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Abstract. This article addresses the thermoelastic interaction due to inclined load on a homogeneous isotropic
half-space in context of two-temperature generalized theory of thermoelasticity with dual-phase-lags. It is as-
sumed that the inclined load is a linear combination of both normal and tangential loads. The governing equations
are solved by using the normal mode analysis. The variations of the displacement, stress, conductive tempera-
ture, and thermodynamic temperature distributions with the horizontal distance have been shown graphically.
Results of some earlier workers have also been deduced from the present investigation as special cases. Some
comparisons are graphically presented to estimate the effects of the two-temperature parameter, the dual-phase-
lags parameters and the inclination angle. It is noticed that there is a significant difference in the values of the
studied fields for different value of the angle of inclination. The method presented here maybe applicable to a
wide range of problems in thermodynamics and thermoelasticity.

1 Introduction

As it is well known the equation of heat conduction of clas-
sical uncoupled theory of thermoelasticity does not contain
any elastic terms and this leads to that the elastic changes
have no effect on temperature. In addition, the heat equation
is of a parabolic type, predicting infinite speed of propaga-
tion for heat waves. The above two phenomena that predicted
by the classical uncoupled theory of thermoelasticity are not
compatible with physical observations. So, the theory of cou-
pled thermoelasticity has been formulated by Biot (1956) to
eliminate the first paradox inherent in the classical uncoupled
theory. However, the heat equations for both coupled and un-

coupled theories of the diffusion type predict infinite speeds
of propagation for heat waves contrary to physical observa-
tions. Additional two generalized thermoelasticity theories
are presented by Lord and Shulman (1967) and Green and
Lindsay (1972) to eliminate the second paradox inherent in
the classical uncoupled and coupled theories. They two gen-
eralized thermoelasticity theories treat the heat propagation
as a wave phenomenon rather than a diffusion phenomenon
and predict a finite speed of heat propagation.

Green and Naghdi (1993) have presented another gener-
alized theory of thermoelasticity without energy dissipation.
This theory differs from the previous theories in that it does
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not accommodate dissipation of thermal energy and it in-
cludes the isothermal displacement gradients among its in-
dependent constitutive variables. Zenkour (2015) has pre-
sented the exact 3D solutions for the field quantities of ther-
mal shock plate problem. A unified generalized thermoelas-
ticity theory is presented for the transient thermal shock plate
problem in the context of the generalized and coupled ther-
moelasticity theories.

Tzou (1995a, 2014) has proposed a new model which
is known as the dual-phase-lag (DPL) model. The physi-
cal meanings and the applicability of the DPL mode have
been supported by the experimental results of Tzou (1995b).
Chandrasekharaiah (1986) and Tzou (1995b) have proposed
another DPL model to modify the classical thermoelastic
one. They presented an approximation to a modified Fourier
law with two different time translations: a PL of the heat
flux τq and a PL of the temperature gradient τθ (see also, Ig-
naczak and Ostoja-Starzewski, 2010). Zenkour et al. (2013)
have presented the effect of DPL model on reflection of ther-
moelastic waves in a solid half-space with variable material
properties. Zenkour and Abouelregal (2015) have presented
the effects of PLs in a thermoviscoelastic orthotropic contin-
uum with a cylindrical hole and variable thermal conductiv-
ity.

The heat conduction of the two-temperature theory of ther-
moelasticity (2TT) in a deformable media depends upon two
distinct temperatures. The first is the conducting temperature
and the second is the thermodynamic temperature. The 2TT
is considered as one of the non-classical theories of elastic
solids with thermal dependence. For time-independent prob-
lems, the difference between these two temperatures is pro-
portional to the heat supply. If the heat supply is ignored, the
two temperatures are identical. However, for time-dependent
situations and for wave propagation problems in particu-
lar, the two temperatures are in general different, regardless
of the presence of a heat supply. Chen and Gurtin (1968)
and Chen et al. (1969) have presented such a theory in-
volving a non-simple material for which the two tempera-
tures are not identical. The two temperatures and the strain
are found to have representation in the form of a travelling
wave plus a response, which occur instantaneously through-
out the body (see Warren and Chen, 1973). Recently, Zenk-
our and Abouelregal (2014) have presented the state-space
approach for an infinite medium with a spherical cavity based
upon generalized 2TT. Abbas and Zenkour (2014a) have
used the finite element method to investigate a DPL model
on thermoelastic interactions in a semi-infinite medium un-
der a ramp-type heating. Zenkour (2016) has presented a 2-
D coupled solution for thermoelastic beams via generalized
DPLs model. Abbas and Zenkour (2014b) have presented
2TT for generalized thermoelastic interaction in an infinite
fiber-reinforced anisotropic plate containing a circular cavity
with two relaxation times. Abouelregal and Zenkour (2016)
have presented the generalized thermoelastic interactions due
to an inclined load at a two-temperature half-space.

The deformation in thermoelastic half-space due to in-
clined loads is the subject of many investigators. Kumar
and Rani (2005) have studied the deformation due to in-
clined load in thermoelastic half-space with voids. Othman
et al. (2009) have studied 2-D problems in a half-space pos-
sesses cubic symmetry as a result of inclined load. Kumar
and Gupta (2010) have investigated the deformation in an or-
thotropic micropolar thermoelastic solid with two relaxation
times as a result of the inclined load. Sharma (2011) has used
the integral transform technique to study the deformation in
inhomogeneous, isotropic thermodiffusion elastic half-space
as a result of inclined load. Ailawalia and Kumar (2010) have
obtained the analytic formulations for the field quantities on
the free surface of micropolar thermoelastic medium pos-
sessing cubic symmetry with one relaxation time as a result
of time harmonic inclined load.

Our main aim in writing this paper is to present thermoe-
lastic interaction due to inclined load on a clamped boundary
of a half-space in the context of two-temperature generalized
thermoelasticity with DPLs. The analytic expressions for the
displacement, stress, and temperature distributions on the
free surface of thermoelastic solid as a result of inclined load
have been obtained. Some comparisons have been shown in
figures to estimate the effect of the inclination angle and the
two-temperature parameter on all the studied fields.

2 Basic equations

The field equations for a linear, homogeneous and isotropic
thermoelastic material, in the context of generalized ther-
moelasticity with DPLs and two temperatures and in the ab-
sence of the body force, take the following forms:

Equations of motion:

µ∇2u+ (λ+µ)∇ (div u)− γ∇θ = ρü. (1)

The constitutive equations:

σ = λ (divu)I+µ
[
∇u+ (∇u)Tr]

− γ θI. (2)

The strain-displacement relations:

eij =
1
2

(
ui,j + uj,i

)
. (3)

The heat conduction equation:(
1+ τθ

∂

∂t

)
∇

2(Kφ,i),i
=

(
δ+ τq

∂

∂t

)(
ρCE

∂θ

∂t
+ γ T0

∂ekk

∂t
−Q

)
. (4)

The above equation is the same as the DPL model of Tzou
and 2TT. It is to be noted that the direct vector or tensor no-
tation is employed in the above equations. Also, an over dot
denotes the partial derivative with respect to the time t . In
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Eqs. (1)–(4), u is the displacement vector, θ = T − T0 de-
note the thermodynamical temperature, T0 is the reference
temperature, γ = (3λ+ 2µ)αt , αt is the coefficient of vol-
ume expansion, λ and µ are the Lame’ constants, ρ is the
mass density, σ is the stress tensor, I is the identity tensor
and the suffix Tr is the transpose of the given vector. In addi-
tion, eij is the strain tensor, ekk = e is the cubical dilatation,
K is the thermal conductivity, CE is the specific heat at con-
stant strain, Q is the heat supplied per unit volume from the
external work, τθ is the PL of the heat flux, τq is PL of tem-
perature gradient and 0 ≤ τθ < τq , which will ensure that
the heat conduction equation will predict finite speeds of heat
propagation, and φ is the conductive temperature measured
from the temperature φ0, and satisfies the relation

θ = φ− aφ,ii, (5)

where a is the two-temperature parameter (temperature dis-
crepancy) and φ0 = T0, is the reference temperature. The
coupled thermoelasticity theory, generalized thermoelasticity
theory with one relaxation time, and the generalized theory
without energy dissipation follow as limited cases depending
on the value of δ, τq , and τθ .

Putting τθ = 0, δ = 1, and τq = τ0 (the first relaxation
time), gives the fundamental equations possible for Lord and
Shulman’s (LS) theory. Putting τθ = δ = 0 gives Green and
Naghdi’s (GN) model. In the absence of phase-lag of the heat
flux and phase-lag of gradient of temperature, Eq. (2) reduces
to equation for a classical thermoelastic body (CTE).

3 Statement of the problem

A homogeneous thermoelastic half-space with two tempera-
tures occupying the region x ≥ 0 is considered. The z axis is
taken perpendicular to the bounding plane pointing inwards.
It is assumed that the initial state of the medium is quiescent.
The surface of the medium is subjected to an inclined load.
This load is assumed to be a linear combination of normal
and tangential loads. The present study is restricted to the
plane strain parallel to xz plane. The problem is thus two-
dimensional in which the field quantities are functions of the
spatial variables x and z as well as on the time variable t .

The displacement vector u, thus, has the form u=

(u,0,w). For the 2-D problem in the xz-plane, Eq. (1) can
be re-written as

(λ+ 2µ)
∂2u

∂x2 + (λ+µ)
∂2w

∂x∂z
+µ

∂2u

∂z2 − γ
∂θ

∂x
= ρ

∂2u

∂t2
, (6)

(λ+ 2µ)
∂2w

∂z2 + (λ+µ)
∂2u

∂x∂z
+µ

∂2w

∂x2 − γ
∂θ

∂z
= ρ

∂2w

∂t2
, (7)

The generalized equation of heat conduction, Eq. (4), without
heat source, is re-written in the xz-plane as

K

(
1+ τθ

∂

∂t

)(
∂2φ

∂x2 +
∂2φ

∂z2

)

=

(
δ+ τq

∂

∂t

)(
ρCE

∂θ

∂t
+ γ T0

∂e

∂t

)
, (8)

and Eq. (5) becomes

θ −φ =−a

(
∂2φ

∂x2 +
∂2φ

∂z2

)
. (9)

Beside to the above equations we can deal with the following
constitutive relations:

σxx = (λ+ 2µ)
∂u

∂x
+ λ

∂w

∂z
− γ θ, (10)

σyy = λ

(
∂u

∂x
+
∂w

∂z

)
− γ θ, (11)

σzz = (λ+ 2µ)
∂w

∂z
+ λ

∂u

∂x
− γ θ, (12)

σzx = µ

(
∂u

∂z
+
∂w

∂x

)
. (13)

4 Solution of the problem

Let us define the two displacement potentials8 and9 which
are related to the displacements u and w as,

u=
∂8

∂x
−
∂9

∂z
, w =

∂8

∂x
+
∂9

∂z
. (14)

So, the governing equations become

c2
1∇

28−
∂28

∂t2
=
γ

ρ

(
φ− a∇2φ

)
, (15)

c2
2∇

29 −
∂29

∂t2
= 0, (16)

K

(
1+ τθ

∂

∂t

)
∇

2φ =

(
δ+ τq

∂

∂t

)[
ρCE

∂

∂t

(
φ− a∇2φ

)
+ γ T0

∂

∂t

(
∇

28
)]
, (17)

σxx = λ∇
28+ 2µ

∂

∂x

(
∂8

∂x
−
∂9

∂z

)
− γ

(
φ− a∇2φ

)
, (18)

σyy = λ∇
28− γ

(
φ− a∇2φ

)
, (19)

σzz = λ∇
28+ 2µ

∂

∂z

(
∂9

∂x
+
∂8

∂z

)
− γ

(
φ− a∇2φ

)
, (20)

σzx = 2µ
∂28

∂x∂z
+µ

(
∂29

∂x2 −
∂29

∂z2

)
, (21)

where

c2
1 =

λ+ 2µ
ρ

,

c2
2 =

µ

ρ
,

∇
2
=
∂2

∂x2 +
∂2

∂z2 . (22)
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For the purpose of numerical evaluation, the following di-
mensionless variables are introduced:{
x′,z′,u′,w′

}
=
η0

c1
{x,z,u,w} ,

{
t ′,τ ′0,τ

′
θ ,τ
′
q

}
= η0

{
t, τ0,τθ ,τq

}
, η0 =

ρCEc
2
1

K
, (23)

{
8′,9 ′,a′

}
=

(
η0

c1

)2

{8,9,a} ,{
θ ′,φ′

}
=

γ

ρc2
1
{θ,φ} , σ ′ij =

σij

µ
.

Using the dimensionless variables given above in Eqs. (15)–
(17) (after removing the primes), one obtains

∇
28−

∂28

∂t2
= φ− a∇2φ, (24)

∇
29 −β2 ∂

29

∂t2
= 0, (25)[(

1+ τθ
∂

∂t

)
+ η0a

∂

∂t

(
1+ τ0

∂

∂t

)]
∇

2φ

= η0

(
δ+ τq

∂

∂t

)[
∂φ

∂t
+ ε

∂

∂t

(
∇

28
)]
, (26)

where

ε =
γ 2T0

ρCE (λ+ 2µ)
, β2

=
λ+ 2µ
µ

, (27)

Note that ε represents the dimensionless thermoelastic cou-
pling constant while β2 is the ratio of the longitudinal waves
speed to the shear waves speed.

The transverse normal stress as well as the tangential shear
stress given in Eqs. (20) and (21) become

σzz =
(

1− 2β2
)
∇

28+ 2
∂

∂z

(
∂9

∂x
+
∂8

∂z

)
− β2

(
φ− a∇2φ

)
, (28)

σzx = 2
∂28

∂x∂z
+
∂29

∂x2 −
∂29

∂z2 . (29)

5 Normal mode analysis

Cheng and Zhang (2000) have proposed the normal mode
expansion method for modelling the thermoelastic genera-
tion process of elastic waveforms in an isotropic plate. Allam
et al. (2009) have used this method to study the 2-D prob-
lem of electromagneto-thermoelasticity for a homogeneous
isotropic perfectly conducting thick plate subjected to a time-
dependent heat source in the context of Green and Naghdi’s
thermoelasticity theory.

The solution of the field variables can be decomposed in
terms of normal modes and are given in the following form
(Allam et al., 2009):{
u,w,φ,8,9,σij

}
(x,z, t)

=

{
u∗,w∗,φ∗,8∗,9∗,σ ∗ij

}
(x)eωt+iζz, (30)

where ω is the (complex) frequency, i=
√
−1, ζ is the wave

number in the z-direction, and u∗(x), w∗(x), φ∗(x), 8∗(x),
9∗(x), and σ ∗ij (x) are the amplitudes of the field variables.
Using Eq. (30), then Eqs. (24)–(26) take the form(
D2
−α1

)
8∗ =−a

(
D2
−α2

)
φ∗, (31)

qε
(
D2
− ζ 2

)
8∗ =

(
D2
−α3

)
φ∗, (32)(

D2
− k2

3

)
9∗ = 0, (33)

where

α1 = ζ
2
+ω2, α2 = ζ

2
+

1
a
,

α3 = ζ
2
+ q, k2

3 = ζ
2
+ω2β2,

q =
ωη0 (1+ τ0ω)

1+ τθω+ωη0a (1+ τ0ω)
, D =

d
dx
. (34)

Eliminating φ∗(x) or 8∗(x) in Eqs. (31) and (32), one gets
the following fourth-order differential equation for φ∗(x) or
8∗(x):(
D4
−AD2

+B
){
φ∗ (x) ,8∗(x)

}
= 0, (35)

where

A=
α1+α3− qεa

(
ζ 2
+α2

)
1− qεa

, B =
α1α3− qεaζ

2α2

1− qεa
. (36)

Introducing ki(i = 1,2,3) into Eq. (35), one can obtain(
D2
− k2

1

)(
D2
− k2

2

){
φ∗ (x) ,8∗(x)

}
= 0, (37)

where k2
1 and k2

2 are the roots of the characteristic equation

k4
−Ak2

+B = 0. (38)

The roots of the above equation are given by

k2
1 =

1
2

[
2A+

√
A2− 4B

]
,

k2
2 =

1
2

[
2A−

√
A2− 4B

]
. (39)

Keeping in mind that φ∗, 8∗→ 0 as x→∞ for surface
waves, the solution of Eq. (37) has the form

{
φ∗ (x) ,8∗ (x)

}
=

2∑
n=1

{mn (a,ω) ,Mn (a,ω)}e−knx, (40)

wheremn (a,ω) andMn (a,ω) are specific functions depend-
ing on a and ω. Substituting Eq. (40) into Eq. (32), one ob-
tains the following relation:

Mn (a,ω)=Hnmn (a,ω) , n= 1,2, (41)
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where

Hn =
k2
n−α3

qε
(
k2
n− ζ

2
) , n= 1,2. (42)

Thus, one has

{
φ∗ (x) ,8∗ (x)

}
=

2∑
n=1

{1,Hn}mn (a,ω)e−knx . (43)

From the regularity condition, one obtains

9∗ (x)=m3 (a,ω)e−k3x (44)

where m3 (a,ω) is specific function depending on a and ω.
Making use of solutions given in Eqs. (43) and (44), one gets

u∗ =−

2∑
n=1

knHnmn (a,ω)e−knx − iζm3 (a,ω)e−k3x, (45)

w∗ = iζ
2∑
n=1

Hnmn (a,ω)e−knx − k3m3 (a,ω)e−k3x . (46)

Using Eqs. (9) and (30), one obtains

θ∗ =

2∑
n=1

[(
1+ aζ 2

)
− ak2

n

]
mn (a,ω)e−knx . (47)

Substituting Eqs. (43) and (44) into Eqs. (28) and (29) with
the aid of Eq. (30), one gets

σ ∗zz =

2∑
n=1

Lnmn (a,ω)e−knx − 2iζm3 (a,ω)e−k3x, (48)

σ∗zx =−2iζ
2∑
n=1

knHnmn (a,ω)e−knx +
(
ζ 2
+ k2

3

)
m3 (a,ω)e−k3x , (49)

where

Ln =
[
−2ζ 2

+

(
1− 2β2

)(
k2
n− ζ

2
)]
Hn

−β2
[
1− a

(
k2
n− ζ

2
)]
. (50)

6 Applications

Here, the parameters mj (a,ω) (j = 1,2,3) will be deter-
mined exactly. In the physical problem, we should suppress
the positive exponentials that are unbounded at infinity. Sup-
pose that the inclined line load F0 is acting along the inter-
face on the x axis and its inclination with z axis is θ0.

Let us consider the normal line load F1 acting in the posi-
tive x direction on the surface x = 0 along the z axis and the
tangential load F2 is acting at the origin in the positive x di-
rection. So, the boundary conditions on the surface y = 0 are

{σzz,σzx} (0,z, t)=−{F1,F2} (x)eωt+iζz, (51)

where for the inclined line load F0 we have F1 = F0 cosθ0
and F2 = F0 sinθ0.

The surface x = 0 is thermally insulated, i.e., it satisfies
the boundary condition

∂φ (0,z, t)
∂x

= 0. (52)

The substitution of the field quantities into the above bound-
ary conditions, yields

2∑
n=1

Lnmn (a,ω)− 2iζk3m3 (a,ω)=−F1, (53)

−2iζ
2∑
n=1

knLnmn (a,ω)+
(
ζ 2
+ k2

3

)
m3 (a,ω)=−F2, (54)

2∑
n=1

knmn (a,ω)= 0, (55)

or in the matrix form
{

m1
m2
m3

}
(a,ω)=

 L1 L2 −2iζk3
−2iζk1H1 −2iζk2H2 ζ2

+ k2
3

k1 k2 0

−1{
−F1
−F2

0

}
. (56)

After determining the parameters mj (a,ω), we can deduce
the expressions for all field quantities of the medium.

Finally, a number of special cases of different thermoelas-
ticity theory are relevant to document here:

– The generalized one-temperature thermoelasticitythe-
ory (1TT) maybe obtained when a→ 0.

– The coupled thermoelasticity (CTE) theory maybe ob-
tained when τq = τθ = 0 and δ = 1.

– The Lord-Shulman (LS) generalized thermoelasticity
theory maybe obtained when τθ > 0, δ = 1 and τq =
t0 > 0.

– The generalized thermoelasticity without energy dissi-
pation (the linearized GN theory of type II) is obtained
when τθ → 0, δ = 0 and τq = 1.

7 Numerical results

For the sake of completeness we present some numerical ap-
plications to illustrate the analytical procedure presented ear-
lier. The results depict the variations of the two temperatures
(thermodynamic θ and conductive φ), the in-plane displace-
ment u, the transverse deflection w, the transverse normal
stress σzz, and the tangential shear stress σzx .

Copper material is chosen to evaluat the numerical results.
The Cooper material properties of the present problem in SI
units (Allam et al., 2009) are given by

K = 368Wm−1K−1, αt = 1.78× 10−5 K−1,

CE = 383.1Jkg−1K−1,a = 2,

www.mech-sci.net/7/179/2016/ Mech. Sci., 7, 179–187, 2016
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Figure 1. Variation of thermodynamic temperature θ with distance
x for different values of the inclination angle θ0.

Figure 2. Variation of transverse normal stress σzz with distance x
for different values of the inclination angle θ0.

ρ = 8954kgm−3, λ= 7.76× 1010 kgm−1s−2,

µ= 3.86× 1010 kgm−1s−2,

β2
= 4, T0 = 293 K, ε = 0.0168.

The computations are carried out on the surface z= 1 at
t = 0.15. The graphically results for the distribution of the
real part of the dimensionless field quantities are shown in
Figs. 1–7 with F0 = 1, ω = ω0+ iξ , ω0 = 2, ξ = 0.1 and
ζ = 2.1 (Kumar and Rani, 2005). All the field quantities are
evaluated inside the medium on the z axis as functions of x.

Figures 1 and 2 give comparisons of the thermodynamic
temperature θ and the transverse normal stress σzz against
the direction x for different values of angle of inclination θ0
(orientation of source) and the two-temperature parameter re-
mains constant a = 0.2. It is seen that the angle of inclination

Figure 3. Variation of conductive temperature φ with distance x for
different values of the two-temperature parameter a.

θ0 has significant effects on the two studied fields. It plays a
vital role on the development of temperature and stress fields
in which the following points are observed:

– Significant difference in the values of the studied fields
is noticed for different value of the inclination angle
θ0 = 0, 30, 45, 60 and 90.

– As θ0 increases the values of the thermodynamic tem-
perature in the fixed point (x,z) decrease.

– The maximum point of the stress σzz gets large values
when θ0 increases.

Figures 3 and 4 investigate how the conductive temperature
φ and the in-plane displacement u vary with all values of
the two-temperature parameter. Note that the case of a = 0
indicates the old situation (one-temperature 1TT) while the
cases a = 0.2 and a = 0.5 indicate the two-temperature the-
ory (2TT). Also, these figures show that:

– The two-temperature parameter has significant effect on
all the field quantities.

– The waves reach the steady state depending on the value
of the temperature discrepancy.

– It can be observed that a > 0 corresponds a slower rate
of decay for the temperature than the case when a = 0.

– The behaviour of 2TT model may be differing than that
of 1TT model near the boundary plane.

– The model of thermoelasticity with two temperatures
predicts a finite speed of wave propagation that makes
the generalized theory of thermoelasticity more agree-
able with the physical properties of the material.
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Figure 4. Variation of in-plane displacement u with distance x for
different values of the two-temperature parameter a.

Figure 5. Variation of thermodynamic temperature θ with distance
x for different theories of thermoelasticity.

– The values of the conductive temperature decrease
when the two-temperature parameter a increases during
all the running dimensionless time t .

– The maximum point of the displacement u increases
when a increases.

Figures 5–7 plot comparison of the thermodynamic tem-
perature θ , the transverse displacement w, and the tangential
shear stress σzx against the direction x for different values
of PLs τq and τθ at z= 1 and different theories of thermoe-
lasticity. The comparison of these figures shows the effect
of PLs on the field variables. The field quantities includ-
ing temperature, displacement, and stress components de-
pend not only on space x and time t , but also on the PLs τθ

Figure 6. Variation of transverse displacement w with distance x
for different theories of thermoelasticity.

Figure 7. Variation of tangential shear stress σszx with distance x
for different theories of thermoelasticity.

and τq . The computations were performed for one value of
the dimensionless time, namely t = 0.15 and various values
of the parameters τq and τθ . These computations were car-
ried out in the coupled theory (CTE) by setting (τq = τθ = 0,
δ = 1), in Lord-Shulman (LS) theory by putting (τθ = 0,
τq = 0.5,δ = 1) and in the generalized theory of thermoelas-
ticity proposed by Tzou when τq = 0.5≥ τθ = 0.2> 0. It is
observed from these figures that:

– The values of the thermodynamic temperature θ and the
stress component σzx for CTE model are smaller com-
pared to those for other theories whereas it is larger in
the case of w.

– The distribution in LS theory is near to that in DPL the-
ory and different to that in the CTE theory.
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– The values of τq and τθ can judge whether the wavelike
behaviour in the DPL heat conduction is dominant or
not.

– The numerical results show that the PL parameters τq
and τθ may play a more important role in this task.

8 Concluding remarks

In this paper, an analytical solutions based on the normal
mode analysis for the thermoelastic problem in solids have
been developed and utilized. Analysis of in-plane displace-
ment, tangential displacement, transverse normal stress, tan-
gential shear stress, thermodynamic temperature, and con-
ductive temperature due to mechanical load in a semi-infinite
generalized thermoelastic medium is an interesting problem
of mechanics. The generalized two-temperature theory of
thermoelasticity in the context of dual phase lags (DPLs)
model is used to solve this problem. The effect of the an-
gle of inclination and phase-lags τθ and τq as well as the
two-temperature parameter on the field variables are investi-
gated. The results concluded from the above analysis can be
summarized as follows:

– The presence of phase-lags parameters plays a signifi-
cant role in all the physical quantities.

– It is seen that the values of all the field variables are sig-
nificantly dependent on the two-temperature parameter.

– According to the theory of thermoelasticity with two
temperatures, we have to construct a new classification
for materials according to their fractional parameter a
where this parameter becomes a new indicator of its
ability to conduct heat under the effect of thermoelas-
tic properties.

– It is also clear that the theories of coupled thermoelastic-
ity and generalized thermoelasticity with one relaxation
time can be obtained as limited cases.

– From our results, one can consider the theory of
two-temperature generalized thermoelasticity as an im-
provement on studying elastic materials.

– The properties of a body depend largely on the direction
of symmetry and the inclination of applied source.

– Significant difference in the values of the studied fields
is noticed for different value of the angle of inclination.
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