2012). Thus, the parametric exci-
tation, caused by the axial movement disturbance of the base,
of the FCRM system is investigated. To the FCRM system,
the excitations of the unstable motion of the base, caused by
the power harmonics, motor rotor eccentricity, mechanism
gap and so on of the motor driving system, have obvious pe-
riodicity. Considering the periodic disturbance signals can be
transformed into trigonometric functions by Fourier trans-
form, for simplifying the analysis, the disturbance acceler-
ation of the axial excitation is defined as R̈x = a0 cos�t ,
where a0 and � represent the amplitude and angular fre-
quency.

The following dimensionless parameters are introduced
for simplifying the coupling dynamic model:

yk =
qi

L
,τ =

t

T
,T =

√
ρAL4

EI
,η =

x

L
,m=

mt
mL
=

mt
LAρ

. (16)

Through substituting Eq. (16) into Eq. (15) and introduc-
ing the linear viscous damping and a book keeping parameter
ε, Eq. (15) can be simplified as:

ÿk +ω
2
kyk + ε

2ξk ẏk −
N2∑
i=1

(
Cki +C

mt
i

)
yi cosωτ +

N2∑
i=1

N2∑
j=1

N2∑
h=1

Dkijhyiyjyh+

N2∑
i=1

N2∑
j=1

N2∑
h=1

(
Ekijh+E

mt
ijh

)
yi
(
yj ÿh+ ẏj ẏh

)


= 0 k = 1,2, . . .N2, (17)

where, ω =�T , ω2
k =

Kk
Mk+MMk

, Kk =
1∫

0
φ2
k,ηηdη,

Cki =
a0T

2C̃ki
εL(Mk+MMk) , C̃ki =

1∫
0
α̃ikdη, C

mt
i =

1
2ma0T

2β̃ik
εL(Mk+MMk) ,

Dkijh =
L6T 2

ε(AρMk+MMk)

(̃
νjkβ̃ih+ ν̃ikβ̃jh

)
,Ekijh =

Ẽkijh
ε(Mk+MMk) ,

Ẽkijh =
1∫

0
α̃ij α̃hkdx, E

mt
ijh =

m
1∫
0
φi,ηφj,ηφh,ηφk,ηdη

εL(Mk+MMk) , Mk =

1∫
0
φ2
kdη, MMk =mφ

2
k (L), α̃ik =

µ∫
0
φi,ξ (ξ )φTj,ξ (ξ )dξ ,

β̃ij =
L∫
0
φi,xφ

T
j,xdx, ν̃ij =

1∫
0
φi,xx (x)φTj,xx (x)dx, 0≤ ε� 1.

3 Mode shapes analysis for the FCRM system

From Eq. (17), we can obtain that the associated parame-
ters of the dynamic model for the transverse vibration of the
FCRM system are mainly determined by the mode shapes
of the flexible manipulator. Thus, the mode shapes under the
influence of terminal load should be analyzed firstly (Chu et
al., 2013). The structural parameters of the FCRM system are
defined as: L= 0.4 m, ρ = 2030 kg m−3, A= 1.35e−4 m2

and E = 25 GPa. The flexible manipulator is assumed as an
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Figure 2. Contrast curves of the first three order mode shapes for the flexible manipulator with terminal load.

Euler-Bernoulli beam, whose standard form of mode shapes
can be represented as:

φk (x)= γ1 sinβkx+ γ2 cosβkx+ γ3 sinhβkx+ γ4 coshβkx, (18)

where, γ1, γ2, γ3 and γ4 are constants which are determined
by the boundary conditions.

Because the deflection and the angle of the fixed end for
the flexible manipulator are equal to zero, the fixed end
boundary conditions of the flexible manipulator can be ex-
pressed as:

x = 0 :

{
ωy (0, t)= 0
∂ωy (0, t)
∂x

= 0
. (19)

Considering the influence of terminal load, the bending
moment and shear force of the free end for the flexible ma-
nipulator are equal to zero and the inertia force of terminal
load, respectively. Then, the free end boundary conditions of
the flexible manipulator can be specified as:

x = L :


EI

∂2ωy (L,t)
∂x2 = 0

∂

∂x

(
EI

∂2ωy (L,t)
∂x2

)
=mt

∂2ωy (L,t)
∂t2

. (20)

Substituting Eq. (12) into Eqs. (19) and (20), the mode
shapes of the flexible manipulator satisfy the following ex-

pressions which are shown as:

{
φk (0)= 0
dφk (0)

dx
= 0

, (21)
EI

dφ3
k (L)

dx3 =−mtω
2
kφk (L)

EI
dφ2

k (L)
dx2 = 0

. (22)

Substitution of Eq. (21) into Eq. (18) yields:

{
γ1+ γ3 = 0
γ2+ γ4 = 0 . (23)

By substituting Eq. (22) into Eq. (18), the result combined
with Eq. (23) yields:

[
311 312
321 322

][
γ1
γ2

]
= 0. (24)
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Figure 3. Contrast curves of the first three order mode shapes for the flexible manipulator with terminal load by FEM.

where, 311 =−sinβkL− sinhβkL; 312 =−cosβkL−
coshβkL;

321 =Kmt sinβkL−Kmt sinhβkL

+β3
k cosβkL+β3

k coshβkL;

322 =Kmt cosβkL−Kmt coshβkL−β3
k sinβkL

+β3
k sinhβkL; Kmt =−

mtω
2
k

EI
.

In order to guarantee the existence of nontrivial solution
for γ1 and γ2, the determinant of the coefficient matrix of
Eq. (24) should be equal to zero. Then, the frequency equa-
tion of the flexible manipulator with terminal load can be got
as:

mβkL (sinhβkLcosβkL− sinβkLcoshβkL)
+ cosβkLcoshβkL+ 1= 0, (25)

The relationship between γ1 and γ2 can be confirmed by
Eqs. (23) and (24). Afterwards, the mode shapes of the flexi-
ble manipulator with terminal load can be specified as:

φk (x)= (cosβkx− coshβkx)+µ (sinβkx− sinhβkx) , (26)

where µ=−Kmt cosβkL−Kmt coshβkL−β3
k sinβkL+β3

k sinhβkL
Kmt sinβkL−Kmt sinhβkL+β3

k cosβkL+β3
k coshβkL

.

If mt =0, Eqs. (25) and (26) can be transformed as:

cosβkLcoshβkL+ 1= 0, (27)
φk (x)= (cosβkx− coshβkx)

−
sinhβkL− sinβkL
cosβkL+ coshβkL

(sinβkx− sinhβkx) . (28)

Equations (27) and (28) are the frequency equations and
mode shapes of the flexible manipulator without terminal
load which is consistent with the expressions of a standard
cantilever beam concluded by Singiresu (2004). Then, the
validity of Eqs. (25) and (26) are verified.

Figure 2 shows the first three order mode shapes of the
flexible manipulator with terminal load. It is obtained that the
terminal load has an apparent effect on the mode shapes and
there may cause error if the terminal load is ignored. With
the increase of terminal load, it is seen that the amplitude
of the first-order mode shape decreases obviously, and the
second node of the second-order mode shape as well as the
third node of the third-order mode shape move away with the
fixed end of the flexible manipulator. Additionally, because
the second node of the second mode shape and the third node
of the third mode shape are already close to the free end of the
flexible manipulator, the influence degree of terminal load on
the second mode shape and third mode shape of the flexible
manipulator will decrease with the increase of terminal load.
Then, the relative vibration amplitude near the free end of the
flexible manipulator reduces observably. In order to further
verify the correctness of the deduced mode shapes functions,
the modal analysis of the flexible manipulator with terminal
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Table 1. Mode frequencies of the first three order modes with terminal load by FEM.

Mode frequencies/Hz

terminal load First order mode Second order mode Third order mode

mt = 0 7.080 44.443 124.638
mt = 0.05 kg 3.479 33.199 103.314
mt = 0.1 kg 2.619 32.234 102.176

load is implemented in ANSYS. Additionally, the analysis
results by finite element method (FEM) in ANSYS are ex-
ported to describe more clearly and the results are shown in
Fig. 3. Through comparing Figs. 2 and 3, it is obvious that the
variation tendency of the first three mode shapes, obtained by
theoretical analysis, is consistent with the results by ANSYS.
Thus, the correctness of the deduced mode shape functions is
verified.

Table 1 shows the mode frequencies of the first three or-
der modes for the flexible manipulator with terminal load
by FEM. It is known that the increase of terminal load re-
duces the mode frequencies of the flexible manipulator. Ow-
ing to the relationship between the mode frequency and the
mode shape is same as the relationship between eigenvalue
and eigenvector, the change of the mode frequency inevitably
lead to the change of the mode shape. Moreover, by compar-
ing the mode frequencies and mode shapes of the first two or-
der modes, it is seen that the closer the node to the fixed end,
the higher the mode frequency of the flexible manipulator.
From this relationship, we can conclude that the existence of
terminal load causes the decrease of the mode frequencies,
and then leads to the change of the nodes locations of the
mode shapes for the flexible manipulator. Thus, in the non-
linear response analysis of the FCRM system, the influence
of terminal load on the mode shapes should be taken into
consideration.

4 Nonlinear response analysis

Because Eq. (17) contains multiple nonlinear terms, the ac-
curate analytical solution is hard to solve. Thus, based on
multiple scales method, the approximate analytical solution
for Eq. (17) is obtained which can be written as:

yk (τ,ε)= yk0(T0,T1)+ εyk1(T0,T1), (29)

where T0 = τ and T1 = ετ .

Substituting Eq. (29) into Eq. (17) and equating the coef-
ficients of ε0 and ε1 lead to:

orderε0
:D2

0yk0+ω
2
kyk0 = 0, (30)

orderε1
:D2

0yk1+ω
2
kyk1+ 2ξkD0yk0+ 2D0D1yk0

−

N2∑
i=1

(
Cki +C

mt
i

)
yi0a0 cosωτ

+

N2∑
i=1

N2∑
j=1

N2∑
h=1

Dkijhyi0yj0yh0

+

N2∑
i=1

N2∑
j=1

N2∑
h=1

(
Ekijh+E

mt
ijh

)
yi0

(
yj0D

2
0yh0

+D0yj0D0yh0

)
= 0, (31)

where, D0 = ∂/∂T0 and D1 = ∂/∂T1.
The general solution of Eq. (30) can be represented as:

yk0 = Ak(T1)exp(iωkT0)+Ak(T1)exp(−iωkT0). (32)

where Ak and Ak are a complex conjugate functions in T1.
Substituting Eq. (32) into Eq. (31) yields:

D2
0yk1+ω

2
kyk1 =−2iωk (ξkAk +D1Ak)exp(iωkT0)

+
1
2

N2∑
n=1

(
Cki +C

mt
i

)
{An exp[i (ω+ωn)T0]

+An exp[i (ω−ωn)T0]
}
+

N2∑
n=1

N2∑
j=1

N2∑
h=1

(33)



[
−Dk

njh
+

(
ωjωh +ω

2
h

)(
Ek
njh
+E

mt
njh

)]
AnAjAh exp

[
i
(
−ωn +ωj +ωh

)
T0
]

+

[
−Dk

njh
+

(
ω2
h
−ωjωh

)(
Ek
njh
+E

mt
njh

)]
AnAjAh exp

[
i
(
ωn −ωj +ωh

)
T0
][

−Dk
njh
+

(
ω2
h
−ωjωh

)(
Ek
njh
+E

mt
njh

)]
AnAjAh exp

[
i
(
−ωn −ωj +ωh

)
T0
]

+

[
−Dk

njh
+

(
ωjωh +ω

2
h

)(
Ek
njh
+E

mt
njh

)]
AnAjAh exp

[
i
(
ωn +ωj +ωh

)
T0
]


+ cc,

where 1 shows the conjugate function of 1 and cc repre-
sents the conjugate of preceding terms.

In order to analyze the principal parametric resonance of
the P -order mode for the FCRM, the detuning parameter σ
is introduced as:

ω = 2ωp + εσ. (34)
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Figure 4. Steady-state response curves of the principal parameter resonance for the first-order mode of the FCRM with different terminal
load: (a) amplitude frequency response curves (a0 = 1.5 m s−2); (b) excitation-amplitude curves.

Figure 5. Steady-state response curves of the principal parameter resonance for the second-order mode of the FCRM with different terminal
load: (a) amplitude frequency response curves (a0 = 1.5 m s−2); (b) excitation-amplitude curves.

Substituting Eq. (34) into Eq. (33) and eliminating the sec-
ular terms leads to:

2iωp
(
ξpAp +D1Ap

)
−

1
2

(
C
p
p +C

mt
p

)
Ap exp(iσT1) (35)

+

[
3DPPPP − 2ω2

P

(
EPPPP +E

mt
PPP

)]
ApA

2
P = 0.

Defining the form of AP as:

Ap =
1
2
ap (T1)exp

(
iλp

)
. (36)

where ap and λp are the real functions in T1.

Through substituting Eq. (36) into Eq. (35) and separating
of real and imaginary parts, one may obtain:

a′p =−ξpap +
1

4ωp

(
C
p
p +C

mt
p

)
ap sinζ

apζ
′
= σap +

[
1
2
ωp

(
EPPPP +E

mt
PPP

)
−

3DPPPP
4ωp

]
a3
p

+
1

2ωp

(
C
p
p +C

mt
p

)
ap cosζ

,

(37)

where ζ = σT1− λp.
Equation (37) is the average equation of the original sys-

tem, which can fully reflect the system dynamics behavior
near the balance point. For steady state response (ap0, ζ0),
a′p and ζ ′ equal to zero. Eliminating ζ from Eq. (37), one
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may obtain:[
3
2
DPPPP −ω

2
P

(
EPPPP +E

mt
PPP

)]2

a6
p

− 4σωP

[
3
2
DPPPP −ω

2
P

(
EPPPP +E

mt
PPP

)]
a4
p

+

[
16ω2

P ξ
2
P + 4σ 2ω2

P −

(
C
p
p +C

mt
p

)2
]
a2
p = 0. (38)

Equation (38) is a resonance curve equation of the re-
sponse amplitude (ap) for the P -order mode of the FCRM
as an implicit function of the detuning parameter (σ ), the
amplitude of the base excitation (a0) and the terminal load
(mt).

Figures 4 and 5 show the steady-state response curves
of the principal parameter resonance for the first two order
modes of the FCRM with different terminal load, where the
solid lines indicate the amplitude-frequency response curves
of the FCRM under the impact of different terminal load and
the dash-dotted lines show the spine lines of the correspond-
ing amplitude-frequency response curves in Figs. 4a and 5a.
It is obtained that the amplitude-frequency characteristics of
the first two order modes are hard character and soft charac-
ter respectively, which is identical with the results concluded
by Anderson et al. (1996). Then, the correctness of the con-
structed dynamic model and nonlinear response analysis of
the FCRM is verified.

It is seen from Figs. 4a and 5a that the increase of ter-
minal load causes the increase of the bending degree and
the resonance field of the amplitude-frequency characteris-
tic curve for the principal parameter resonance of the FCRM
system. To the first-order mode, with the increase of terminal
load, the bending degree to the right of the spine line be-
comes larger, which means the hard character of the ampli-
tude frequency characteristic of the first-order mode becomes
stronger, as well as the resonance field of the principal pa-
rameter resonance for the first-order mode of the FCRM be-
comes wider. To the second-order mode, with the increase of
terminal load, the soft character of the amplitude frequency
characteristic becomes stronger and the resonance field be-
comes wider too.

Figures 4b and 5b show the relationship between the ax-
ial excitation amplitude of the driving base and the response
amplitude of the first two order modes of the FCRM. It
is obtained that the excitation acceleration value of saddle-
node bifurcation becomes smaller with the increase of ter-
minal load for both the first two order modes of the FCRM
(N1 >N2 >N3, N4 >N5 >N6). Above all, the increase of ter-
minal load can lead the system nonlinear dynamic response
to become more complex and intensifies the instability of the
FCRM.

Figure 6 shows the steady-state response curves of the
principal parameter resonance for the first two order modes
of the FCRM under different axial excitation of the driving
base. It is seen that the spine line has no changes with the in-

crease of the axial excitation acceleration, which means that
the axial excitation of the driving base has no influence on the
hard or soft character of the amplitude frequency characteris-
tic of the first two order modes. However, with the increase of
the axial excitation acceleration, the response amplitude and
the resonance field of the principal parameter resonance be-
comes lager, which indicates that the instability of the FCRM
is intensified dramatically.

In order to intuitively express the influence of terminal
load on the parametric vibration stability of the FCRM sys-
tem, the stability boundaries for the principal parametric res-
onance of the first two order modes of the FCRM are ana-
lyzed.

Through defining Ap =
1
2 [u (T1)− iν (T1)]exp

(
iσT1

2

)
and substituting into Eq. (35), the average equations of
rectangular form can be obtained as:


ωp
(
ν′+ ξpν

)
−

1
2

[
σωp +

1
2

(
C
p
p +C

mt
p

)]
u

+
1
8

[
3DPPPP − 2ω2

P

(
EPPPP +E

mt
PPP

)]
u
(
u2
+ ν2

)
= 0

ωp
(
u′+ ξpu

)
+

1
2

[
σωp −

1
2

(
C
p
p +C

mt
p

)]
ν

−
1
8

[
3DPPPP − 2ω2

P

(
EPPPP +E

mt
PPP

)]
ν
(
u2
+ ν2

)
= 0

. (39)

The trivial solution of Eq. (39) corresponds to the periodic
solution of Eq. (35). It is obvious that the equilibrium point of
Eq. (39) is the origin of coordinates ((u,v)= (0,0)), where
the Jacobi matrix can be deduced as:

J
∣∣(u,ν)=(0,0) = (40) −ξp −

1
2ωp

[
σωp −

1
2

(
C
p
p +C

mt
p

)]
1

2ωp

[
σωp +

1
2

(
C
p
p +C

mt
p

)]
−ξp

 .
The characteristic equation of Eq. (40) is:

λ2
+ 2ξpλ+ ξ2

p +
1

4ω2
p

[
σ 2ω2

p −
1
4

(
C
p
p +C

mt
p

)2
]
= 0. (41)

The existence of the positive real parts for the eigenval-
ues of the Jacobin matrix leads to the instability of the trivial
solution of Eq. (39). According to the Routh-Hurwitz crite-
rion, the sufficient and necessary conditions for all the roots
of Eq. (41) have negative real parts are that all the Routh-
Hurwitz determinants are greater than zero, which is shown
as:

2ξp > 0

ξ2
p +

1
4ω2

p

[
σ 2ω2

p −
1
4

(
C
p
p +C

mt
p

)2
]
> 0 . (42)

Thus, the condition for the stability of the trivial solution
of Eq. (39) is:

|a0|<
2[εL (Mk +MMk)]

√
16ω2

pξ
2
p + 4σ 2ω2

p

mT 2β̃pp + 2T 2C̃
p
p

. (43)

www.mech-sci.net/8/221/2017/ Mech. Sci., 8, 221–234, 2017



230 J. Ju et al.: Nonlinear modelling and dynamic stability analysis

Figure 6. Steady-state response curves of the principal parameter resonance for the first two order modes of the FCRM with different base
excitation: (a) amplitude frequency response curves of the first-order mode; (b) amplitude frequency response curves of the second-order
mode.

Figure 7. The stability boundaries for the principal parametric res-
onance of the first-order mode of the FCRM with different terminal
load in σ -a0.

The linear viscous damping of the first two order modes
is defined as 0.1 and the range of the detuning parameter σ is
given as [−1,1]. Figures 7 and 8 shows the stability bound-
aries of the principal parametric resonance for the first-order
and second-order modes of the FCRM with different terminal
load, respectively. In general, for a given detuning parameter
σ , the excitation amplitude of the base acceleration, causing
the instability, decreases with the increase of terminal load.
Furthermore, the instability zones become lager with the in-
crease of terminal load for both the principal parametric res-
onance of the first-order and second-order modes, when the
excitation amplitude of the base acceleration is given. Thus,
in the traditional study, owing to the neglect of terminal load,
the prediction for the instability boundaries of the FCRM is
not safe. Above all, during the nonlinear dynamics and sta-

Figure 8. The stability boundaries for the principal parametric res-
onance of the second-order mode of the FCRM with different ter-
minal load in σ -a0.

bility analysis of the FCRM, the impact of the driving base
disturbance and the terminal load should be taken into ac-
count.

5 Conclusions

This paper mainly investigates the influence of base dis-
turbance and terminal load on the nonlinear response and
dynamic stability of the FCRM system. The nonlinear dy-
namic model of the transverse vibration for the FCRM sys-
tem, considering the high-order rigid-flexible coupling terms
between the large overall motion of the driving base and the
elastic vibration of the flexible manipulator, is constructed.
Based on the established nonlinear dynamic model and mul-
tiple scales method, the amplitude-frequency characteristics
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and parametric vibration stability of the FCRM are studied.
The results demonstrate that the amplitude of the first-order
mode shape decreases obviously, and the second node of the
second-order mode shape as well as the third node of the
third-order mode shape move away with the fixed end of the
flexible manipulator, with the increase of terminal load. Fur-
thermore, the excitation acceleration value of saddle-node bi-
furcation becomes smaller with the increase of terminal load
for both the first two order modes of the FCRM. And the in-
stability of the FCRM is intensified with the increase of the
base excitation acceleration and terminal load, which is re-
vealed in the increase of the resonance fields and instability
areas of the principal parameter resonance of the first two or-
der modes for the FCRM. Thus, the influence of base distur-
bance and terminal load should be taken into consideration
during the kinetic analysis of the FCRM.

Data availability. All datasets used in the manuscript
can be requested from the corresponding author Wei Li
(cmeecumt512@yahoo.com).
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Appendix A

List of
symbols Meanings

mb Mass of the base
mt Mass of the terminal operated object
A Cross-sectional area of the flexible manipulator
L Length of the flexible manipulator
EI Bending modulus of the flexible manipulator
ρ Density of the flexible manipulator
ωx Axial deformation of the flexible manipulator
ωy Transverse deformation of the flexible manipulator
ωu Overall longitudinal elongation of the flexible manipulator
ωg Coupling deformation of the flexible manipulator
P Axial force of the flexible manipulator
M Lateral bending moment of the flexible manipulator
U Elastic potential energy of the FCRM system
T Kinetic energy of the FCRM system
Rx Axial displacement of the base
Ry Lateral displacement of base
ψi Mode shapes functions of the longitudinal vibration
Qi Generalized coordinates of the longitudinal vibration
N1 Mode truncation numbers of the longitudinal vibration
ϕi Mode shapes functions of the transverse vibration
qi Generalized coordinates of the transverse vibration
N2 Mode truncation numbers of the transverse vibration
ϑ Generalized coordinate of the second Lagrange equation
Fϑ Generalized force of the second Lagrange equation
τ Dimensionless time constant
ε A book keeping parameter
yk Approximate analytical solution of Eq. (17)
yk1 First order approximation of yk
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