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Abstract. The kinematic chain comprised by SLEs (scissor-like elements) has a wide range of motion, which
provides a benefit for the mechanism design. A family of SLE-Pa (SLE-parallel) legs which consist of two
identical SLE limbs are proposed in this paper. The mobility and kinematics are discussed for three kinds of
SLE-Pa legs which are distinguished by the different positions of the middle links in legs. Through assembling
these SLE-Pa legs, a novel 2-DOF planar translational mechanism is developed and its work space is studied. For
the purpose of adding the recovery function, the elastic elements are installed for this mechanism. The stiffness
synthesis of the mechanism is investigated for the various elastic elements and their positions. The approximation
of the stiffness coefficient is also derived. Further, this kind of mechanism is applied for the design of the passive
docking device. The docking procedure is simulated by Adams, and the prototype of one SLE-Pa leg is presented
at the end.

1 Introduction

The simplest structure of two degrees-of-freedom (DOF) pla-
nar translational mechanism is designed by 2-PP (prismatic–
prismatic) limb (Dong et al., 2004). To reduce the difficulty
of manufacturing, enlarge the work space of the end-effector
and improve the stiffness of the mechanism, various transla-
tional mechanisms by different kinds of kinematic limbs are
constructed. Liu and Wang (2003) and Liu et al. (2004) pro-
posed a family of 2-PPa (prismatic–parallelogram) transla-
tional mechanisms based on the parallelogram and optimally
designed a PRRRP (prismatic–revolute–revolute–revolute–
prismatic) 2-DOF parallel mechanism by the utilization of
a performance chart (Liu et al., 2006). Wu et al. (2007) also
did research on the optimal design of 2-DOF planar paral-
lel mechanism. Kim (2007) and Pham and Kim (2013) de-
veloped two types of planar translational parallel manipu-
lators for high-speed positioning applications. Many kinds
of 2-DOF planar translational mechanisms are recommended
for the design of pick-and-place robots. Huang et al. (2004,
2013) proposed a 2-D version of the delta robot with two sets
of parallelograms and studied the optimal design of these
2-DOF translational parallel robots. Generally, most of the
above kinematic limbs comprising the 2-DOF planar transla-

tional mechanisms were serial kinematic chains or equivalent
serial kinematic chains.

The scissor-like element (SLE) is one of the most widely
used units in the design of mechanisms, especially for de-
ployable structures. The simplest planar SLE consists of two
rigid segments with a revolute joint at their midpoints. The
kinematic chain comprised by SLEs has a wide range of mo-
tion, which provides a benefit for the mechanism design. In
the 1960s, a Spanish architect, E. P. Pienro (Escrig and Val-
carcel, 1993; Kaveh and Davaran, 1996), initially employed
SLEs to construct the movable theater. After that, SLEs were
gradually applied from small-scale structures (Rosenfeld and
Logcher, 1988; Escrig et al., 1996) to aerospace structures
(Langbecker, 1999). In academic research, You and Pelle-
grino (1997) presented a general type of two-dimensional
foldable structure consisting of different kinds of SLEs. Zhao
et al. (2011) constructed foldable stairs with scissor-shape
mechanisms. Bai et al. (2013) combined pantograph ele-
ments to construct scaling mechanisms for geometric figures.
Kaveh et al. (1999) studied the kinematically optimal design
of pantograph foldable structures. Dai and Rees (1999), Wei
et al. (2010), Ding (2011), and Lu et al. (2017) analyzed
the mobility of the foldable structures by screw theory from
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Figure 1. Structure of novel SLE-Pa leg in case 1.

the viewpoint of kinematics. All the achievements with SLEs
were mainly focused on deployable mechanisms.

By the utilization of SLEs, we create a novel parallel
kinematic chain, which has 2 translational degrees of free-
dom. Through assembling several of these kinematic chains,
a translational parallel mechanism with SLEs is proposed.
Based on that, a new passive docking device is invented for
the purpose of joining two water pipes aboard a USV (un-
manned surface vehicle). With the requirement of the recov-
ery force in the device, the elastic components are set to this
translational parallel mechanism. Hence, the stiffness of the
platform in the mechanism is investigated under several con-
ditions of the elastic components. Finally, the simulation of
the docking procedure is conducted and the prototype of one
SLE-Pa leg is presented.

2 Mobility of novel SLE-Pa leg

The novel kinematic chain comprises two identical SLE
limbs, i.e., limbs E1 and E2, as shown in Fig. 1. Each SLE
limb contains two full SLEs in the middle of the limb and
two half-SLEs at both ends of the limb. The length of the
link of the full SLE is 2l, and one of the links of the half-
SLE is l. Nodes P1 and P5 in limb E1 are linked by nodes
P ′1 and P ′5 in limb E2, respectively. The length of P1P

′

1 and
P5P

′

5 is both lb. Suppose link P1P
′

1 is fixed to the ground and
link P5P

′

5 is regarded as the motion platform. There is one
middle link that connects the two corresponding nodes in the
two SLE limbs by hinged joints. This kind of kinematic chain
is called SLE-Pa (SLE-parallel) leg. The mobility and kine-
matics are discussed in the following three cases in relation
to the hinged positions of the middle link.

2.1 Case 1: middle link connecting P4 and P ′
4

Screw theory is applied to analyze the mobility of motion
platform P5P

′

5 as shown in Fig. 1. For SLE limb E1, the

Cartesian coordinates of joints P1, P2, P3, P4 and P5 can
be obtained as

p1 =

 xa
ya
0

 p2 =

 xa + l1 cosθ1
ya + l1 sinθ1

0


p3 =

 xa + l1 cosθ1+ 2l1 cos(θ1+ θ2)
ya + l1 sinθ1+ 2l1 sin(θ1+ θ2)

0


p4 =

[
xa + l1 cosθ1+ 2l1 cos(θ1+ θ2)+ 2l1 cos(θ1+ θ2− θ3)
ya + l1 sinθ1+ 2l1 sin(θ1+ θ2)+ 2l1 sin(θ1+ θ2− θ3)

0

]

p5 =


xa + l1 cosθ1+ 2l1 cos(θ1+ θ2)+ 2l1 cos(θ1+ θ2− θ3)

+l1 cos(θ1+ θ2− θ3+ θ4)
ya + l1 sinθ1+ 2l1 sin(θ1+ θ2)+ 2l1 sin(θ1+ θ2− θ3)

+l1 sin(θ1+ θ2− θ3+ θ4)
0

.
Limb E2 has the same structure as limb E1. The positions
of joints in E2 appear to be the results of the translation of
the joints from E1. The Cartesian coordinates of joints can
be calculated as

p′i = pi +

 lb
0
0

 i = 1,2, . . .,5. (1)

The axis orientation of each joint is normal to the plane
XOY , i.e., sj = (0 0 1). The screws of the above joints are
given as{

$i =
(

sj ; pi × sj
)

i = 1,2, · · ·,5
$′i =

(
sj ; p′i × sj

)
i = 1,2, · · ·,5. (2)

We choose linkages P1P2P3P4P
′

4P
′

3P
′

2P
′

1 and
P1P2P3P4P5P

′

5P
′

4P
′

3P
′

2P
′

1 to establish the screw-loop
equations. For the first linkage, the screw-loop equation is

$1θ̇1+ $2θ̇2− $3θ̇3− $4β̇4

= $′1θ̇
′

1+ $′2θ̇
′

2− $′3θ̇
′

3− $′4β̇
′

4. (3)

According to the feature of SLE limbs, the following con-
straints can be obtained:

θ2 = θ3 = θ4, θ ′2 = θ
′

3 = θ
′

4, θ̇2 = θ̇3 = θ̇4,

θ̇ ′2 = θ̇
′
3 = θ̇

′
4. (4)

Substituting Eq. (4) into Eq. (3), the screw-loop equation can
be rewritten as

$1θ̇1+ ($2− $3)θ̇2− $4β̇4

= $′1θ̇
′

1+ ($′2− $′3)θ̇ ′2− $′4β̇
′

4. (5)
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In the same way, the screw-loop equation of linkage
P1P2P3P4P5P

′

5P
′

4P
′

3P
′

2P
′

1 can be derived as

$1θ̇1+ ($2− $3+ $4)θ̇2− $5β̇5

= $′1θ̇
′

1+ ($′2− $′3+ $′4)θ̇ ′2− $′5β̇
′

5. (6)

The above Eqs. (5) and (6) can be rearranged in matrix form
as

 $1 ($2− $3) −$4 0 −$′1
−($′2− $′3) $′4 0

$1 ($2− $3+ $4) 0 −$5 −$′1
−($′2− $′3+ $′4) 0 $′5





θ̇1
θ̇2
β̇4
β̇5
θ̇ ′1
θ̇ ′2
β̇ ′4
β̇ ′5


= 0. (7)

By solving Eq. (7), the velocities of joints are expressed as

θ̇1
θ̇2
β̇4
β̇5
θ̇ ′1
θ̇ ′2
β̇ ′4
β̇ ′5


= q1



0
1
0
1
0
1
0
1


+ q2



1
−1
1
0
1
−1
1
0


, (8)

where q1 and q2 are arbitrary real numbers. The result indi-
cates that the mobility of this linkage is 2 and that the veloc-
ities of joints are subject to the following relationship:

θ̇1 = θ̇
′

1 = β̇4 = β̇
′

4, θ̇2 = θ̇
′

2, β̇5 = β̇
′

5 = θ̇1+ θ̇2. (9)

Equation (9) shows that the two SLE limbs are always paral-
lel. Further, the kinematic screw of the platform P5P

′

5 can be
written as

$p = $1θ̇1+ ($2− $3+ $4)θ̇2− $5β̇5. (10)

Substituting Eq. (8) into Eq. (10), the kinematic screw of the
platform P5P

′

5 can be derived as

$p = q1


0
0
0

−sin(θ1+ θ2)
cos(θ1+ θ2)

0

+ q2


0
0
0

−sinθ1
cosθ1

0

 . (11)

The corresponding reciprocal screw of the platform can be
derived as

$r
p :


$r1
p =

[
0 0 1 0 0 0

]
$r2
p =

[
0 0 0 1 0 0

]
$r3
p =

[
0 0 0 0 1 0

]
$r4
p =

[
0 0 0 0 0 1

]. (12)

Equations (11) and (12) indicates that the motion platform of
the SLE-Pa leg has 2 pure translational degrees of freedom.

Figure 2. Structure of novel SLE-Pa leg in case 2.

2.2 Case 2: middle link connecting P3 and P ′
3

In this case, the middle link connects P3, P ′3 between
two SLE limbs, as shown in Fig. 2. The screw-loop
equations are established for linkages P1P2P3P

′

3P
′

2P
′

1 and
P1P2P3P4P5P

′

5P
′

4P
′

3P
′

2P
′

1 with a consideration of the fea-
tures of SLE limb, as follows:


$1θ̇1+ $2θ̇2− $3β̇3 = $′1θ̇

′

1+ $′2θ̇
′

2− $′3β̇
′

3
$1θ̇1+ ($2− $3+ $4)θ̇2− $5β̇5
= $′1θ̇

′

1+ ($′2− $′3+ $′4)θ̇ ′2− $′5β̇
′

5

. (13)

The above Eq. (13) can be rewritten in a matrix form as

 $1 $2 −$3 0 −$′1
−$′2 $′3 0

$1 ($2− $3+ $4) 0 −$5 −$′1
−($′2− $′3+ $′4) 0 $′5





θ̇1
θ̇2
β̇3
β̇5
θ̇ ′1
θ̇ ′2
β̇ ′3
β̇ ′5


= 0. (14)

According to Eq. (14), the velocities of joints are obtained as

θ̇1
θ̇2
β̇3
β̇5
θ̇ ′1
θ̇ ′2
β̇ ′3
β̇ ′5


= q1



−1
1
0
0
−1
1
0
0


+ q2



1
0
1
1
1
0
1
1


. (15)

Equation (15) shows that the mobility of this linkage is 2,
and the velocities of joints are also subject to the following
relationship:

θ̇1 = θ̇
′

1, θ̇2 = θ̇
′

2, β̇3 = β̇
′

3 = β̇5 = β̇
′

5 = θ̇1+ θ̇2. (16)
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Figure 3. Structure of novel SLE-Pa leg in case 3.

The two SLEs are always parallel as well. The kinematic
screw of the platform can be calculated as

$p = q1


0
0
0

−sin(θ1+ θ2)
cos(θ1+ θ2)

0

+ q2


0
0
0

−sinθ1
cosθ1

0

 . (17)

The corresponding reciprocal screw of the platform can be
calculated as

$r
p :


$r1
p =

[
0 0 1 0 0 0

]
$r2
p =

[
0 0 0 1 0 0

]
$r3
p =

[
0 0 0 0 1 0

]
$r4
p =

[
0 0 0 0 0 1

]. (18)

It indicates that the motion platform has 2 pure translational
degrees of freedom, which is the same with the results of case
1.

2.3 Case 3: middle link connecting Q3 and Q′
3

As shown in Fig. 3, the screw-loop equations are
established for linkages P1P2P3Q3Q

′

3P
′

3P
′

2P
′

1 and
P1P2P3P4P5P

′

5P
′

4P
′

3P
′

2P
′

1. By the solution of these
screw-loop equations, the velocities of joints can be obtained
as



θ̇1
θ̇2
β̇3
β̇5
θ̇ ′1
θ̇ ′2
β̇ ′3
β̇ ′5


= q1



0
1
0
1
0
1
0
1


+ q2



1
−1
1
0
1
−1
1
0



+ q3



(2l1 sinθ2− lb sin(θ1+ θ2))/(−lb sinθ1)
(l1 sinθ2+ lb sin(θ1+ θ2))/(−lb sinθ1)

sin(θ1+ θ2)/sinθ1
0

2l1 sinθ2/(−lb sinθ1)
(l1 sinθ2− lb sinθ1)/(−lb sinθ1)

0
1


. (19)

Equation (19) shows that this SLE-Pa leg has three mobili-
ties. Furthermore, the corresponding reciprocal screw of the
platform can be calculated as

$r
p :


$r1p =

[
0 0 1 0 0 0

]
$r2p =

[
0 0 0 1 0 0

]
$r3p =

[
0 0 0 0 1 0

]. (20)

Equation (20) indicates that the motion platform has an extra
rotational degree of freedom along the z axis, in addition to
the 2 translational degrees of freedom.

So far, the mobilities of these kinds of SLE-Pa legs in three
cases have been investigated based on screw theory. The re-
sults of the other SLE-Pa legs can be deduces from the above
three cases. The results are listed in Table 1.

By observing Table 1, we can conclude that if the mid-
dle link connects two corresponding corner joints of the SLE
limbs, the two SLE limbs are always parallel and the motion
platform has 2 pure translational degrees of freedom. If the
middle link connects two corresponding middle joints of the
SLE limbs, the motion platform has 3 DOFs, which includes
2 translational degrees of freedom and 1 rotational degree of
freedom along the z axis.

In cases 1 and 2, suppose

sinθ1

sin(θ1+ θ2)
=

cosθ1

cos(θ1+ θ2)
(21)

and substitute it into Eqs. (11) or (17). It is found that the
mobility of the SLE-Pa leg reduces to 1. At this moment, the
SLE-Pa leg is at the singularity. Solving Eq. (21), the singular
angle is

θ2 = 0 or π, (22)

which corresponds to the maximum or minimum length con-
figuration of the SLE limb.

3 Kinematic analysis of novel 2-DOF translational
mechanism

Through assembling the above SLE-Pa legs, a novel 2-DOF
translational mechanism is invented. The 2-DOF transla-
tional mechanism is composed of three SLE-Pa legs, which
are distributed around the center point by 120◦, as shown in
Fig. 4. As mentioned above, it is easily established that the
mobility of this parallel mechanism is 2.
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Table 1. Mobility of SLE-Pa legs.

No. Cases of SLE-Pa legs Feature of mobility

1
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Table 1. Mobility of SLE-Pa legs 

No. Cases of SLE-Pa legs Feature of mobility
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Figure 4. Two-DOF translational parallel mechanism.

In order to simplify the analysis of the kinematics, we
substitute an RPR (revolute–prismatic–revolute) limb into
the SLE-Pa leg and restrict the z-axis rotational degree of
freedom of the motion platform. This results in the mo-
tion platform only having 2 translational degrees of freedom,
which agrees with the feature of the original mechanism. The
schematic diagram is found in Fig. 5.

For the kinematic chain B1EA1E, (xB1E ,yB1E ), (xA1E ,yA1E )
is its initial position. When this mechanism moves, the new
coordinates of the platform are (xB1E +px,yB1E +py). The
displacement equations of one RPR kinematic chain can be
obtained as{

(xB1E +px)−1H1cos1θ1 = xA1E

(yB1E +py)−1H1sin1θ1 = yA1E

. (23)

The displacement 1H1 and angle 1θ1 can be derived as{
1H1 =

√
(xB1E +px − xA1E )2+ (yB1E +py − yA1E )2

1θ1 = arccos((xB1E +px − xA1E )/1H1)
. (24)

Given that the length of each link of the full SLE is 2l, the
length of the link of half the SLE is l. The angle between two

www.mech-sci.net/8/179/2017/ Mech. Sci., 8, 179–193, 2017
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Figure 5. Simplified translational parallel mechanism.

links in B1EA1E is 1θ2. s is the number of the parallelogram
in a single SLE limb. h1 is the length of the single parallelo-
gram. Thus, the length of B1EA1E is

1H1 = sh1 = 2sl sin
1θ2

2
. (25)

Substitute the above equation into Eq. (24) gives

1θ2 = 2arcsin(√
(xB1E +px − xA1E )2+ (yB1E +py − yA1E )2/ (2sl)

)
1θ1 = arccos

(
(xB1E +px − xA1E )/√

(xB1E +px − xA1E )2+ (yB1E +py − yA1E )2
) . (26)

Through differentiating the above equations, the velocity
equations can be obtained:

1θ̇2 = (ṗxcos1θ1+ ṗysin1θ1)/(2sl cos
1θ2

2
)

1θ̇1 =−(ṗxsin1θ1− ṗycos1θ1)/(2sl sin
1θ2

2
)
. (27)

They can be expressed in matrix form:

J
[ 1θ̇1

1θ̇2

]
=

[
Ṗx
Ṗy

]
, (28)

where the Jacobian matrix is

J=

 −2sl sin
1θ2

2
sin1θ1 2sl cos

1θ2

2
cos1θ1

2sl sin
1θ2

2
cos1θ1 2sl cos

1θ2

2
sin1θ1

 . (29)

The determinant of the matrix is |J | = −2s2l2sin1θ2. Let
|J | = 0; then, the singular configuration can be obtained, i.e.,
1θ2 = 0 and π . This result agrees with Eq. (22).

Figure 6. Minimum and maximum length of iH1.

For the other kinematic chains, we can calculate the angles
by the transformation of coordinates. Given αi is the rotation
angle fromB1EA1E toBiEAiE, the new displacement iH1 and
angle iθ1 are

iH1 =

√
(iCx +px)2+ (iCy +py)2

iθ1 = arccos((iCx +px)/iH1)
iCx(xB1E − xA1E )cosαi − (γB1E − γA1E ) sinαi
iCy = (xB1E − xA1E ) sinαi + (γB1E − γA1E )cosαi

. (30)

Given all kinematic chains are identical, the range of each
linear motion element is

Hlb≤
iH1 ≤Hub i = 1,2, . . .,n,

where Hlb, Hub are the lower and upper bounds. As shown
in Fig. 6, the minimum and maximum length of iH1 can be
estimated:

Hlb ≈ s ·w

Hub ≈ 2 · s · l, (31)

where w is the width of each link.
The work space of the platform is the intersection of

the work spaces of each kinematic chain. According to
Eq. (30), the work space of each kinematic chain is a torus,
whose inner and outer radius are Hlb and Hub, respectively.
The center of the torus is (−(xB1E − xA1E )cosαi + (yB1E −

yA1E ) sinαi,−(xB1E−xA1E ) sinαi− (yB1E−yA1E )cosαi), de-
noted byDiE. The 2-DOF planar mechanism is composed of
three identical chains. According to the ratio of Hub to Hlb,
there are two types of work spaces.

I. Type I: Hub/Hlb >
√

3

Given |D1ED2E| = |D2ED3E| = |D3ED1E| =DD, the
work space of the platform in this type can be classi-
fied as consisting of three categories. The shapes of each
category can be seen in Fig. 7. The different ranges of
the above three categories are displayed by the plot of
DD/Hlb vs. Hub/Hlb in Fig. 8.
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Figure 7. Three categories of type I work space.

Figure 8. Ranges of three categories of type I.

II. Type II:1≤Hub/Hlb ≤
√

3

In this type, the work space of the platform can also
be classified as consisting of three categories, whose
shapes are as shown in Fig. 9. The ranges of the above
three categories are plotted in Fig. 10.

The numeric value of
√

3 is 1.73. By using the above results,
the work spaces of these kinds of parallel mechanisms can be
estimated. For the SLE-Pa leg, the ratio of Hub to Hlb equals
2l/w. In practice, the length-to-width ratio l/w of most links
is generally larger than 3.0, and the ratio 2l/w is definitely
more than 1.73. In our models for example, the length l is
27 mm, the width w is 8 mm and the ratio 2l/w equals 6.75.
Thus, the shapes of most work spaces of these 2-DOF planar
translational mechanisms belong to type I. The exact shapes
depend on the specific parameters of Hlb, Hub and the posi-
tions of SLE-Pa legs.

4 Stiffness synthesis

For the purpose of adding the recovery function, the elastic
elements are installed for this mechanism. The various elastic
elements and positions result in the different stiffnesses of the

motion platform. In this section, we choose a torsional spring
and an ordinary cylinder spring as elastic elements to discuss
the variation in stiffness.

4.1 Case 1: torsional springs installed in the corner
joints of SLE-Pa legs

As shown in Fig. 11, the torsional springs are all installed in
the corner joints of SLE-Pa legs. Given that stiffness coeffi-
cient of each torsional spring is kθ , the total elastic energy of
the mechanism is

V =

n∑
i=1

1
2
kiθθ

2
2 . (32)

Differentiating Eq. (32) to the displacements px and py , the
corresponding generalized force Qx and Qy of the platform
can be calculated by the following equation:
Qx =−

∂V

∂px
=−

n∑
i=1

kθ1
iθ2
∂ iθ2

∂px

Qy =−
∂V

∂py
=−

n∑
i=1

kθ1
iθ2
∂ iθ2

∂py

. (33)

Utilizing Eq. (26), the derivative of iθ2 versus px and py can
be obtained as

∂ iθ2

∂px
=

cosiθ1

cos
iθ2
2

1
sl

∂ iθ2

∂py
=

siniθ1

cos
iθ2
2

1
sl
. (34)

Continuing to differentiate Eq. (33) to px , py and ignoring
the second-class derivative of iθ2, we can calculate the stiff-
ness matrix of the platform.

Kθ = kθ


n∑
i=1

(
∂ iθ2

∂px

)2 n∑
i=1

(
∂ iθ2

∂px

∂ iθ2

∂py

)
n∑
i=1

(
∂ iθ2

∂px

∂ iθ2

∂py

)
n∑
i=1

(
∂ iθ2

∂py

)2


www.mech-sci.net/8/179/2017/ Mech. Sci., 8, 179–193, 2017



186 Y. Yang et al.: A novel 2-DOF planar translational mechanism

Figure 9. Three categories of type II work space.

Figure 10. Ranges of three categories of type II.

Figure 11. Torsional springs installed in the corner joints.

=
kθ

(sl)2


n∑
i=1

cos2iθ1

cos2 iθ2
2

n∑
i=1

cosiθ1siniθ1

cos2 iθ2
2

n∑
i=1

cosiθ1siniθ1

cos2 iθ2
2

n∑
i=1

sin2iθ1

cos2 iθ2
2

 (35)

Figure 12. Stiffness contours of the platform in case 1.

Given initial θ1 and θ2 are 75 and 90◦, the stiffness contours
of the platform within the area of 150 by 150 are plotted,
as shown in Fig. 12. The generalized force ellipsoids are
used to evaluate the isotropy of the above stiffness matrix.
The region where the contours are more intensive has higher
stiffness and vice versa. If the shape of the contour approxi-
mates a circle, the stiffness of the platform in this circle can
be treated as isotropy. In Fig. 12, the contours in the region
of 100 by 100 are nearly circular. The generalized force el-
lipsoids in this region are also rounder than those outside. It
appears that the stiffness here is isotropic. With the increas-
ing area, the shapes of the contours and the generalized force
ellipsoids are more different from a circle. It illustrates that
the feature of stiffness becomes more anisotropic. For fur-
ther discussion, we take the platform a certain distances away
from the center point along ±45, ±90, ±135, 0 and 180◦

axes. Then we release it and let it vibrate. The responses of
the displacements of the platform are plotted in Fig. 13. The
responses of the displacements from left to right are under
the conditions of the given distances of 50, 100 and 141 mm.
The red dots represent the release position. As the distance
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Figure 13. Responses of the displacements of the platform in case 1.

Figure 14. Cylinder springs connecting the vertical joints.

increases, the response of the displacement appears whirling,
which means the stiffness is becoming anisotropic. It agrees
with the result of Fig. 12.

4.2 Case 2: cylinder springs connecting the
vertical joints

As shown in Fig. 14, the cylinder springs connect the vertical
joints in SLE-Pa legs. Given that the stiffness coefficient of
each spring is kv, the free length of the spring is h0; the total
elastic energy of the mechanism is

V =

n∑
i=1

1
2
kv(ih1−h0)2

=

n∑
i=1

1
2
kv(

iH1

s
−h0)2. (36)

Differentiating Eq. (36) to the displacements px and py , the
corresponding generalized force Qx and Qy of the platform
can be obtained:

Fx =

n∑
i=1

kv(
iH1

s
−h0)

cosiθ1

s

Figure 15. Stiffness contours of the platform in case 2.

Fy =

n∑
i=1

kv(
iH1

s
−h0)

siniθ1

s
. (37)

The stiffness matrix of the platform can be derived as

Kv =
kv

s2


n∑
i=1

cos2iθ1
n∑
i=1

cosiθ1siniθ1

n∑
i=1

cosiθ1siniθ1
n∑
i=1

sin2iθ1

 , (38)

given that initial θ1 and θ2 are 75 and 90◦. In the area of 150
by 150, the stiffness contours and the generalized force ellip-
soids are plotted, as shown in Fig. 15. It may be seen that the
shapes of the contours and the generalized force ellipsoids
appear very different from circles. Thus, the stiffness of the
platform is anisotropic under this circumstance. To test this
point further, the platform is taken 141 mm from the center
point and released. The response of free vibration is plotted
in Fig. 16. The whirling trajectory proves that the above anal-
ysis is correct.
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Figure 16. Responses of the displacements of the platform in
case 2.

Figure 17. Cylinder springs connecting the horizontal joints.

4.3 Case 3: cylinder springs connecting the
horizontal joints

As shown in Fig. 17, the corresponding generalized forceQx

and Qy of the platform can be obtained by the use of the
energy method.

Fx =−

n∑
i=1

khl sin
iθ2

2
(2l cos

iθ2

2
−D0)

∂ iθ2

∂px

Fy =−

n∑
i=1

khl sin
iθ2

2
(2l cos

iθ2

2
−D0)

∂ iθ2

∂py
, (39)

Figure 18. Stiffness contours of the platform in case 3.

Figure 19. Responses of the displacements of the platform in
case 3.

where kh is the stiffness coefficient of each spring. The stiff-
ness matrix of the platform can be derived as

Kh =−
kh

s2l



n∑
i=1

(
lcosiθ2−

1
2
D0 cos

iθ2

2

)
cosi2θ1

cos2 iθ2
2

n∑
i=1

(
lcosiθ2−

1
2
D0 cos

iθ2

2

)
cosiθ1siniθ1

cos2 iθ2
2

n∑
i=1

(
lcosiθ2−

1
2
D0 cos

iθ2

2

)
cosiθ1siniθ1

cos2 iθ2
2

n∑
i=1

(
lcosiθ2−

1
2
D0 cos

iθ2

2

)
sin2iθ1

cos2 iθ2
2


(40)

The stiffness contours and the generalized force ellip-
soids are drawn in Fig. 18. The feature of the stiffness is
anisotropic. The response of free vibration in Fig. 19 also
proves this result.
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Figure 20. Cylinder springs connecting vertical joints and horizon-
tal joints.

4.4 Case 4: cylinder springs connecting vertical joints
and horizontal joints

As shown in Fig. 20, the cylinder springs connect the vertical
and horizontal joints in SLE-Pa legs. The stiffness coefficient
of each spring is entirely identical, i.e., kv = kh. The stiffness
of the platform can be regarded as the sum of Eqs. (38) and
(40). The contours and the generalized force ellipsoids can
be drawn, and the response of free vibration is displayed in
Figs. 21 and 22. It is found that the stiffness of the platform
appears to be isotropic in this compound connection. By the
comparison of Figs. 15 and 18, the reason is found that the
convexities of the contours in these two figures are the op-
posite of one another. This means that the recovery forces
of the platform in these two cases may be complementary,
which results in the stiffness being isotropic. The responses
of the free vibration also illustrate this point. Through this
case, it may be concluded that the isotropic stiffness can be
synthesized by different anisotropic stiffness cases according
to the feature of the stiffness contours.

5 Approximation of stiffness coefficient

Since the SLE-Pa legs are distributed around the center of the
mechanism, 1θ1,

2θ1, . . .,
nθ1 form an arithmetic progression

if the displacement of the platform is small.

iθ1=
1θ1+

2π
n

(i− 1) i = 1,2, . . .,n (41)

iθ2 in each leg seems to be equal.

1θ2=
2θ2 = . . .=

nθ2 (42)

Figure 21. Stiffness contours of the platform in case 4.

Figure 22. Responses of the displacements of the platform in
case 4.

With the following condition

n∑
i=1

cos2θi =
1
2
n

n∑
i=1

sin2θi =
1
2
n

n∑
i=1

sinθi cosθi = 0, (43)

the approximation of the stiffness coefficient for case 1 in
Sect. 4 can be deduced as

Kθ =
kθ

(sl)2


n∑
i=1

cos2iθ1

cos2 iθ2
2

n∑
i=1

cosiθ1siniθ1

cos2 iθ2
2

n∑
i=1

cosiθ1siniθ1

cos2 iθ2
2

n∑
i=1

sin2iθ1

cos2 iθ2
2
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Figure 23. Passive docking device.

=
kθ

(sl)2cos2 0θ2
2

 1
2
n 0

0
1
2
n

 . (44)

In the same way, the approximation of the stiffness coeffi-
cient for cases 2 and 3 is

Kv =
kv

s2


n∑
i=1

cos2iθ1
n∑
i=1

cosiθ1siniθ1

n∑
i=1

cosiθ1siniθ1
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=
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s2

 1
2
n 0

0
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2
n

 , (45)

Kh =−
kh

s2l

(
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1
2D0 cos

0θ2
2

)
cos2 0θ2

2

 1
2
n 0

0
1
2
n


=
kh

s2 tan2
0θ2

2

 1
2
n 0

0
1
2
n

 . (46)

The approximation of the stiffness coefficient can be used
for a preliminary estimate of some parameters, i.e., recovery
force, vibration frequency and others, before designing the
mechanism. It is found that the approximation of the stiffness
coefficient in cases 1 and 3 is related to 0θ2. It means that the
stiffness of the platform can be adjusted by changing 0θ2. If
kv = kh and 0θ2 = 90◦, the stiffness in case 2 and 3 is equal.

6 Design of passive docking device

These novel 2-DOF planar translational mechanisms assem-
bled by SLE-Pa legs are applied to the design of a pas-
sive docking device, which can be used for joining pipes
in a water sample collection system. As shown in Fig. 23,
the passive docking device comprises support structure, 2-
DOF planar translational mechanism, bellows coupling and

Figure 24. Docking diagram.

Figure 25. Work space of 2-DOF planar translational mechanism.

a docking tunnel. The bellows coupling provides x- and y-
axes rotational DOFs. The 2-DOF planar translational mech-
anism provides x- and y-axes translational DOFs. The sup-
port structure is taken by a lifter, which moves along the z
axis. Thus, the docking tunnel has a total of 5 DOFs, which
has the ability to adapt to the misalignments in the docking
procedure. In addition, for the purposes of a passive docking
device capable of an isotropic recovery force, the cylinder
springs are installed to connect vertical joints and horizon-
tal joints. The stiffness coefficient of each cylinder spring is
0.3 N mm−1. The total mass of the platform, bellows cou-
pling and docking tunnel is 1.247 kg.

As shown in Fig. 24, the water sample collection cage is
fixed to the deck by the holding mechanism when it is pulled
up from the sea. There is a docking probe at the top of the
water sample collection cage. When the cage is put in place,
the lifter takes the passive docking device and allows it to
descend to approach the probe. In the docking procedure, the
probe slowly slides into the tunnel. The 2-DOF planar trans-
lational mechanism and bellows coupling enable the tunnel
to possess 4 DOFs in order to compensate for the misalign-
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Figure 26. Docking procedure.

Figure 27. x-axis displacement of the platform.

ments between the tunnel and probe. When the probe has
entirely entered the tunnel, the sample water in the collection
cage is drawn out. After this operation, the lifter takes the
passive docking device and moves it up to the original place.

In the 2-DOF planar translational mechanism, the length
of half an SLE is l = 27.4 mm, and the width is w = 8.2 mm.
The number of SLEs in a single SLE limb is s = 5. The initial
angles θ1 and θ2 are 75 and 90◦, respectively. The minimum
length of an SLE-Pa leg is Hlb ≈ s ·w = 41 mm. The max-
imum length of an SLE-Pa leg is Hub ≈ 2 · s · l = 274 mm.
The ratio of Hub to Hlb is 6.68, which is larger than

√
3. Ac-

cording to Sect. 3, the shape of the work space belongs to
type I(a), as shown in Fig. 25.

The docking procedure is simulated by Adams, as shown
in Fig. 26. Assume that the center of the probe has an off-
set distance 11.2 mm from the centerline and a slip angle 5◦

off the horizon. At the beginning, the passive docking device

Figure 28. Eight rotation angles of the probe.

Figure 29. Eight displacement trajectories of the platform.

descends at a velocity of 10 mm s−1 to dock with the probe.
When complete, the docking device stops for 3 s. Then, it as-
cends at a velocity of 10 mm s−1 until it reaches the original
position. The simulation proved that the 2-DOF translational
mechanism is able to produce a smooth motion in x−y plane.

The x-axis displacement of the platform of the 2-DOF
translational mechanism is measured in the simulation, as
shown in Fig. 27. It may be seen that the platform gener-
ates vibration after the docking tunnel and the probe have
been separated. This is because of the cylinder springs in the
mechanism, which result in the recovery force. The period of
vibration is roughly measured as 0.94 s in Fig. 27.

We can also calculate the period of vibration by the ap-
proximation of the stiffness coefficient derived in Sect. 5. By
the utilization of Eqs. (45) and (46) and the consideration of
two vertical and horizontal springs in each leg, the approxi-
mation of the stiffness coefficient can be obtained.

kE = 2×
(
n

2
kv

s2 +
n

2
kh

s2

)
= 0.072 Nmm−1.
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Figure 30. Actuator forces in eight cases.

 

Prototype of one SLE-Pa leg 

Motion platform 
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Middle link 

Auxiliary link 

Figure 31. Prototype of one SLE-Pa leg.

The period of vibration can be then calculated as

T =
2π
ω
= 2π

√
m

kE
= 0.827 s.

This result is very close to the one of the simulation. It proves
the correction of the above analysis. To illustrate the isotropy
of the recovery force, the probe is rotated around the cen-
terline to change its position and posture. The rotation an-
gles form a tolerance of 45◦ arithmetic progression from 0
to 315◦, as shown in Fig. 28. The docking simulation is con-
ducted for each rotation angle, i.e., in total eight cases that
need to be solved.

The eight displacement trajectories of the platform in the
x−z plane are calculated and plotted in Fig. 29. It shows that
all the trajectories are straight lines and there is no whirling.
The actuator forces in eight cases which drive the passive
docking device up and down are also measured and plot-
ted, as shown in Fig. 30. The eight force curves are almost

the same although the positions and postures of the probes
are different. Through Figs. 29 and 30, it can be concluded
that the stiffness of the passive docking device in the dock-
ing procedure is isotropic. The prototype of one SLE-Pa leg
is also manufactured, as shown in Fig. 31. The auxiliary link
in the prototype provides overconstraint which is to enhance
the parallel constraint for the two SLE limbs.

7 Conclusion

A novel 2-DOF planar translational mechanism compris-
ing SLE-Pa legs is proposed in this paper. The SLE-Pa leg
consists of two identical SLE limbs. The two correspond-
ing nodes in the two SLE limbs are hinged by one mid-
dle link. According to three different hinged positions of the
middle link, the mobilities and kinematics are discussed by
screw theory. The result shows that if the middle link con-
nects two corresponding corner joints of the SLE limbs, these
two SLE limbs are always parallel and the SLE-Pa leg has
2 pure translational degrees of freedom. Based on that, a
novel 2-DOF translational mechanism is invented. The kine-
matics equations and the work spaces of the platform are
given. For the purpose of this mechanism capable of recovery
force, the elastic elements are installed for this mechanism.
Through the analysis of the stiffness contours and the gen-
eralized force ellipsoids, the isotropy of the stiffness of the
platform has been identified. By applying the above results,
the passive docking device with the isotropic recovery force
is invented. The docking procedure is simulated by Adams,
which proves the feasibility of the 2-DOF translational mech-
anism and the isotropy of the device. Moreover, the prototype
of one SLE-Pa leg is manufactured and presented.

Data availability. The videos of the simulation are provided in the
Supplement.
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