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Abstract. A quantitative physical model, describing the piezoelectric electromechanical coupling in nanome-
chanical resonators with a two-dimensional electron gas, is developed. Numerical calculations of the change in
density of a two-dimensional electron gas contained in a vibrating cantilever are performed using the model
and are shown to be consistent with the experiment. The obtained data show that the vibration-induced elec-
tron density modulation is localized near the clamping point and that it is related to a rapid spatial change in
the mechanical stress near this point. It is shown that details of the clamping geometry significantly affect the
magnitude of the effect.

1 Introduction

The low-dimensional electron systems, such as a two-
dimensional electron gas (2DEG), quantum wires and quan-
tum dots, have been intensively studied for decades, and
these studies have led to discovery of bright phenomena in-
cluding the integer (von Klitzing et al., 1980) and fractional
(Goldman and Su, 1995) quantum Hall effects, weak lo-
calization (Altshuler et al., 1980), conductance quantization
(van Wees et al., 1988), the Coulomb blockade (Meirav et al.,
1990) etc. The usually studied low-dimensional electron sys-
tems are embedded in a semiconductor heterostructure be-
ing a part of a massive bulk. However, it is also possible
to create micro- and nanomechanical resonators containing
low-dimensional electron systems. Several papers report on
non-trivial properties of hybrid GaAs /AlGaAs-based elec-
tromechanical systems combining the mechanical resonators
and such mesoscopic devices as a single-electron transistor
(Okazaki et al., 2016) and a quantum point contact (Cleland
et al., 2002; Okazaki et al., 2013). Experiments (Tang et al.,
2002; Shevyrin et al., 2015) show that the 2DEG conduc-
tivity is sensitive to vibrations of a resonator containing it,
and it has been recently shown that this coupling is of piezo-
electric origin (Shevyrin et al., 2016). However, there is still
no common physical model describing the electromechani-
cal coupling and predicting the magnitude of the effect. In

the present paper, we propose a quantitative physical model
that gives an opportunity to estimate the vibration-induced
change in the electron density and reveals some important de-
tails of the electromechanical coupling in the nanoelectrome-
chanical systems based on GaAs /AlGaAs heterostructures.

2 Model description

Consider a model nanoelectromechanical system represent-
ing a cantilever with a 2DEG (see Fig. 1a) similar to that
experimentally studied in (Shevyrin et al., 2016). The can-
tilever, having thickness t = 166 nm, consists of the layers
schematically shown in Fig. 1b. The 2DEG resides in the
13 nm-thick GaAs layer buried 77 nm below the surface. The
cantilever studied in (Shevyrin et al., 2016) is created by
means of selective etching of Al0.8Ga0.2As sacrificial layer
from under the top layers of the heterostructure. The etch-
ing front boundary forms the clamping. To avoid the stress
singularity in our calculations, we consider a model system
with a fillet of the radius R introduced in the corner between
the remained sacrificial layer and the cantilever. Let the can-
tilever have length L� t (L= 3 µm for the system studied
in Shevyrin et al., 2016). We introduce a coordinate system
with the x axis directed along the cantilever towards its free
end and the y axis directed perpendicularly to the top surface
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Figure 1. (a) Schematic image of the model cantilever and its ori-
entation with respect to the crystallographic axes. L is the cantilever
length, t is thickness, R is the fillet radius. (b) The heterostructure
with a two-dimensional electron gas (2DEG) from which the model
cantilever is created.

and pointing upwards. Let x = 0 at the vertical boundary of
the remained sacrificial layer, and y = 0 at the middle plane
of the cantilever. For simplicity, we restrict ourselves to the
plane strain model assuming that displacements in the z di-
rection are zero and no parameters are changed along this
axis. Let the x axis coincide with piezoelectric-active [110]
crystallographic direction and the y axis be directed along
the [001] direction.

Let the cantilever perform flexural vibrations at the first
eigenmode. The oscillating cantilever, being an electrome-
chanical system, obeys the motion equation

∂σij

∂xj
=−ρ�2

0Ui (1)

and the Gauss’s law

∂Di

∂xi
= 0. (2)

Here σij is stress tensor, ρ is mass density, �0 is angular
eigenfrequency, Ui is the displacement of a given point and
Di is electric displacement. The stress and the electric dis-
placement can be expressed in terms of Ui and electric po-
tential φ using the constitutive equations:

σij = Cijkl
∂Uk

∂xl
+ ekij

∂φ

∂xk
, (3)

Di = eijk
∂Uj

∂xk
− εε0

∂φ

∂xi
, (4)

where Cijkl is stiffness tensor, eijk is piezoelectric tensor, ε
is relative dielectric constant and ε0 is the vacuum dielectric
permittivity. Since tensors Cijkl and eijk are symmetric, it is
convinient to write them in the Voigt notations (Nye, 1985)

as 6× 6 and 6× 3 matrices, respectively:

Cij =


C11+C12+2C44

2 C12
C11+C12−2C44

2 0 0 0
C12 C11 C12 0 0 0

C11+C12−2C44
2 C12

C11+C12+2C44
2 0 0 0

0 0 0 C44 0 0
0 0 0 0 C11−C12

2 0
0 0 0 0 0 C44

 , (5)

eij = e14

(
0 0 0 0 0 1

1/2 0 −1/2 0 0 0
0 0 0 −1 0 0

)
. (6)

Here C11 = (11.88+ 0.14χ )× 1010 Pa, C12 = (5.38+
0.32χ )× 1010 Pa and C44 = (5.94− 0.05χ )× 1010 Pa
are AlχGa1−χAs elastic constants, and e14 =

−0.16− 0.065χ C m−2 is the piezoelectric constant
(Adachi, 1985).

The substitution of Eqs. (3) and (4) in Eqs. (1) and (2)
gives a system of partial differential equations. We solve this
system using the finite element method on the full stack of
the material shown in Fig. 1 and obtain eigenfrequency �0,
displacements Ui and potential φ. The vacuum surround-
ing the cantilever can be modeled as a media character-
ized by negligibly small stiffness, the zero piezoelectric ten-
sor and dielectric constant ε = 1. We apply Dirichlet con-
ditions Ui = 0, φ = 0 at the boundary that is far from the
cantilever. A special area is the layer containing the 2DEG.
When the cantilever bends, the 2DEG density changes in
such a way as to maintain constant electrochemical poten-
tial. However, to simplify the calculations, we use the pure
electrostatic screening model (Davies and Larkin, 1994) and
consider the 2DEG as a media having a constant electrical
potential. As shown in Shevyrin et al. (2016), this simplifi-
cation is reasonable if the cantilever thickness far exceeds
the Bohr radius aB = 4πεε0}2m−1e−2

≈ 13 nm (here m is
an electron effective mass and e is the elementary charge).
Thus, we neglect the chemical energy and model the 2DEG
as a metal, or, equivalently, as a material with a dielectric
constant far exceeding the constants of all other materials in-
volved in the problem. Once the displacements Ux,Uy and
the potential φ have been calculated, the electric displace-
ment Di can be found using Eq. (4), and the electron density
change resulting from the cantilever bending can be found
as δn(x)=−e−1(Dy1−Dy2), where Dy1 and Dy2 are Dy
values near the top and bottom 2DEG boundaries. The cal-
culated electron density change, in the diffusive transport
regime, should lead to a proportional change in the 2DEG
conductivity δσ = δn× eµ, which can be measured experi-
mentally (here µ is the electron mobility). Notice that, under
the assumptions made, the calculated δn does not depend on
the equilibrium electron density of a non-vibrating 2DEG.

3 Results and discussion

Figure 2a, b show the bending-induced changes in the elec-
tron density δn(x) normalized to the deflection of the can-
tilever free end Uy(L). The curves are calculated at the fillet
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Figure 2. (a, b) The change in electron density δn(x) normalized
to deflection of the cantilever free end Uy (L) calculated at the fillet
radiiR = 3 nm (a) andR = 3 µm (b). (c, d) Corresponding mechan-
ical stress σxx normalized to the free end deflection Uy (L) calcu-
lated near the upper surface of the cantilever. Red lines show expo-
nential fits to the data. (e) The change in electron density calculated
at various fillet radii R (displayed in the figure). The curves are ver-
tically offset by 1.6× 1011 cm−2 µm−1 with respect to each other.

radii R = 3 nm (panel a) and R = 1 µm (panel b). Figure 2c,
d show the corresponding absolute stress |σxxU−1

y (L)| cal-
culated near the upper surface of the cantilever. It can be
seen that the stress reaches its maximum near the clamp-
ing point and rapidly decreases to the left from the max-
imum. This stress drop can be roughly fitted by an ex-
ponent |σxxU−1

y (L)| = Aexp(αx). The density change is
most prominent near the maximal stress point. However,
δn(x)U−1

y (L) decreases with increasing x much faster than
the stress. Moreover, despite the maximal stess is higher at
R = 1 µm, the density response is lower in this case than at
R = 3 nm. This shows that the density change at a given point
is not determined by the stress at this point. Instead, it is a
functional of the spatial stress distribution and it is largely
determined by the stress gradient near the considered point.

Figure 2e shows the δn(x)U−1
y (L) curves obtained at var-

ious fillet radii R. It can be seen that each of the obtained
curves demonstrates two main peaks, one of which is nega-
tive (Peak 1) and the other is positive (Peak 2). At small R
values, there is also a small region to the near left of Peak 1,
where the electron density change is positive. This additional

Figure 3. (a) Positions of the peaks in electron desnity change and
the neutal point where the electron density change is zero. (b) The
inverse rate of the stress decay α linearly depends on the fillet radius
R. (c) The eigenfrequency f0 and maximal mechanical stress σxx
normalized to the free end deflection Uy (L) as functions of the fillet
radius. (d) Absolute amplitude of the peaks normalized to the free
end deflection Uy (L) and the eigenfrequency f0 are determined by
the stress decay rate α.

small peak is seemingly caused by the features associated to
the stress concentration near the corner with a small curva-
ture radius. It can be seen that, when R increases, the main
peaks shift towards the free end of the cantilever, and the dis-
tance between them increases. Positions of the peaks and the
neutral point, where δn(x)= 0, are shown in Fig. 3a as the
functions of fillet radius R.

The change in fillet radius R leads to spatial redistribution
of the stress. As shown in Fig. 3b, the increase in R leads to
the increase in length α−1, which is the distance characteriz-
ing the stress decay. Besides, it leads to the cantilever stiff-
ening due to shortening of its effective length and increased
thickness near the base. Figure 3c shows that this stiffening
manifests itself in a growth of the eigenfrequency (2π )−1�0
and an increase in the maximal stress σmax normalized to
the deflection Uy(L) of the cantilever free end. Functions
�0(R) and σmaxU

−1
y (L) are similar, because both of them are

roughly proportional to the effective value of tL−2, where t
is the cantilever thickness and L is its length.
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Figure 3d shows the absolutized vibration-induced
changes in the electron density (deviations from a uniform
equilibrium value charactersistic for a resting cantilever),
corresponding to the main peaks observed in Fig. 2e as func-
tions of the rate of stress decay α. To reveal the effect of the
α change and to separate this effect from the cantilever stiff-
ening, these peak values are normalized to (2π )−1�0Uy(L),
rather than to Uy(L), as in Fig. 2e. It can be seen that the
considered peak values are determined by the rate of the
stress decay α, and they increase with the increasing α. The
peak values grow relatively slowly at α < 6 µm−1, while, at
α > 6 µm−1, Peak 1 starts growing much faster, and Peak 2
reaches its saturation. This featured value of α approximately
equals to the inverse cantilever thickness t = 166 nm. One
can see from Fig. 3b that the same α value corresponds to
the fillet radius R ≈ t at which an additional peak appears
at the δn(x)U−1

y (L) dependence (see Fig. 2e). We suppose
that the features, observed at the fillet radius being less than
the cantilever thickness, are related to the high stress and the
high gradients of the stress appearing near the fillet with a
small radius.

The calculation results can be compared to the experimen-
tal results reported in Shevyrin et al. (2016). The change in
the electron density at the distance of 1.3 µm from the clamp-
ing point, estimated from the experimental data, is about
δn≈ 5× 108 cm−2 µm−1. The calculated value of δn corre-
sponding to this distance is about 3× 108 cm−2 µm−1, and
it weakly depends on R at small radii. Thus, the results ob-
tained from the developed model are consistent with the ex-
periment. Notice that, at the distance of 1.3 µm, the change in
the electron density is far below the change near the clamp-
ing point, and it would be desirable to compare the results ob-
tained from the developed model to the change in the electron
density experimentaly measured in the vicinity of the clamp-
ing point. However, to our knowledge, there are currently no
papers reporting on such experimental results. Notice that the
discussed change in the electron density is proportional to
piezoelectric constant e14 and, in principle, it could be in-
creased more than two times for GaN-based heterostructures.

So far we have discussed a cantilever with a naked surface.
However, the geometry of the mesoscopic devices, such as
single-electron transistors and quantum point contacts, is of-
ten determined by metal gates partially covering the surface.
Obviously, the presence of the metal affects electron density,
and the gated systems should be considered separately. In the
following, we limit ourselves to the consideration of a can-
tilever similar to the system considered above, but with its
top surface entirely covered with a thin metal layer. It is clear
that this should lead to the cantilever stiffening, but we de-
liberately exclude this side effect from consideration by tend-
ing the metal elastic constants to zero. Thus, at the stage of
the problem formulation, the appearance of the metal leads
only to the zeroing electrical potential at the top surface. Fig-
ure 4a, b show the calculated δn(x)U−1

y (L) dependence ob-
tained at R = 0.1 µm for the case of a metalized cantilever

Figure 4. (a, b) Solid black lines: the change in electron density
δn(x) normalized to deflection of the cantilever free end Uy (L) cal-
culated for the cantilever covered with a metal (a) and cantilever
with a naked surface (b). The blue dashed line in (a) shows the
difference between the signals in displayed in (a, b). (c, d) Cor-
responding mechanical stress σxx normalized to Uy (L) calculated
near the top surface.

and for the case of a naked surface, respectively. Figure 4a
shows also the difference of these two signals. Figure 4c, d
show the corresponding spatial distributions of the stress. It
can be seen that, in the case of a metalized cantilever, the
electron density change consists of two components. One of
them decreases with the increasing x as slowly as the stress,
and the other (rapidly changing) is approximately equal to
the density change observed in the case of a non-metalized
cantilever. Notice that these two components have compara-
ble magnitudes. Thus, the electron density change related to
a rapid spatial change in the stress near the clamping point is
significant even in the case of a metalized cantilever. In real
mesoscopic devices, whose surface is only partially covered
with metal, the density response is expected to be more com-
plex and intermediary between the results of the two consid-
ered models.

4 Conclusions

The proposed physical model shows that the vibrations
of a piezoelectric nanomechanical cantilever with a two-
dimensional electron gas should lead to a change in the elec-
tron density. If the cantilever is not covered with a metal,
such as a Schottky gate, then this change is prominent only
near the clamping point and drops much faster than the stress
with the increasing distance from this point. It is shown that
the magnitude of the effect is determined mainly by the rate
of the stress decay that occurs with the movement from the
clamping point into the bulk, to which the cantilever is at-
tached. It is demonstrated that the microscopic details of the
clamping significantly affect the magnitude of the effect and
should be taken into account. In the case of a cantilever cov-
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ered with a metal, the considered localized change in the
electron density is superimposed on a signal approximately
proportional to the stress, but these components have compa-
rable magnitudes.

Data availability. All datasets used in the manuscript can be re-
quested from the corresponding author.
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