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Abstract. Metamorphic mechanisms are members of the class of mechanisms that are able to change their con-

figurations sequentially to meet different requirements. The paper introduces a comprehensive symbolic matrix

representation for characterizing the topology of one of these mechanisms in a single configuration using gen-

eral information concerning links and joints. Furthermore, a matrix representation of an original metamorphic

mechanism that has the ability to evolve is proposed by uniting the matrices representing all of the mechanism’s

possible configurations. The representation of metamorphic kinematic joints is developed in accordance with

the variation laws of these mechanisms. By introducing the joint variation matrices derived from generalized

operations on the related symbolic adjacency matrices, evolutionary relationships between mechanisms in ad-

jacent configurations and the original metmaorphic mechanism are made distinctly. Examples are provided to

demonstrate the validation of the method.

1 Introduction

In contrast to a traditional mechanism, a metamorphic mech-

anism is a mechanism with variable topological structures

and it is a good approach for resolving the contradiction

between economy, adaptation and efficiency. The concept

of metamorphic mechanisms was first introduced based on

the idea of reconfiguration in 1996 by Jian S. Dai and

Rees Jones, which led to a new era of modern mechanism

development (Dai and Rees Jones, 1998).

Research on the metamorphic mechanism has been mak-

ing significant improvements in fundamentals and applica-

tions for nearly twenty years. The essence and character-

istics of metamorphic mechanisms as well as three meta-

morphic approaches including variable components, adja-

cent relations and kinematic joints were introduced by Dai et

al. (2005a) and Liu and Yang (2004). In addition, some of the

basic constituent elements of these mechanisms, including

links and their connectivity relationships, remain unchanged

to give the mechanism’s adjacent configuration complex cou-

pling features. These two aspects are key factors affecting the

study of methods for configuring metamorphic mechanisms

(Zhang et al., 2011). Therefore, to create topological varia-

tions in the characteristics of mechanisms in different config-

urations, the appropriate structural representation for a meta-

morphic mechanism has been researched in recent years.

Mechanism diagrams, topological graphs and conven-

tional adjacency matrices (Tsai, 2001) are simple and intu-

itive tools for describing the structure of a mechanism in a

single configuration. Dai et al. (2005b) and Dai and Rees

Jones (2005) were the first to propose an elementary transfor-

mation matrix that represented the variation of a mechanism

using the adjacency matrix method. Wang and Dai (2007) in-

troduced joint symbols into the adjacency matrix to express

the variations of kinematic joints. In the matrix, all of the

links were numbered sequentially and placed in principal di-

agonal positions; the off-diagonal elements were expressed

using joint symbols that represented the connectivity rela-

tionship. Lan and Du (2008) used −1 as an element indi-

cating a joint frozen into a new adjacency matrix to repre-

sent the topological changes of metamorphic mechanisms.

Slaboch and Voglewede (2011) and Korves et al. (2012) pro-

posed mechanism state matrices as a novel way to repre-

sent the topological characteristics of planar and spatial re-
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configurable mechanisms. These matrices can be used as an

analysis tool to automatically determine the degrees of free-

dom of planar mechanisms that only contain one degree of

freedom (DOF) joint. Herve (2006) showed how to create

translational parallel manipulators using Lie-group algebra,

which can give reference to the related research. Yan and

Kang (2009) showed how to perform configuration synthesis

of mechanisms with variable topologies using graph theory.

However, the axial orientation of a joint and information

on link variations were not epitomized in the aforementioned

research. Therefore, Yang (2004) introduced the concept of

a geometric constraint for expressing the relative positions

and orientations of the joint axes and generalized it into six

types: parallelism, coincidence, intersection, perpendicular-

ity, coplanarity and randomness. Li et al. (2010) suggested

using a constraint graph from computational geometry rather

than the traditional topological graph to characterize a meta-

morphic linkage to simplify the representation of its config-

uration changes. The adjacency submatrix of the constraint

graph provides a convenient description of changes in the

topology of links and joints in the operation of the metamor-

phic linkage. Li et al. (2009) and Li and Dai (2010a, b) devel-

oped a topological representation matrix with information on

loops, types of links and joints that included orientation in-

formation, which has been used in subsequent research. They

also introduced a joint-orientation interchanging metamor-

phic method based on the matrix.

This paper presents a novel method of characterizing the

topology of metamorphic mechanisms in all configurations

that involves information about links and joints, including

their types and axial orientations. Furthermore, a method of

constructing an original matrix that represents the original

metamorphic mechanism is proposed. Next, the paper pro-

poses two matrix operations that are useful for representing

topological changes and evolving features.

2 Configuration characteristics of metamorphic

mechanisms

A metamorphic mechanism is a mechanism with variable

topological structures that can be transformed from one

structure to another continuously. There are variable parts

and coupling parts, giving the metamorphic mechanism a

variable topological structure and coupling relationship. In

particular, variability is the distinguishing feature that sepa-

rates metamorphic mechanisms from common mechanisms;

this is an important area of research. The incorporation of

links, the changing relationships of adjacent links and the

changing properties of kinematic pairs have been explored

to summarize the variable features of metamorphic mecha-

nisms. In essence, a metamorphic kinematic joint is the es-

sential prerequisite for changing the number of and connec-

tive relationships among its active links, leading to a transfor-

mation of the configuration of the entire mechanism (Zhang

et al., 2011).

An example of a planar five-bar metamorphic linkage

which has five configurations is shown in Fig. 1. Transforma-

tions between them are performed by locking different kine-

matic joints sequentially. When the mechanism is in configu-

ration 1, as shown in Fig. 1a, slider c is locked at the top end

of the slot in link d . In this configuration, the mechanism can

be treated as a four-bar mechanism. When the mechanism is

in configuration 2, as shown in Fig. 1b, links a and b are fixed

together by locking the revolute joint B as well as slider c and

link d are unlocked. Therefore the mechanism is transformed

into a guide bar mechanism. When revolute joint C is locked,

links b and c are fixed to transform mechanism into another

guide bar mechanism, as shown in Fig. 1c. When the mecha-

nism is in configuration 4, links a and e are fixed together by

locking revolute joint A, as shown in Fig. 1d. Link b becomes

the driving link of the mechanism. When link d arrives at the

location shown in Fig. 1e, joint D is locked to fix links d

and e. This transforms mechanism into a crank slider mecha-

nism. Therefore, the mechanism realizes transformations be-

tween different configurations by locking its kinematic joints

in particular sequences.

From Fig. 1, we conclude that the structure of the mech-

anism can be transformed from one to another by locking

different kinematic joints accordingly. By applying modes

such as the geometric limit, force limit, and variation of

the driving kinematic joint, the working conditions of these

kinematic joints can be switched between active and locked

states. In addition, metamorphic kinematic joints are able to

change their types and motion orientations to realize config-

uration transformations (Yan and Kuo, 2006). In a metamor-

phic mechanism, there is at least one metamorphic kinematic

joint, which can change the number and connectivity rela-

tionships of active links. There are some basic constituent el-

ements, including links and their connectivity relationships,

which remain unchanged to create complex coupling fea-

tures among the links in adjacent configurations, as shown

in Fig. 1.

Therefore, to understand the configuration characteristics

of metamorphic mechanisms, it is necessary to present a con-

figuration representation that can express not only the charac-

teristics of the mechanism in all of its configurations but also

the variations during the transformation process intuitively

with the help of specific operations.

3 Representing the configurations of metamorphic

mechanisms

It is known that an adjacency matrix can be used to represent

the topological structures of metamorphic mechanisms. This

matrix and an EU-elementary matrix operation were intro-

duced for expressing a configuration transformation (Dai et

al., 2005b; Dai and Rees Jones, 2005). Furthermore, a sym-
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Fig. 1 A five-bar planar metamorphic linkage 

Figure 1. A five-bar planar metamorphic linkage.

bolic adjacency matrix was constructed by introducing infor-

mation on link variations and joint orientations (Li and Dai,

2010a; Zhang and Ding, 2012). The variations and coupling

features of the metamorphic mechanism in adjacent configu-

rations can be determined by applying the generalized differ-

ence and intersection operations to the corresponding sym-

bolic matrices.

However, the matrices representing mechanisms in differ-

ent configurations do not have the same dimension and need

to be normalized, increasing the complexity of the represen-

tation and operations. Simultaneously, the upper off-diagonal

elements in the matrix are the same as the lower off-diagonal

elements, which means that the matrix contains information

in duplicate. Therefore, to decrease the complexity of ex-

pressing the matrix and subsequent operations on it, we im-

prove the symbolic matrix for the mechanism in configura-

tion m and express it as follows:

A(m)
=



L1 J
(m)
1,2 · · · J

(m)
1,i · · · J

(m)
1,k−1 J

(m)
1,k

a
(m)
2,1 L2 · · · J

(m)
2,i · · · J

(m)
2,k−1 J

(m)
2,k

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

a
(m)
i,1 · · · · · · Li · · · · · · J

(m)
i,k

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

a
(m)
k−1,1 a

(m)
k−1,2 · · · a

(m)
k−1,i · · · Lk−1 J

(m)
k−1,k

a
(m)
k,1 a

(m)
k,2 · · · a

(m)
k,i · · · a

(m)
k,k−1 Lk



, (1)

where the principal diagonal element Li represents the link

whose sequence number in the mechanism is i. The numbers

of rows and columns are both k, which indicates the num-

ber of links in all configurations. Normally, k is greater than

or equal to the maximum number of effective links in every

configuration. The upper off-diagonal element J
(m)
i,j denotes

the connectivity relationship between links Li and Lj . It can

be represented by a symbol with subscript where the symbol

denotes the joint type and the subscript expresses the geo-

metric constraint relationship of the joint axes located at the

ends of the link. It is noted that the rule is also applicable for

analyzing tertiary links for the essence of the proposed ma-

trix is to record the connectivity relationship between links.

A special element −1 is employed here to represent a frozen

joint between two links (Lan and Du, 2008) and the ele-

ment 0 represents the two links that are not connected. Spe-

cific expressions for the geometric constraints, including par-

allelism, intersection, coincidence, perpendicularity and ran-

domicity, are given in Li et al. (2009). The lower off-diagonal

element a
(m)
j,i is the sequence number of the configuration

if the state of the corresponding upper off-diagonal element

J
(m)
i,j is changed in configuration m. It should be noted that,

for the first configuration matrix A(1), if there is a joint con-

straint between links i and j , the value of a
(1)
j,i is 1. If there

is no such constraint, its value is 0. For a matrix A(m), when

only the joint constraint between links i and j is changed in
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configuration m, the value of a
(m)
j,i is m. This value is also as-

signed to the other lower off-diagonal elements to be consis-

tent with the corresponding elements in the previous matrix,

A(m−1). Therefore, dimensional consistency of the matrices

for the mechanisms in different configurations is one of the

advantages of the proposed symbolic matrix representation.

In addition, the symbolic matrix can describe the connectiv-

ity relationship of all links synthetically as well as their cor-

responding variations and provides sufficient information for

the subsequent matrix operations.

By applying Eq. (1), we express the five-bar metamorphic

linkage, which has the five configurations shown in Fig. 1, as

A(1)
=


e R 0 0 R‖R
1 a R‖R 0 0

0 1 b R‖R 0

0 0 1 c −1

1 0 0 1 d

 ,

A(2)
=


e R 0 0 R‖R
1 a −1 0 0

0 2 b R‖R 0

0 0 1 c P⊥R

1 0 0 2 d

 ,

A(3)
=


e R 0 0 R‖R
1 a R‖R 0 0

0 3 b −1 0

0 0 3 c P⊥R

1 0 0 2 d

 ,

A(4)
=


e −1 0 0 R‖R
4 a R 0 0

0 3 b R‖R 0

0 0 4 c P⊥R

1 0 0 2 d

 ,

A(5)
=


e R 0 0 −1

5 a R‖R 0 0

0 3 b R‖R 0

0 0 4 c P⊥R

5 0 0 2 d

 , (2)

following the configuration transformation sequence. The

numbers of rows and columns in all of these matrices are 5, a

result that depends on the number of links a, b, c, d, and e oc-

curring in these five configurations. The upper and lower off-

diagonal elements record information on the joint constraints

and their variations. For example, comparing A(4) and A(5),

the elements J
(4)
1,2, J

(5)
1,2 and J

(4)
1,5, J

(5)
1,5 differ because they show

that joint A and joint D have changed from−1 to R and R‖R
to −1, respectively. Meanwhile, the corresponding elements

a
(5)
2,1 and a

(5)
5,1 have changed from 4 to 5 and 1 to 5 to record

the sequence number of the configuration in which joints A

and D are in these positions in a working cycle.

4 Matrix operations for metamorphic mechanisms

The proposed symbolic matrix describes the topology of the

mechanism in a single configuration. However, exploring the

variation laws of these mechanisms in different configura-

tions is very important for developing novel metamorphic

mechanisms. Therefore, it is feasible to take advantage of

matrix operations for constructing the original metamorphic

mechanism and determining the features of its topological

variations.

4.1 Constructing the original metamorphic mechanism

The original metamorphic mechanism is able to evolve into

any configuration of the mechanism and contains all of the

topological elements found in all of configurations in a work-

ing cycle. A method for constructing original metamorphic

mechanisms from biological modeling and genetic evolu-

tion was introduced in Wang and Dai (2007) and Zhang et

al. (2008). In this paper, based on Eq. (3), an original matrix

A(0) for representing the original metamorphic mechanism is

given by
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= A(1)
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=
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

, (3)

where the operator ∪ represents the union of its arguments.

The result, A(0), has the same form as Eq. (1). All of the ele-

ments located in the same position in the set of related matri-

ces from A(1) to A(n) gradually become united, as shown in

Eq. (3). Details of the operative principles are as follows:

1. The principal diagonal elements of A(0) are the same as

those of A(i) (i= 1, . . . , n), indicating the links remain

unchanged.

2. The operation that unites the lower off-diagonal ele-

ments and records the sequence numbers of the configu-

ration is performed by uniting the elements in these ma-

trices as a set of results in A(0), which can be expressed

as

A(0)(j, i)=
{
a

(1)
j,i , . . ., a

(m)
j,i , . . ., a

(n)
j,i

}
(i < j ≤ k), (4)

where the number 0 is ignored. If the values of the ad-

jacent elements are same in this set, only one of them

should be kept. The information given by this set is very

helpful for constructing the matrices for a single config-

uration of the mechanism.
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3. The physical meaning of uniting the upper off-diagonal

elements of these matrices is to achieve the most vari-

ability in the kinematic joints. The operation starts from

the upper off-diagonal elements in the first matrix, A(1);

then, the joint type and orientation are expanded based

on the elements of the next adjacency configuration ma-

trix in the sequence. We express the operation as

A(0)(i,j )=

k−1∏
m=1

A(m)(i,j )∪A(m+1)(i,j )

=

k−1∏
m=1

J
(m)
i,j ∪ J

(m+1)
i,j (i < j ≤ k). (5)

Basically, the uniting operator is equivalent to an extension

of the type and axial orientation of a kinematic joint. If the

adjacent elements are same, it represents the corresponding

connectivity relationship between the related links keeps un-

changed. So these same numbers in the operation result need

to be omitted just keeping one.

For example, according to Eqs. (2)–(5), elements

A(0)(4, 3) and A(0)(3, 4) of matrix A(0) can be calculated as

follows:

A(0)(4,3)= {1,1,3,4,4} = {1,3,4} (6)

A(0)(3,4)=

4∏
m=1

J
(m)
3,4 ∪ J

(m+1)
3,4

= R‖R ∪R‖R ∪−1∪R‖R ∪R‖R

= R‖R ∪−1∪R‖R. (7)

Therefore, the joint between links b and c changes twice dur-

ing the configuration transformations from 1 to 3 and from 3

to 4 while its axial orientation remains unchanged during the

working cycle.

The construction procedure of the metamorphic kinematic

joints can be illustrated in Fig. 2. Firstly, the joints should

be listed according to the sequence indicated in the corre-

sponding operation result. Further, geometric limit is used to

realize the transformations between these adjacent joints in

sequence. Geometric limit is a most common way of mak-

ing the type of kinematic joints to be changed by releasing

or adding appropriate constraints at suitable geometric loca-

tions. Such as in Fig. 2a, the kinematic joint between links a

and b is a revolute joint whose axis is parallel to the adja-

cent revolute joint, R1. In the next configuration, the revolute

joint is locked. Therefore, two limiting stoppers are laid on

the two links a and b, respectively. When the two stoppers

are contacted, the two links are fixed together and the num-

ber of DOF of the revolute joint is changed to zero in Fig. 2a.

Figure 2b shows that the joint is performing translating mo-

tions with arrows denoting the direction of pin’s motion and

indicating the number of DOFs the joint possesses. When the

pin reaches the position shown in the second figure, it stops

translating but remains rotating as shown. This is identified

as a typical metamorphic kinematic joint that varies from a

prismatic joint to a rotating pair. Similarly, Fig. 2c demon-

strates a series of varying orientations of a revolute pair un-

dergoing the orientations about different axes, successively.

According to the construction process described above, the

matrix of the original metamorphic mechanism for the five-

bar metamorphic linkage shown in Fig. 1 is

A0 =


e R ∪−1∪R 0 0 R‖R ∪−1
{1,5} a R‖R ∪−1∪R‖R 0 0

0 {1,2,3} b R‖R ∪−1∪R‖R 0
0 0 {1,3,4} c −1∪P⊥R

{1,5} 0 0 {1,2} d

 . (8)

Therefore, the original metamorphic mechanism can be gen-

erated by applying the uniting operator to all of the mecha-

nism’s configurations and using link and joint information.

In particular, the matrix which includes the information of

all links and their connectivity relationships can make us

identify all possible combinations between links for creat-

ing different mechanisms. So the mechanism is helpful to

develop novel metamorphic mechanisms using the represen-

tation method.

4.2 The joint variation matrix

The essential method for realizing configuration transforma-

tion of metamorphic mechanisms is to change the charac-

teristics of kinematic joints, which lead to variations in the

topology of the entire mechanism. Therefore, to determine

the joint variation rule for two adjacent configurations of a

mechanism, a generalized difference operation for two adja-

cency matrices is proposed.

Let A
(m+1,m)
var be the joint variation matrix, which can be

described as the result of applying the generalized difference

operator to the topological representation matrices A(m+1)

and A(m), that is

A(m+1,m)
var = A(m+1)

−A(m), (9)

where – represents the generalized difference operator (Lan

and Du, 2008; Li et al., 2010). The resulting matrix contains

information about the joint variation when the mechanism is

transformed from configuration m to configuration m+ 1. If

the mechanism is transformed from configuration m+ 1 to

configuration m, the joint variation matrix A
(m,m+1)
var can be

expressed as

A(m,m+1)
var = A(m)

−A(m+1). (10)

The purpose of this operation is to record variations in the

upper and lower off-diagonal elements. And the joint vari-

ation matrix achieved is the key procedure for constructing

the matrix represents the original metamorphic mechanism

which will be discussed in Sect. 4.3. If the two elements lo-

cated at the same position in matrices A(m) and A(m+1) are

www.mech-sci.net/7/39/2016/ Mech. Sci., 7, 39–47, 2016



44 W. Zhang et al.: A representation of the configurations and evolution of metamorphic mechanisms
 

y
x

1R

z

PRR
1

b
a

         

y
x

z

1R

a

b
-1  

(a) RPR 1
U -1 

x

y
z a

b
PRP

1

1R       

y

x
z a

b

1R

PRR
1

 

(b) P PUR RP R
1 1

 

1R

PRR
1

xy z

a

b

       

xy z

1R
⊥RR

1

a
b

 

 (c) ⊥P UR RR R
1 1

Figure 2. The result of uniting different kinematic joints.

equal, the corresponding element in matrix A
(m+1,m)
var is as-

signed the number 0. Conversely, the elements in the minu-

end matrix are reserved directly, and the principal diagonal

elements remain unchanged for recognition purposes. The

same rule is used for the lower off-diagonal elements. If an

upper off-diagonal element is unchanged, the corresponding

lower off-diagonal element needs to be assigned the value 0

regardless of its actual value. The joint variation matrix can

be constructed directly from the physical meaning of the joint

variation rule. In addition, analysing the existing joints with

the characteristic of metamorphosis is one of the most impor-

tant approaches for achieving the principle of constructing

the corresponding joint variation matrix.

Therefore, joint variation matrices for configurations 1 to 5

are given as follows:

A(2,1)
var =


e 0 0 0 0

0 a −1 0 0

0 2 b 0 0

0 0 0 c P⊥R

0 0 0 2 d

 ,

A(3,2)
var =


e 0 0 0 0

0 a R‖R 0 0

0 3 b −1 0

0 0 3 c 0

0 0 0 0 d

 ,

A(4,3)
var =


e −1 0 0 0

4 a 0 0 0

0 0 b R‖R 0

0 0 4 c 0

0 0 0 0 d

 ,
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A(5,4)
var =


e R 0 0 −1

5 a 0 0 0

0 0 b 0 0

0 0 0 c 0

5 0 0 0 d

 . (11)

4.3 The relationship between the original metamorphic

mechanism and the mechanism in any configuration

Because an original metamorphic mechanism provides a

foundation for a mechanism to transform itself into any con-

figuration and expresses the joint variation characteristics

from the symbolic adjacency matrices and the correspond-

ing operations, the relationships between these matrices is as

shown in Fig. 3.

1. The relationship between adjacent configurations: the

two adjacent matrices shown in Fig. 3 can be trans-

formed into each other using a joint variation matrix.

From Eq. (9), the matrix A(m+1) can be expressed as

A(m+1)
= A(m)

+A(m+1,m)
var , (12)

where + represents the generalized addition operator,

which changes the elements in matrix A(m) according to

the corresponding elements in the joint variation matrix

of A
(m+1,m)
var . Comparing the corresponding elements in

the two matrices, the lower off-diagonal elements in

A
(m+1,m)
var containing the value m are selected, with the

corresponding symmetrical upper triangular elements,

to replace the corresponding elements in matrix A(m)

while leaving the other elements unchanged. Similarly,

matrix A(m) can be expressed as

A(m)
= A(m+1)

+A(m,m+1)
var . (13)

For example, the relationship between matrices A(1) and

A(2) is

A(2)
= A(1)

+A(2,1)
var (14)

A(1)
= A(2)

+A(1,2)
var . (15)

2. The relationships of the original metamorphic mecha-

nism and the mechanism in a single configuration: the

original metamorphic mechanism is able to evolve into

any configuration. Therefore, the information on the

mechanism in configuration m can be extracted from the

matrix A(0) to construct the corresponding matrix A(m).

The process of evolution from A(0) to A(m) follows from

Eq. (3).

First, the principal diagonal elements denoting the links in

A(0) are placed in their corresponding positions in A(m) di-

rectly. Then, the lower off-diagonal elements containing the

value 1 and their corresponding upper off-diagonal elements,

which represent constraints on the joints of links in matrix

 

(1)A (2)A

( 1)n−A( )nA

(0)A

(1,2)
var+A

(2,1)
var+A

( , 1)n n
var

−+A

( 1, )n n
var

−+A

 
Fig. 3 The relationship between the original metamorphic mechanism and the mechanism in 

any configuration 

 

 

Figure 3. The relationship between the original metamorphic

mechanism and the mechanism in any configuration.

A(0), are similarly mapped to positions in A(m) as long as the

value of the corresponding element is not m. The next impor-

tant step is to select a number m from the elements compris-

ing sets of numbers and then, to identify its sequence number

in the set {a
(1)
j,i , . . . , a

(m)
j,i , . . . , a

(n)
j,i }. The sequence number can

be used to determine the corresponding joint constraint con-

veniently using the element
n−1∏
m=1

J
(m)
i,j ∪ J

(m+1)
i,j . These ele-

ments are then placed into A(m), the other elements of which

are assigned a value of 0.

For example, the elements marked by black triangles H in

Eq. (16) are extracted to construct the matrix A(2) , which

represents the topology of the mechanism in configuration 2

according to the above procedure.

A0 =



e
H

R
H
∪−1∪R 0 0 R‖R

H
∪−1

{1
H
,5} a

H
R‖R ∪−1

H
∪R‖R 0 0

0 {1,2
H
,3} b

H
R‖R
H
∪−1∪R‖R 0

0 0 {1
H
,3,4} c

H
−1∪P⊥R

H
{1
H
,5} 0 0 {1,2

H
} d

H


(16)

The diagram in Fig. 3 shows that the evolutionary relation-

ships between the original metamorphic mechanism and all

of its configurations can be determined by applying matrix

operations to the appropriate matrices.

5 Case study

A spatial four-bar metamorphic mechanism that has two con-

figurations is shown in Fig. 4. When the mechanism is in

configuration 1, as shown in Fig. 4a, it can be treated as an
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A

B C

D
a

b
c

d

  

(a) The mechanism in configuration 1  

A

B
C

D
a

b
c

d

  
(b) The mechanism in configuration 2 

Figure 4. A four-bar spatial metamorphic mechanism.

RSSR mechanism. The axis of joint D between links c and d

is perpendicular to the axis of joint A between links a and d.

When revolute joint D is transformed into a prismatic joint,

the mechanism becomes an RSSP mechanism, as shown in

Fig. 4b.

The topological structures of the metamorphic mechanism

can be expressed in matrix form as follows:

A(1)
=


d R 0 R⊥R

1 a S 0

0 1 b S

1 0 1 c

 (17)

A(2)
=


d R 0 P‖R
1 a S 0

0 1 b S

2 0 1 c

 . (18)

The origin matrix of the original metamorphic mechanism

and the joint variation matrix can be expressed as

A(2,1)
var = A(2)

−A(1)
=


d 0 0 R⊥R

0 a 0 0

0 0 b 0

2 0 0 c

 (19)

A(0)
= A(1)

∪A(2)
=

 d R 0 R⊥R ∪P‖R
1 a S 0
0 1 b S
{1,2} 0 1 c

 . (20)

The element R⊥R ∪ P‖R in matrix A(0) represents the way

in which both the axial orientation and the type of joint D

have changed. There, the joint can be considered a meta-

morphic kinematic joint and be developed according to the

variation sequence for the kinematic behaviours of the entire

mechanism.

6 Conclusions

The paper proposed a comprehensive symbolic matrix for

characterizing the topology of a metamorphic mechanism

that involved information on the variations of links and the

axial orientations of the kinematic joints. In addition, oper-

ations on the matrices of the adjacent configuration mech-

anisms are defined to construct an origin matrix and joint

variation matrices. In particular, the construction and evolu-

tion of the matrix representation for an original metamorphic

mechanism show how it can be transformed into any config-

uration matrix. The relationship between the original meta-

morphic mechanism and all of its possible configurations and

methods of moving between them were presented. Examples

illustrate the effectiveness of this approach in characterizing

metamorphic mechanisms. The configuration representation

of metamorphic mechanisms provides a foundation for the

analysis and synthesis of novel metamorphic mechanisms.
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