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Abstract. Introduction of parallel manipulator systems for different applications areas has influenced many

researchers to develop techniques for obtaining accurate and computational efficient inverse dynamic mod-

els. Some subject areas make use of these models, such as, optimal design, parameter identification, model

based control and even actuation redundancy approaches. In this context, by revisiting some of the current

computationally-efficient solutions for obtaining the inverse dynamic model of parallel manipulators, this paper

compares three different methods for inverse dynamic modelling of a general, lower mobility, 3-PRS parallel

manipulator. The first method obtains the inverse dynamic model by describing the manipulator as three open

kinematic chains. Then, vector-loop closure constraints are introduced for obtaining the relationship between the

dynamics of the open kinematic chains (such as a serial robot) and the closed chains (such as a parallel robot).

The second method exploits certain characteristics of parallel manipulators such that the platform and the links

are considered as independent subsystems. The proposed third method is similar to the second method but it

uses a different Jacobian matrix formulation in order to reduce computational complexity. Analysis of these nu-

merical formulations will provide fundamental software support for efficient model-based designs. In addition,

computational cost reduction presented in this paper can also be an effective guideline for optimal design of this

type of manipulator and for real-time embedded control.

1 Introduction

Seminal research in Parallel Manipulators (PMs) described

architectures of 6 degrees of freedom (DOF) which are

mainly used to perform industrial tasks. Nevertheless, not

all applications (e.g., commercial, space exploration, enter-

tainment or even industrial) require full 6-DOF capabilities,

thus, cost-effective PMs with less than 6 DOF (i.e., lower-

mobility) have been developed. One such architecture is the

3-PRS manipulator which has a platform and a fixed base

connected through three identical sets of links and joints (i.e.,

legs). Each leg has a slider attached to the base by an actu-

ated prismatic joint (P), a coupler connected to the slider by

a passive rotational joint (R) and to the platform by a pas-

sive spherical joint (S). The 3-PRS manipulator was first de-

scribed in Carretero et al. (2000b) for a telescope application,

and then it was proposed as a machining centre in Fan et al.

(2003) and for a medical application in Merlet (2001). The

kinematics and workspace analyses of the manipulator have

been extensively studied in Carretero et al. (2000a), Carretero

et al. (2000b), Tsai et al. (2002), Li and Xu (2007), to name

a few. On the other hand, despite the fact that inverse dy-

namic modelling is essential for optimal design, parameter

identification (Mata et al., 2008), model-based control (Díaz-

Rodríguez et al., 2013), and internal redundancy (Parsa et al.,

2013) amongst others, few papers have focused on revisiting

and comparing computationally-inexpensive methods in or-

der to obtain the dynamic models that are cost-effective for

real-time applications.
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Lagrangian formulations allowed to develop the inverse

dynamics model of the 3-PRS manipulator (Li and Xu,

2004). The formulation uses the Lagrange multiplier to in-

clude the constraints forces that lead to a modelling approach

not only intricate but also computationally complex. Li and

Xu (2004) applied the Principle of Virtual Work (PVW), but

they simplify the dynamics of the coupler link by dividing

its mass into two portions located at its extremes. Tsai and

Yuan (2010) solved the inverse dynamic model along with

the reaction forces through a special decomposition of the

reaction forces at the joints that connect the leg with the plat-

form. A similar approach was used in Yuan and Tsai (2014)

for solving direct dynamics including friction effect. How-

ever, the later approach considers the calculation of reaction

forces which are may be needed for structural design of a ma-

nipulator but its computation increases computational com-

plexity which is unnecessary for parameter identification or

model-based control. Staicu (2012) analyses and compares

the power consumption of the 3-PRS vs. the 3-PRS configu-

ration using the PVW with recursive modelling. The method

obtains the Jacobian by differentiating the vector loop equa-

tion. Carbonari et al. (2013) solved the inverse dynamics of a

3-DOF parallel manipulator via screw theory and the PVW.

On the other hand, the 3-RPS manipulator presents simi-

lar characteristics to the 3-PRS manipulator, in this respect,

Mata et al. (2008) implement recursive velocity equations

used in serial manipulator analysis to find the Jacobian of the

manipulator for the inverse dynamic modelling, and Ibrahim

and Khalil (2007) exploit architectural characteristics of the

3-RPS to give a closed form solution for the inverse and di-

rect dynamics modelling.

The inherent complexity of the dynamic models lies on the

way the system is modelled and how the Jacobian matrix is

put forward. In this context, this paper compares the compu-

tational number of operation of three formulations for inverse

dynamic modelling of a 3-PRS. The first formulation applies

the general solution of PMs dynamic modelling proposed in

Khalil and Ibrahim (2007). The second method considers the

manipulator as a set of open kinematic chains and finds the

Jacobian in joint space coordinates by taking into account the

vector loop constraints at the split joints (Mata et al., 2008).

The third method relies on the modelling approach originally

presented in Li and Xu (2004).

The ultimate goal of contrasting these numerical formula-

tions is focused on supporting the implementation of emerg-

ing model-based designs which not only depends of the dis-

crete inverse dynamic model but also the numerical finite

realization in a given computational platform (Williamson,

1991). In fact, software architecture, for model based con-

trol (Díaz-Rodríguez et al., 2013), relies on minimizing com-

putational task timing commonly constrained by fast sam-

pling periods (Goodwin et al., 1992). Similarly, in other ap-

plications, such parameter identification (Mata et al., 2008),

and internal redundancy (Parsa et al., 2013) few papers

have focused on revisiting and comparing computationally-

inexpensive methods in order to obtain the dynamic model

of the 3-PRS configuration for cost-effective real-time appli-

cations.

To this end, this paper is organized as follows: Sect. 2

presents in general terms how the dynamic model for a paral-

lel manipulator is developed for the three approaches inves-

tigated in this paper. Section 3 presents the implementation

of the approaches for solving the dynamics problem of a 3-

PRS spatial parallel manipulator. Section 4 summarizes and

discusses the complexity and the computational load of these

three formulations. Finally, the conclusions are drawn.

2 Development of the dynamic models

The dynamic model of a closed chain mechanical system

such as a parallel manipulator can be obtained by virtually

cutting or splitting the manipulator at one or more of its joints

until the complete dynamic model of a tree-like system with

several open chains is obtained. Newton–Euler formulations

are then used for solving the dynamics of each serial chain.

Finally, constraint equations obtained by means of the La-

grange Multipliers are incorporated to include the necessary

forces at the splitting points as to ensure the kinematic chains

remain closed. On the other hand, the Lagrangian approach

can be applied by using the Lagrange equation with respect to

a minimum set of generalized coordinates. Yiu et al. (2001)

showed that either application of Lagrange Equation or tree-

like system analysis are equivalent to one another and lead

to the same set of equations when applied to a parallel ma-

nipulator. Moreover, similar results were obtained by Murray

and Lovell (1989) using the D’Alembert’s principle and the

principle of virtual work.

Regardless, of the dynamics equation (Newton–Euler, La-

grange or Principle of Virtual Work) used for developing the

model, the dynamics of closed chain system can be written

as:

τ =GT h. (1)

This equation establishes that the generalized forces corre-

sponding to an open chain system (h) are related to the ac-

tuated forces of a closed chain system (τ ) by a linear trans-

formation
(
GT
)
. This linear transformation is based on the

Jacobian matrix. Thus, the dynamics equation of a parallel

manipulator essentially relies on finding the Jacobian matrix

that relate the passive generalized coordinates to the actuated

ones.

The following subsections revisit three approaches for

solving the dynamics equations of a 3-PRS parallel manip-

ulator. The differences in the approaches are based on two

facts: (1) how the parallel manipulator is split into open

chains and (2) the type of generalized coordinates used for

modelling the manipulator. Each approach leads to estab-

lishing different formulations of the Jacobian matrix. Since

each Jacobian matrix holds different formulation there are
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differences in the number of algebraic operations to compute

each. The objective of this work is mostly revisiting these

approaches to find the cost-effectiveness of each when solv-

ing the inverse dynamics through an example. This is of par-

ticular interest as inexpensive computer models are essential

when adaptive control algorithms are used to control manip-

ulator at fast update rates. For instance, in the fields of param-

eter identification and actuation redundancy, a fast estimation

of the inverse model implies cost-effectiveness for real-time

applications.

2.1 Dynamics considering the legs and platform as

subsystems

This approach is based on the general formulation for mod-

elling parallel manipulators presented by Khalil and Ibrahim

(2007), which is based on the following aspects: (1) the ma-

nipulator is split open at the spherical joints so that the mov-

ing platform is separated from the legs and (2) the local joint

coordinates systems q can be used to develop the dynamic

equations of each leg hi while the Cartesian coordinates x

are used to obtain the dynamic equations of the platform

hp. Then, the dynamic equations are combined and projected

onto the active joint space as follows:

τ = JTp hp+

m∑
i=1

(
δq̇i

δq̇a

)T
hi, (2)

where Jp is the Jacobian projecting the task space coordi-

nates (6 in the general case) to the n active joint coordinates,

while m is the number of joints for each leg. Likewise,

hp =

[
mpg−mp ap

−Ipω̇p−ωp×
(
Ipωp

)] , (3)

where mp is the mass of the platform, Ip denotes the iner-

tial matrix of the moving platform about its centre of mass,

ap stands for the acceleration of the end effector, and ωp, ω̇p

respectively denote the angular velocity and angular acceler-

ation of the platform.

2.1.1 Method I

In order to develop the model in actuated joint space one has

to project the passive joint variables to the active ones. That

is:

τ = ha
i + JTp hp+GT

I h
p

i , (4)

where indices a and p stand for the active and passive joints,

respectively, while GI is a l×nmatrix projecting the dynam-

ics from the passive to the active joints. Here, l represents

the number of passive joints while n is the number of active

joints on each leg.

{O}

li

s i

lp

Figure 1. Closed chain equation for finding GI.

Equation (4) can be written in the form of Eq. (1). That is:

τ =
[

I JTp GT
I

] ha
i

hp

h
p

i

=GT h, (5)

where I is the identity matrix with dimension equal to the

degree of freedom of the manipulator.

In Eq. (4), matrix GI can be obtained by considering the

fact that the distance among spherical joints at the platform

is constant due to the rigid body assumption. This distance

is calculated based on the norm of the vector obtained by

subtracting the position vector identifying the location of the

spherical joints. The partial derivatives of each equation with

respect to the joints coordinates yields matrix GI. Figure 1

shows how to establish the closed chain equations.

Note that in Eq. (4), hp is a 6×1 vector and, in the partic-

ular case of a 3-PRS parallel manipulator, τ is a 3×1 vector.

Therefore, matrix Jp is not square and cannot be obtained

using previous methods for solving the inverse kinematics of

this kind of manipulator. For instance, when developing the

inverse dynamics model using the Principle of Virtual Work,

Li and Xu (2004) found a 3× 3 square matrix Jp. They did

so by only considering three of the components of the plat-

form inertial forces; they considered those associated with

the desired degrees of freedom of the end effector. In Sect. 3

a method obtaining Jp considering the 6 components of hp

for the particular case of the 3-PRS manipulator is shown.

2.1.2 Method II

Another approach to formulate the dynamic model is to find

the Jacobian matrices according to the approach presented by

Khalil and Ibrahim (2007). The method is based on project-

ing the dynamics equation of the passive joint onto the task

www.mech-sci.net/7/9/2016/ Mech. Sci., 7, 9–17, 2016
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space, and then, project them back to the active joint space

so that:

τ = ha
i + JTp

[
hp+GT

IIh
p

i

]
, (6)

where GII is a l× 6 matrix that holds new definition that can

be written as follow:

GT
II = JTviJ

−T
qi
, (7)

where Jvi and J−Tqi can be obtained respectively from the di-

rect Jacobian Jx and the inverse Jacobian Jq of the manipu-

lator.

Equation (6) can be written in the form of Eq. (1). That is:

τ =
[

I JTp
(
GIIJp

)T ] ha
i

hp

h
p

i

=GT h. (8)

2.2 Dynamics considering the manipulator as open

kinematic chains

A parallel manipulator can be split open into m− 1 joints

yieldingm open chain systems. In this approach the platform

is attached to one of the legs, see Fig. 2. Algorithms for ob-

taining the dynamics model of serial manipulators may now

be applied to obtain the dynamics of each leg.

The cut joints introduce constraint forces, which can be in-

cluded into the model by means of the Lagrange multipliers:

τ = hi +Aλi, (9)

where A is the Jacobian that can be found by analysing the

constraint equations. Mata et al. (2008) presented a method

for the Jacobian matrix by considering the linear velocity at

the split joints. The velocities can be computed through the

Jacobian analysis of each leg. Then, the velocity obtained

at the split joint following each leg are the same. In this

approach, recursive modelling of the velocity analysis from

conventional serial manipulator methods can be applied for

each leg.

Once the Jacobian matrix is found, the Lagrange multi-

pliers in Eq. (9) are eliminated by multiplying matrix C, so

that, CA= 0. One way to find C is by obtaining the natural

orthogonal complement of C. On the other hand, the matrix

can be found by separating matrix A= 0 into the passive and

the active joints. That is:

τ = ha
+GT

IIIh
p, (10)

where GIII has dimensions l×n and can be computed as fol-

lows:

GIII = A−1
p Aa, (11)

where subscripts p and a respectively refer to the passive and

active variable terms in Jacobian A. Equation (10) can be

li

si

Figure 2. Several open chains obtained after cutting open the par-

allel manipulator.

written in the form of Eq. (1). That is:

τ =
[

I GIII

][ ha
i

h
p

i

]
=GT h. (12)

As Eqs. (5), (8) and (12) show, the three methods estab-

lish a linear relation between the cut-open model (h) to the

original system. The different lies in how matrix GT and vec-

tor h are solved in each model. This is illustrated in the next

section for the particular case of a general 3-PRS parallel

manipulator.

3 Inverse dynamics of the 3-PRS PM

A schematic representation of the 3-PRS PM is shown in

Fig. 3 where the 7 moving rigid bodies are shown. There,

links 0, 1, and 2 can be seen as 2-DOF serial manipulator

with PR joints, also it applies to links 0, 4, and 5 as well as

links 0, 6, and 7. The platform is indicated by the number 3.

The manipulator is a lower mobility (i.e., less that 6-DOF)

spacial PM with 3-DOF. This manipulator holds the charac-

teristic of zero torsion at its platform because the three spher-

ical joints move in vertical planes intersecting at a common

line (Liu and Bonev, 2008). In addition, the topology of its

legs provides 2-DOF of angular rotation (2R) in two axes

(A/B axis, rolling and pitching) and 1-DOF translation (1T)

motion (heave) at the end effector.

As Fig. 3 shows, reference frame {O} defines the global

coordinate system (x,y,z) while {p} defines the local coor-

dinate system attached to the moving platform. In the typical

symmetrical configuration, the centre of the spherical joints

Mech. Sci., 7, 9–17, 2016 www.mech-sci.net/7/9/2016/
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{p}

{O}

u1,i

u2,i

li

ai

bi

p

si

gi AI

BI

1

2

3

4

7

6

5

0

{p}
A/B

Figure 3. Sketch of a general 3-PRS manipulator.

at the platform form an equilateral triangle circumscribed in

a circle with centre p and radius rp. The line of action of

the prismatic joints intersects the base Oxy plane at Ai also

forming an equilateral triangle. The distance fromO to Ai is

the base platform radius rb.

In order to take advantage of the dynamic equation al-

gorithms developed for serial manipulators, when modelling

the manipulator with leg and platform as subsystem, the joint

coordinates q can be used to develop the dynamics equations

of each leg (Mata et al., 2002). To this end, a local coordi-

nate system {Oi,0} is defined at the bottom of leg i where

the leg meets the based plane. Table 1 lists the Denavit–

Hartenberg (D–H) parameters, according to Craig’s notation

(Craig, 2005), of each leg i from {Oi,0} up to the location of

the axis {Oi,2} at the revolute joint.

The rotation matrix Oi,0Ro can be found as:

Oi,0RO =

 −sin(ξi) 0 cos(ξi)

cos(ξi) 0 sin(ξi)

0 1 0

 , (13)

where ξ =
[

0 2/3π 4/3π
]T

.

In addition, the roll-pitch-yaw (α, β and φ) Euler angles

represent the orientation of the moving frame {p} with re-

spect to the global coordinate system {O}. The rotation ma-

trix ORp is defined as:

ORp =

 cαcβ cαsβsφ − sαcφ cαsβcφ + sαsφ
sαcβ sαsβsφ + cαcφ sαsβcφ − cαsφ
−sβ cβsφ cβcφ

 , (14)

where c∗ = cos(∗) and s∗ = sin(∗).

Table 1. D–H parameters for a 3-PRS PM when modelling the ma-

nipulator with leg and platform as subsystem.

i θi,1 di,1 ai,1 αi,1 θi,2 di,2 ai,2 αi,2

1 π/2 s1 0 γ1 θ1 0 0 −π/2

2 π/2 s2 0 γ2 θ2 0 0 −π/2

3 π/2 s3 0 γ3 θ3 0 0 −π/2

The task space (x) and joint space (qi) coordinates are

given by:

x =
[
xp yp zp φ β α

]T
, (15)

q =
[
qT1 qT2 qT3

]
, (16)

q1 =

[
s1
θ1

]
, q2 =

[
s2
θ2

]
, and q3 =

[
s3
θ3

]
, (17)

where si represents the displacement along the axis of the

prismatic joint i, and θi the angle of the link 2 and the axis of

the prismatic joint i in the plane of movement of the leg i.

The components of bi with respect to the local coordinate

system {p} are given by:

pb1 =

[
rp
0

0

]
, pb2 =


−

1

2
rp

√
3

2
rp

0

 ,and pb3 =


−

1

2
rp

−

√
3

2
rp

0

 (18)

while the components of ai with respect to the global coor-

dinate system {O} are given by:

a1 =

 rb
0

0

 , a2 =


−

1

2
rb

√
3

2
rb

0

 ,and a3 =


−

1

2
rb

−

√
3

2
rb

0

 . (19)

The position problem for the considered PM is not in-

cluded in this paper since it can be found in Carretero et al.

(2000b), Tsai et al. (2002), Li and Xu (2004), Mata et al.

(2008). The following subsections focus on the computation

of the Jacobian matrix for the aforementioned approaches.

3.1 Jacobian matrix for Model I

Matrices Jp and G for computing Eq. (4) are found following

the approach presented in Li and Xu (2004). The vector loop

equation of the ith leg can be written as:

p+ bi = ai + siu1i + liu2i , (20)

where u1i and u2i are unit vectors, li is the distance between

the rotational joint and the spherical joint, bi is the position

vector from the origin O to the centre of the spherical joint.

Vector ai is the position vector betweenO and local frame of

www.mech-sci.net/7/9/2016/ Mech. Sci., 7, 9–17, 2016
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each leg. Differentiating Eq. (20) with respect to time and af-

ter some algebraic manipulation, the following equation can

be obtained:

Jq q̇ = Jx ẋ (21)

where:

Jq =

 uT21u11 0 0

0 uT22u12 0

0 0 uT23u13

 (22)

and

Jx =


uT21 (b1×u21)T

uT22 (b2×u22)T

uT23 (b3×u23)T

 . (23)

Due to the constraints imposed by the fact that each legs

moves on a plane, the following set of equations holds:

xp =−rpsαcβ ,

yp =−
1

2
rp
(
cαcβ − sαsβsφ − cαcφ

)
, (24)

tan(α)=
(
sβsφ

)
/
(
cφ + cβ

)
.

From these equations, a 6× 3 Jacobian matrix mapping the

dependent task space coordinates to the independent ones can

be found such that:[
ẋp ẏp żp φ̇ β̇ α̇

]T
= J∗r

[
żp φ̇ β̇

]T
(25)

It is important to note that ẋ =[
ẋp ẏp żp ωpx ωyp ωzp

]T
. In order to apply

Eq. (25), one has to find the angular velocity of the platform

through the rate of change of the generalised coordinates[
α̇ β̇ φ̇

]T
. That is: ωpx

ωyp

ωzp

=
 cαcβ −sα 0

sαcβ cα 0

−sβ 0 1

 φ̇

β̇

α̇

 . (26)

After some algebraic manipulation the following equation

can be obtained:

Jp = JrJ
−1
c (27)

where Jc =
[
J−1
q JxJr

]
.

The 3× 3 matrix GI is found by considering the fact that

the distance among spherical joints at the platform is constant

due to the rigid body assumption. That is:

l2p − ||ai + siu1i + liu2i − ai+1− si+1u1i+1

−li+1u2i+1|| = 0 (28)

with i = 1,2,3 and when i = 3, i+ 1= 1.

Thus, by obtaining the partial derivatives of the above set

of equation matrix GI can be written as:

δθ̇1

δṡ1

δθ̇2

δṡ1

δθ̇3

δṡ1
δθ̇1

δṡ2

δθ̇2

δṡ2

δθ̇2

δṡ2

δθ̇1

δṡ3

δθ̇2

δṡ3

δθ̇3

δṡ3


= X−1

p Xa =GI. (29)

3.2 Jacobian matrix for Model II

Another approach to compute matrices Jp and G is to con-

sider that the spherical joints in each leg is constrained to

move on a plane normal to the revolute joint. The motion of

each leg at point Bi can be found in terms of the joint co-

ordinates. Moreover, it can also be expressed with respect to

Oi,2. Due to the constraints provided by the P–R pair, the

third row of the Jacobian matrix consist of zero entries. That

is:

i,2vBi=
iJq qi, (30)

where

iJq =

 −sin(θi) 0

−cos(θi) li
0 0

 . (31)

The linear velocity of the end effector can be related to the

linear velocity of points Bi as follows:

i,2vBi=
iJvv =

[
i,2RO −

i,2RO
ORp

pb̃i
]
v, (32)

where

v =
[
vTp ωTp

]T
=
[
vpx vpy vpz ωx ωy ωz

]T
, b̃

stands for the skew symmetric matrix substituting the cross

product bi×, and

i,2Rp =

 −cσi sγi+θi −cσi cγi+θi sσi
−sσi sγ1+θi −sσi cγ1+θi −cσi

cγ+θi −sγi+θi 0

 . (33)

The first two rows of Eqs. (31) and (32) relate the task

space to the joint spaces coordinates. That is:

Jq q̇ = Jxv, (34)

where

Jq =

 1Jq 0 0

0 2Jq 0

0 0 3Jq

 (35)

Mech. Sci., 7, 9–17, 2016 www.mech-sci.net/7/9/2016/
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Table 2. D–H Parameters for the first leg of the 3-PRS PM when

modelling as a three open chains.

j θ1,j d1,1 a1,j α1,j

1 π/2 s1 0 −γ1

2 θ1 0 0 −π/2

3 θ4 l1 0 0

4 θ5 0 0 π/2

5 θ6 0 0 π/2

and,

Jx =



xT
1,2

RO xT
(
−

1,2ROOR
p
p b̃1

)
yT

1,2
RO yT

(
−

1,2ROOR
p
p b̃1

)
xT

2,2
RO xT

(
−

2,2ROOR
p
p b̃1

)
yT

2,2
RO yT

(
−

2,2ROOR
p
p b̃1

)
xT

3,2
RO xT

(
−

3,2ROOR
p
p b̃1

)
yT

3,2
RO yT

(
−

3,2ROOR
p
p b̃1

)


. (36)

In the above equations x =
[

1 0 0
]T

,

y =
[

0 1 0
]T

, and 0 is a 2× 2 zero matrix.

From the above equation, matrix GII can be obtained as

follows:

J−1
q Jx =


J−1

q1 Jv1

J−1
q2 Jv2

J−1
q3 Jv2

 (37)

GT
II =

[
JTv1J−Tq1 (:,2) JTv2J−Tq1 (:,2) JTv3J−Tq3 (:,2)

]
(38)

where A (:,2) denotes the 2nd column of matrix A.

The Jacobian matrix, relating the task space coordinates

Jr , is found by considering the third column of velocity equa-

tion following each leg and the platform. The Jacobian ma-

trix is obtained by following method 2 which is graphically

represented in Fig. 4.

3.3 Jacobian matrix for Model III

The inverse dynamic is computed as a function of three open

chains which are obtained after disassembling two of the

three spherical joints. The platform is attached to one of the

legs, and the spherical joint is modelled as three intersecting

revolute joints with the three axes mutually perpendicular to

one another. Therefore, the chain with the end effector plat-

form is modelled by using the set of D–H parameters pre-

sented in Table 2. The remaining legs have only sets of two

variables which are the same as those presented in Table 1.

One of the advantages of considering the manipulator as

tree-like serial chains is that the Jacobian for each leg can

be computed by using well-known recursive modelling from

serial manipulator. In this respect, the velocities at the cut

joints can be computed through recursive formulation (An-

geles, 2002). That is:

Ai q̇i = VBi,i+1
= Ai+1q̇i+1, (39)

where i = 1,2,3 and when i = 3, i+1= 1, Ai is the Jacobian

matrix for the ith leg, and VBi,i+1
is the velocity at the cut

joint connecting leg i and i+ 1.

From Eq. (39) the following equation can be obtained:

Ai q̇i −Ai+1 q̇i+1 = 0. (40)

This equation provides a set of three linear systems relating

the joint coordinates following each loop. If the set of linear

equations is appended together the following equation holds:

X=

 A1 −A2 03×3

03×3 A2 −A3

A1 03×3 −A3

 q̇ = 0. (41)

The relationship between the active and passive coordi-

nates can be obtained from Eq. (41) as follows:

GIII = X−1
p Xa. (42)

4 Results and discussion

In order to solve the inverse dynamics of the 3-PRS parallel

manipulator, each term of Eqs. (4), (6), and (10) are found in

closed form by using a Computer Algebra Symbolic (CAS)

program, such as Maple. One of the advantages of devel-

oping the model in a CAS program relies on the fact that

the mathematical operations can be performed symbolically

and simplified. In the present case, built-in functions such as

simplify and combine (with option=trig) of Maple

programming environment were used to reduce the number

of operations for solving each model.

A second advantage of obtaining the model in closed form

is that the code can be written automatically for Matlab by

using the code generation capabilities of the software. The

Matlab procedure with optimize=tryhard option of

the package CodeGeneration were used in this case to

develop Matlab code. The number of algebraic operations

(i.e., additions/subtractions and divisions/multiplications)

necessary for solving the dynamic problem was obtained

through the cost function of the codegen package. With-

out any loss of generality, the number of operations for ma-

trix inversion (i.e., when obtaining Jp) were computed by

considering the number of operations conventional LU de-

composition takes to solve a linear system: about+,−n3/3−

n2/2+ 5n/6 and × n3/3+ n2
− n/3 (Chapra and Canale,

2006). The objective of this paper is to evaluate the complex-

ity and the computational load of these three formulations

which is presented in Table 3.
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{O}

u1i

u
2i

li
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i

bi

p

si

gi
AI
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Jqi q = i,2vBi

3rd row = 0
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wp

vp

xp

q  , xp

Figure 4. Formulation of the Jacobian matrix using Method II.

Table 3. Computational effort for solving the inverse dynamic problem.

Model Eq. (6) Model Eq. (4) Model Eq. (10)

Term ×/÷ +/− Term ×/÷ +/− Term ×/÷ +/−

ha 21 15 ha 21 15 ha 97 67

hp 27 18 hp 27 18 hp 600 380

hp 404 253 hp 404 253

Xp – – Xp 6 12 Xp 150 56

Xa – – Xa 31 27 Xa 0 0

GII 76 17 GI 109 72 GIII 478 308

J−1
q Jx 90 50 J−1

q Jx 70 28

Jr 52 26 Jr 52 26

Jc 196 121 Jc 196 113

Jp 265 226 Jp 245 204

GT h 832 568 GT h 833 574 GT h 1193 773

As Table 3 shows, the models in Eqs. (4) and (6), which

are based on splitting the platform from the legs, hold fewer

number of operation than those of the model considering the

platform attached to one of the legs. This fact is due to the

inversion of a 6× 6 matrix when finding the matrix GIII. On

the other hand, by having the platform attached to one leg,

the projection of the platform generalised forces onto the ac-

tuated joints is cumbersome. The result shows that either us-

ing Eqs. (4) or (6) a reduction of about 30 % in the number of

multiplication and about 25 % in additions is obtained when

comparing to the model given in Eq. 10). These results in-

dicate that considering the platform and legs as subsystem

can improve speed in the calculation of dynamics for appli-

cations such as model-based control, see for example Díaz-

Rodríguez et al. (2013).

5 Conclusions

Three strategies for dynamic modelling of parallel manip-

ulators were revisited and applied for developing the in-

verse dynamic model of a general 3-PRS parallel manipu-

lator. The first method exploited parallel manipulators par-

ticularities such that the platform and the links are consid-

ered as subsystems, namely: the legs and the platform, thus,

joint coordinates were used for modelling the legs dynam-

ics and task space coordinates for the platform. The core

concept of the second method is based on solving the dy-

namic model through this approach reduces to how the Ja-

cobian matrix relating the task and the joint space coordi-

nates is computed and it was explained in this paper. A third

method was presented which is similar to the second method

but uses a different formulation of the Jacobian matrix. In

the third approach the dynamic model was obtained by de-

scribing the manipulator as three open kinematic chains. The
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vector-loop closure constraints introduced the relationship

between the dynamics of the open kinematic chains and the

original closed chains. A Computer Algebraic Software al-

lowed to find each term of the dynamic in symbolic form and

to compute the computational burden of each model.

The results showed that the approaches based on splitting

the manipulator in two sub-systems (platform and legs) re-

quire about 30 % in the number of multiplication and about

25 % in additions are obtained when comparing to the model

given by Eq. (10). These results indicate that in problems

when the model is needed to be computed on-line at high

rates of speed, method 1 and 2 can be useful. This work

has provided numerical guidelines for implementing com-

putationally efficient models for use in numerically inten-

sive optimal mechanical synthesis problems or in resource-

constraint embedded computers, particularly for control and

model identification. The software support presented for

solving the inverse dynamic problem efficiently also provides

some insight on some of the advantages and/or disadvantages

on these revisited methods.

Acknowledgements. The authors acknowledge the financial

support from the Natural Science and Engineering Research council

of Canada (NSERC), the New Brunswick Innovation Foundation

(NBIF), Fondo Nacional de Ciencia, Tecnología e Innovación

(FONACIT-Venezuela), CONACYT scholarship 326912/381134

and also the SNI-México.

Disclaimer. Conflict of interests – the authors declare that the

research was conducted in the absence of any commercial, finan-

cial, or personal relationships that could be construed as a potential

conflict of interests.

Edited by: D. Pisla

Reviewed by: two anonymous referees

References

Angeles, J.: Fundamentals of Robotic Mechanical Systems, Chap-

ter 4, 2nd Edn., Springer, 2002.

Carbonari, L., Battistelli, M., Callegari, M., and Palpacelli, M.-C.:

Dynamic modelling of a 3-CPU parallel robot via screw theory,

Mech. Sci., 4, 185–197, doi:10.5194/ms-4-185-2013, 2013.

Carretero, J. A., Nahon, M. A., and Podhorodeski, R. P.: Workspace

analysis and optimization of a novel 3-DOF parallel manipulator,

Int. J. Robot. Autom., 14, 178–188, 2000a.

Carretero, J. A., Podhodeski, R. P., Nahon, M. A., and Gosselin,

C. M.: Kinematic analysis and optimization of a new three

degree-of-freedom spatial parallel manipulator, J. Mech. Design,

122, 17–24, 2000b.

Chapra, S. C. and Canale, R.: Numerical Methods for Engineers,

5th Edn., McGraw-Hill, Inc., New York, NY, USA, 2006.

Craig, J. J.: Introduction to Robotics: Mechanics and Control, 3rd

Edn., Pearson Education, Upper Saddle River, NJ, USA, 2005.

Díaz-Rodríguez, M., Valera, A., Mata, V., and Valles, M.: Model-

Based Control of a 3-DOF Parallel Robot Based on Identified

Relevant Parameters, IEEE-ASME T. Mech., 18, 1737–1744,

2013.

Fan, K. C., Wang, H., and Chang, T. H.: Sensitivity analysis of the

3-PRS parallel kinematic spindle platform of a serial-parallel ma-

chine tool, Int. J. Mach. Tool. Manu., 43, 1561–1569, 2003.

Goodwin, G. C., Middleton, R. H., and Poor, H. V.: High-speed

digital signal processing and control, Proceedings of the IEEE,

80, 240–259, 1992.

Ibrahim, O. and Khalil, W.: Kinematic and Dynamic Modeling

of the 3-PRS Parallel Manipulator, in: Proceedings of the 12th

IFToMM World congress, France, 18–21 June 20017, 1–6, 2007.

Khalil, W. and Ibrahim, O.: General Solution for the Dynamic Mod-

eling of Parallel Robots, J. Intell. Robot. Syst., 49, 19–37, 2007.

Li, Y. M. and Xu, Q. S.: Kinematics and inverse dynamics analysis

for a general 3-PRS spatial parallel manipulator, Robotica, 22,

219–229, 2004.

Li, Y. M. and Xu, Q. S.: Kinematic analysis of a 3-PRS parallel

manipulator, Robot. CIM. Int. Manuf., 23, 395–408, 2007.

Liu, X. J. and Bonev, I. A.: Orientation Capability, Error Analysis,

and Dimensional Optimization of Two Articulated Tool Heads

With Parallel Kinematics, J. Manuf. Sci. Eng., 130, 1–9, 2008.

Mata, V., Provenzano, S., Valero, F., and Cuadrado, J. I.: Serial-

robot dynamics algorithms for moderately large numbers of

joints, Mech. Mach. Theory, 37, 739–755, 2002.

Mata, V., Farhat, N., Díaz-Rodríguez, M., Valera, A., and Page, A.:

Dynamic parameters identification for parallel manipulator, Tech

Education and Publishing, Vienna, Austria, 21–44, 2008.

Merlet, J. P.: Micro parallel robot MIPS for medical applications,

in: Proceedings of the 8th international conference on emerging

technologies and factory automation (ETFA 2001), France, 15–

18 October 2001, 611–619, 2001.

Murray, J. and Lovell, G.: Dynamic modeling of closed-chain

robotic manipulators and implications for trajectory control,

IEEE T. Robotic. Autom., 5, 522–528, 1989.

Parsa, S. S., Carretero, J. A., and Boudreau, R.: Internal redun-

dancy: an approach to improve the dynamic parameters around

sharp corners, Mech. Sci., 4, 233–242, doi:10.5194/ms-4-233-

2013, 2013.

Staicu, S.: Matrix modeling of inverse dynamics of spatial and pla-

nar parallel robots, Multibody Syst. Dyn., 27, 239–265, 2012.

Tsai, M. S. and Yuan, W. H.: Inverse dynamics analysis for a 3-

PRS parallel mechanism based on a special decomposition of the

reaction forces, Mech. Mach. Theory, 45, 1491–1508, 2010.

Tsai, M. S., Shiau, T. N., Tsai, Y. J., and Chang, T. H.: Direct kine-

matic analysis of a 3-PRS parallel manipulator, Mech. Mach.

Theory, 38, 71–83, 2002.

Williamson, D.: Digital Control and Implementation: Finite

Wordlength considerations, Prentice Hall, 1991.

Yiu, Y., Cheng, H., Xiong, Z. H., Liu, G., and Li, Z.: On the dynam-

ics of parallel manipulators, in: Robotics and Automation, 2001,

Proceedings 2001 ICRA, IEEE International Conference on, 4,

3766–3771, 2001.

Yuan, W. H. and Tsai, M. S.: A novel approach for forward dy-

namic analysis of 3-PRS parallel manipulator with consideration

of friction effect, Robot. CIM. Int. Manuf., 30, 215–325, 2014.

www.mech-sci.net/7/9/2016/ Mech. Sci., 7, 9–17, 2016

http://dx.doi.org/10.5194/ms-4-185-2013
http://dx.doi.org/10.5194/ms-4-233-2013
http://dx.doi.org/10.5194/ms-4-233-2013

	Abstract
	Introduction
	Development of the dynamic models
	Dynamics considering the legs and platform as subsystems
	Method I
	Method II

	Dynamics considering the manipulator as open kinematic chains

	Inverse dynamics of the 3-PRS PM
	Jacobian matrix for Model I
	Jacobian matrix for Model II
	Jacobian matrix for Model III

	Results and discussion
	Conclusions
	Acknowledgements
	References

