
Mech. Sci., 7, 107–117, 2016

www.mech-sci.net/7/107/2016/

doi:10.5194/ms-7-107-2016

© Author(s) 2016. CC Attribution 3.0 License.

Solving the double-banana rigidity problem:

a loop-based approach

Florian Simroth1, Huafeng Ding2, and Andrés Kecskeméthy1

1University of Duisburg-Essen, Duisburg, Germany
2China University of Geosciences Wuhan, Wuhan, China

Correspondence to: Florian Simroth (florian.simroth@uni-due.de)

Received: 6 October 2015 – Revised: 20 January 2016 – Accepted: 6 March 2016 – Published: 8 April 2016

Abstract. Rigidity detection is an important tool for structural synthesis of mechanisms, as it helps to unveil

possible sources of inconsistency in Grübler’s count of degrees of freedom (DOFs) and thus to generate con-

sistent kinematical models of complex mechanisms. One case that has puzzled researchers over many decades

is the famous “double-banana” problem, which is a representative counter-example of Laman’s rigidity condi-

tion formula for which existing standard DOF counting formulas fail. The reason for this is the body-by-body

and joint-by-joint decomposition of the interconnection structure in classical algorithms, which does not unveil

structural isotropy groups for example when whole substructures rotate about an “implied hinge” according to

Streinu. In this paper, a completely new approach for rigidity detection for cases as the “double-banana” coun-

terexample in which bars are connected by spherical joints is presented. The novelty of the approach consists in

regarding the structure not as a set of joint-connected bodies but as a set of interconnected loops. By tracking

isolated DOFs such as those arising between pairs of spherical joints, rigidity/mobility subspaces can be easily

identified and thus the “double-banana” paradox can be resolved. Although the paper focuses on the solution of

the double-banana mechanism as a special case of paradox bar-and-joint frameworks, the procedure is valid for

general body-and-joint mechanisms, as is shown by the decomposition of spherical joints into a series of revolute

joints and their rigid-link interconnections.

1 Introduction

Rigidity detection has attracted researchers in the field of

robotics and mechanisms since many decades, as it is a

necessary component in the creative automatic synthesis of

mechanisms (Ding et al., 2012), the processing of CAD-

generated models (Lee, 2008; Moinet et al., 2014), the anal-

ysis of flexibility and dynamics of proteins (Jacobs et al.,

2002), and others. The problem is (1) to identify whether a

mechanism contains substructures with negative DOF (so-

called “degenerate chains”), and if so, (2) to detect the parts

forming those (over-) rigid substructures, such that their neg-

ative DOF do not illicitly cancel out positive DOF in other

parts of the structure (Fig. 1).

Based on Laman’s theorem (Laman, 1970), many algo-

rithms were proposed to detect the rigidity for both planar

and simple spatial mechanisms. Tay addressed the detection

of rigidity for rigid bodies connected by bars represented

by multi-graphs using screw-theory based constraints (Tay,

1984). Agrawal and Rao analyzed and determined the mo-

bility of kinematic chains with fractionated DOFs (Agrawal

and Rao, 1987). Based on the SE(3) displacement groups,

Fanghella and Galletti analyzed the mobility properties of

single-loop kinematic chains by regarding the connectivity

between any two links in a chain and the invariant properties

of the displacement group of their relative motion (Fanghella

and Galletti, 1994). Hwang and Hwang presented a loop-

decreasing method for the detection of rigid subchains of

rigid planar kinematic chains (Hwang and Hwang, 1991).

But according to Sunkari and Schmidt, it fails to detect some

of the degenerate chains (Sunkari and Schmidt, 2005). Lee

and Yoon proposed a method that involved deleting binary

chains in turn to simplify the chain for rigid subchain detec-

tion, which is applicable to planar kinematic chains whose

corresponding graph representations are planar or nonpla-
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Figure 1. Simple example for an overconstrained mechanism.

nar (Lee and Yoon, 1992). Sunkari adopted Lee and Yoon’s

method to detect rigid subchains in the structural analysis and

synthesis of planar and spatial mechanisms satisfying Grue-

bler’s DOF equation (Sunkari, 2006). Tuttle obtained basic

rigid chains with 7 or fewer links, and then attempted to use

these chains to identify rigid subchains in systems with more

links (Tuttle, 1996). But with increasing complexity, this

method can hardly be applied to mechanisms with more than

10 links. Moukarzel adopted the description of a system as

a collection of rigid bodies connected by bars to improve ef-

ficiency of rigidity detection (Moukarzel, 1996). In the con-

text of material sciences, Jacobs and Hendrickson developed

a graph-based algorithm for detecting overconstrained re-

gions and rigid clusters of two-dimensional networks (Jacobs

and Hendrickson, 1997). Another method used for structural

analysis is the ear decomposition which originates from the

work of Robbins and Whitney (Robbins, 1939; Whitney,

1932) for which a mechanism is decomposed by sequentially

removing a sequence of “ears”, i.e. serial chains with inter-

nal binary bodies connected at their endpoints to bodies of

at least degree two, from the graph. Franzblau generalized

this approach to chains including cycles and bridges, and by

successively analyzing the subsystems using theorems based

on the rigidity matrix, he was able to determine the mini-

mal and maximal boundaries for the degrees of freedom for

a given bar-and-joint framework (Franzblau, 1999, 2000),

however without providing an explicit DOF count formula.

A further approach is the use of matroids for determining

globally rigid substructures (Servatius and Servatius, 2010).

This method is very powerful for planar systems but has not

been fully extended yet to spatial mechanisms. Moreover,

the methodology is based on bar-frameworks whose general-

ization to kinematical joints is still a pending problem. Lee,

Streinu and Theran as well as Chubynsky and Thorpe used

combinatorial approaches like the pebble game algorithm

to analyze rigidity (Lee et al., 2005, 2008; Chubynsky and

Thorpe, 2007; Streinu and Theran, 2008). Shai, Servatius,

Sljoka, Whiteley, and Müller focused on the decomposition

of mechanisms into Assur components for mobility analysis

(Servatius et al., 2010; Sljoka et al., 2011; Shai et al., 2013;

Shai and Müller, 2013). Michelucci and Foufou proposed the
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Figure 2. The “double-banana” mechanism.

“witness” method in which infinitesimal mobility is analyzed

by evaluating the rank of the Jacobian at a given position

of a given parametrization of the mechanism (Michelucci

and Foufou, 2009). A method based on an independent loop

set was presented by Ding, Huang, and Mu (Ding et al.,

2008). The method was used to detect and then delete kine-

matic chains containing rigid subchains in the structural syn-

thesis of planar simple and multiple-joint kinematic chains,

but is not able to localize the minimal rigid substructures.

More recently, Xia, Ding and Kecskeméthy presented a novel

loop-based method for identifying rigid or over-rigid planar,

spherical, spatial or mixed subsystems based on the kinemat-

ical network (Xia et al., 2012). The advantage of this method

is that the mobility counts can be made separately within

each loop and then assembled together at the level of relative

kinematics (i.e. joint motions), such that mobility of hybrid

systems containing substructures moving relatively to each

other in different subspaces of SE(3) can be determined ap-

propriately (for example when a planar four-bar mechanism

is embedded in a spatial structure). The loop-based approach

was verified in Xia et al. (2012) for planar systems, and is

extended here to 3-D systems, including spherical-spherical

bars. This shows that the loop-based method is suitable also

for revolving paradox 3-D bar-and-joint framework cases.
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(a) Recursively solvable system (b) Non-recursively solvable system
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Figure 3. Mapping of mechanisms to kinematical networks.

2 The “double-banana” case

Although many rigidity detection algorithms have been pro-

vided to date, an automatic finite-mobility rigidity detec-

tion algorithm for systems involving “implied hinges” (see

below) such as the famous “double-banana” case shown in

Fig. 2, to the knowledge of the authors has not been reported

so far. The “double-banana” consists of 18 bars connected

at 8 nodes which can be interpreted as (multiple) spheri-

cal joints. If we give each node 3 DOFs and subtract one

constraint per bar, then the Grübler count gives DOF = 0,

thus suggesting that the structure is rigid. However, one can

clearly “see” in Fig. 2 that the “double-banana” structure

consists of two rigid bipyramids, one at the left and one at the

right, which are coupled together by two spherical joints (A

and B). Thus, the segment AB is an “implied hinge” (Cheng

et al., 2009) about which the two halves can rotate with re-

spect to each other, while the longitudinal direction along

this edge is over-constrained with DOF =−1. This implied

DOF remains also undetected by the famous test equation for

rigidity according to Maxwell’s rule proposed in (Maxwell,

1864), which states that a statically and kinematically deter-

mined framework with b bars and j joints follows the equa-

tion

b = 3j − 6. (1)

It is obvious that a bipyramid (single banana), with 9 bars and

5 joints (correctly) satisfies the condition of the Maxwell’s

rule. However, also the “double-banana” structure obeys the

Maxwell’s rule, although it is obviously not rigid. Thus, this

structure is a classical (non-trivial) example of a mechanism

satisfying Maxwell’s rule of a statically and kinematically

determined framework, but which is nevertheless generically

able to move, and which has thus attracted considerable at-

tention in literature: Fowler analyzed the symmetry of the

structure and presented the result of the symmetry of mul-

tiple banana mechanisms (Fowler and Guest, 2002); Cheng,

Sitharam, and Streinu studied the rigidity of the 3-D struc-
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ture with the “double-banana” as an example (Cheng et al.,

2009), and Rojas proposed the “double-banana” closure con-

ditions as a paradigm for position analysis in robots (Rojas

and Thomas, 2013). The cause for the “double-banana” para-

dox is that there exist “isolated” DOFs in the mechanism (e.g.

the bar spin between two spherical joints) which create an

own level of transmission kinematics, and which thus need to

be tracked in order to be able to detect which substructures

are rigid and which are movable. We propose in this paper

a novel procedure for tracking such isolated DOFs by us-

ing an alternative method for describing kinematical interde-

pendencies, called the “kinematical network” (Kecskeméthy,

1993), in which the mechanism is regarded not as a sys-

tem of connected bodies, but as a system of interconnected

kinematical loops. A kinematical loop can be regarded as a

closed chain of bodies which corresponds to an elementary

cycle in a graph theoretical sense. If the underlying graph of

the mechanism is not at least 2-edge-connected, i.e. it con-

tains bridges or is separated, the graph first is dissected into

its 2-edge-connected components, called clusters, for which

the loop decomposition algorithm is applied separately. Of

course, rigidity needs to be detected only within each clus-

ter, as non-connected or 1-edge-connected clusters can never

reduce the DOF in comparison with the sum of their inter-

nal DOFs. In the following, the method of “kinematical net-

work” is briefly reviewed here for better understanding of the

present paper, and then our novel rigidity-detection proce-

dure for “double-banana” types of mechanisms is elucidated.

3 Description of mechanisms as kinematical

networks

The concept of mechanism description using a network of

linearly connected loops was introduced in (Kecskeméthy,

1993), and a fully automatic implementation in the symbolic

formula manipulation software Mathematica for general pla-

nar, spherical, translational and spatial cases is described in

(Kecskeméthy et al., 1997). The following planar examples

are used for illustration of the method, but the concepts apply

one-to-one also to spatial cases.

In this approach, as a first step, a minimal cycle basis com-

prising a set of smallest independent loops Li of the mecha-

nism is determined, where “length” is measured in terms of

the number of involved joint variables. According to the Eu-

ler cyclomatic number, the number nL of independent loops

is given by

nL = nG− nB+ 1, (2)

where nB is the number of bodies including the ground

frame, and nG is the number of binary joint connections. For

example, for Fig. 3a one has nB = 10 and nG = 13 and thus

nL = 4, while for Fig. 3b it holds nB = 12 and nG = 16, and

thus nL = 5. Each loop is first regarded independently of the

others, and its local degree of freedom fLi is determined,

which is the number of loop joint coordinates minus the di-

mension of the subgroup of Euclidean motion in which the

bodies of the loop locally move (spatial, planar, spherical,

translational, etc.).

As the next step, the coupling conditions between the

loops are determined. These arise exactly at those joints in

which the number of incident loops is equal to or larger than

the number of incident bodies and correspond to a balance of

inner joint coordinates of the incident loops and some con-

stants. More precisely, if a joint Gi connects nB(Gi) bodies,

then the bodies at the jointGi can move with [ nB(Gi)−1 ]·k

relative degrees of freedom with respect to each other, where

k is the dimensionality of the joint Gi , e.g. k = 1 for a revo-

lute joint or k = 3 for a spherical joint. Thus if nL(Gi) loops

are incident at jointGi , the relative joint variables introduced

independently of each other in each loop at that joint must

fulfill

nC(Gi)= [ nL(Gi)− nB(Gi)+ 1 ] · k (3)

balance equations, which therefore yields uniquely the num-

ber of coupling conditions at that joint (Kecskeméthy, 1993).

For example, in joint A of Fig. 3a, there are two incident

loops and two incident bodies, yielding one coupling equa-

tion. This corresponds to the condition that the sum of joint

coordinates β12 and β21 plus a constant is equal to 360◦,

yielding a linear coupling between the loops L1 and L2. Note

that for nC > k, while the number of coupling conditions is

unique, the choice of the balance conditions is non-unique,

as any set of combinations of admissible balance conditions

gives again a suitable balance condition.

The thus connected loops form the so-called “undirected

kinematical network” in which the loops represent local non-

linear transmission elements and the couplings between the

loops represent the global interrelationships. From the kine-

matical network, the DOF can be obtained as the sum of local

DOFs of all loops minus the sum of loop coupling conditions.

In Fig. 3a, there are four four-bar loops with local DOF = 1

each, and three loop coupling conditions. Thus the overall

DOF is 1. In Fig. 3b, there are five four-bar loops with lo-

cal DOF = 1 each, and four loop coupling conditions, thus

the global DOF is again 1. This shows that the DOF count-

ing over the loops and their couplings is fully equivalent to

the usual Grübler count, giving a new and consistent type of

Grübler DOF formula. Note however that here, in contrast to

the classical Grübler count, one can easily combine planar,

spherical, and spatial loops.

After having established the undirected kinematical net-

work, the next step is to orient the edges and to prescribe ex-

ternal inputs such that each loop can be computed as a func-

tion of outputs of previous loops and/or of the external inputs,

and that no closed cycles occur. The thus ensuing oriented

kinematical network is termed the “solution flow”. The exter-

nal inputs can be “true” DOFs, or auxiliary “pseudo” inputs

are needed when the structure has no recursive solution flow

and there will remain some implicit constraints to be solved

Mech. Sci., 7, 107–117, 2016 www.mech-sci.net/7/107/2016/
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iteratively. An advantage of the kinematical network is that

one can easily recognize recursively solvable substructures

by the so-called sink method (Kecskeméthy, 1993): here, one

searches iteratively for elements in the kinematical network

for which the number of edges is less than or equal to the

local degree of freedom of the element. After finding such an

element, all edges are oriented into the element, the element

together with all ingoing edges is removed, and the procedure

is re-applied to the rest of the system. If the procedure cov-

ers all loops, one obtains a recursive solution flow, i.e. each

loop can be solved as a function of a “true” external input

and/or outputs of previously solved loops (example: Fig. 3a).

If this is not the case, the network must be solved iteratively

by choosing additional “pseudo” inputs and following the so-

lution flow until an element is overconstrained, which yields

the implicit constraint equation needed to be solved by an it-

erative root finding algorithm such as Newton’s method (ex-

ample: Fig. 3b) where a pseudo input q̃ has been applied to

loop L2 and the implicit constraint equation results in loop

coupling condition “C”).

4 Types of isolated degrees of freedom

Isolated degrees of freedom are mobilities that leave some

characteristic relative measurements between surrounding

substructures locally invariant. In literature, several kinds of

names and concepts are used in this respect. The different

concepts and terminology might lead to confusion so that a

short introduction is given.

Hunt introduced “superfluous spin-freedoms” which arise

for the rotation of a bar in-between two spherical joints,

which he suggests to remove for kinematic analysis (Hunt,

1978). Waldron uses the term “passive degree of freedom”

for the same type of motion (Waldron, 1973). However, this

term might lead to confusion as in parallel kinematics ma-

chines it refers to non-actuated chains (legs) for which the

joint variables are dependent functions of actuated ones (Liu

et al., 2014). This is also the meaning used in robotics by

(Bennett and Hollerbach, 1991) when the joint variables of

a virtual contact joint are a function of the actuated robot

degrees of freedom. Also, in control theory, the term pas-

sive DOF refers to non-controlled degrees of freedom which

however are properly transmitted throughout the mechanism

(Shiriaev et al., 2010). For example, one four-bar mechanism

could have one actuated DOF, while a second four-bar mech-

anism on top of it could be non-actuated (passive), thus the

control of the first four-bar mechanism is sought which con-

trols both stably. Furthermore, the term passive degree of

freedom is sometimes used for underactuated manipulators

and are accounted for structural flexibilities (Jain and Ro-

driguez, 1993; Casals and Amat, 1996). Another term one

encounters in this setting is “redundant DOF” (Zhang et al.,

2003), which however may lead to confusion as the term re-

dundant DOF is used in robotics for robots featuring a greater

(a) (b) (c)

L1 L1L1

L2

Figure 4. Different types of isolated DOFs: (a) “Fully isolated”,

(b) “transmitted isolated”, (c) “structurally isolated”.

number of actuators than necessary for a given task space

which allows for special control movements (such as the hu-

man arm having seven relative joint motions for six DOFs at

the hand). In some cases the term “parasitic DOF” is used

for isolated DOFs (Rolland, 1999); however, the term “par-

asitic motion” (Carretero et al., 2000) or “parasitic DOF” is

also (and more frequently) used to describe unwanted depen-

dent motions in some direction such as the vertical axis of a

lower mobility platform (Hsu et al., 2004; Isaksson et al.,

2015; Merlet, 2005). As a further variant one finds the term

parasitic degrees of freedom meaning additional degrees of

freedom added to the principal DOFs by compliant joints

(Togashi et al., 2014). Finally, in some cases the term “idle

DOF” is used in this context (Razmara et al., 2000); how-

ever, the term “idle” would imply that the related motion of

the isolated DOF is not changing, which is not the case in the

present discussion.

In view of the plurality of notions and terms used in dif-

ferent contexts, we propose here to use the term “isolated”

which most accurately describes the notion of degrees of

freedom which have no influence on certain relative quan-

tities at the ends of a serial chain, i.e. remain non-transmitted

in a certain neighborhood of this chain, but may be transmit-

ted to surrounding substructures. This is in close correspon-

dence to the original term “superfluous spin-freedom” used

by Hunt, and helps to convey the idea that the isolated DOFs

might not be “superfluous” or pure “spinning” (meaning that

they might be transmitted to overlayed structures or that there

is a material axis of rotation). It might be noted that this term

has been used in the past in the modeling of active meshes

for grasping devices (Mazzone et al., 2003).

In order to track isolated DOFs, three types can be distin-

guished according to their scope of action (Fig. 4):

(a) “Fully isolated DOF”: these are immaterial motions

which can be completely removed from the mecha-

nism without any effect; this is the case for example

for the isolated spin of an infinitesimally thin spherical-

spherical bar about its longitudinal axis in Fig. 4a. Fully

isolated DOFs will be displayed below in the loop con-

nection graphs as dotted lines.
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Figure 5. Loop coupling conditions at a multiple spherical joint.

(b) “Transmitted isolated DOF”: these are isolated DOFs

which have already been counted once as “fully iso-

lated” in one loop, so that they become transmitted in

a neighboring loop; an example is shown in Fig. 4b,

where the spin of the rod has been counted as isolated in

loop L1, but becomes transmitted to loop L2; this will

be essential when regarding the transmission of isolated

DOFs at loop coupling conditions of spherical joints.

Transmitted isolated DOFs will be displayed below in

the loop connection graphs as dashed lines.

(c) “Structurally isolated DOF”: these are isolated DOFs

that comprise whole substructures; they leave the inter-

nal motion of whole subchains within one loop invari-

ant but operate on the absolute motion of the chain as

proper DOFs; an example is shown in Fig. 4c, where

the isolated DOF does not change the internal config-

uration of the revolute joint on the spun subchain, but

the chain rotates as a whole about the implied spin axis

connecting both spherical joints. Note that in this type of

isolated DOFs the spin axis is not constant with respect

to any body, but changes with the internal motion of the

involved subchain. Structurally isolated DOFs will be

displayed below in the loop connection graphs as dot-

dashed lines.

5 Loop coupling conditions at a spherical joint

When multiple loops coincide at one spherical joint, the

product of rotation matrices of the relative rotations over all

incident loops must yield unity, thus producing 3 indepen-

dent coupling conditions. Furthermore, when multiple bars

coincide in a spherical joint, one can always decompose the

relative rotation between the bars within a loop into two ter-

minal rotations about the connecting bars, and one intermedi-

ate rotation about some arbitrary axis, which should however

be warranted never to become parallel to one of the bars over

the complete motion. In this way, one obtains loop couplings

at a spherical joint between two isolated bar spin DOFs and

one proper aperture angle for each loop incident to that joint.

An example is given in Fig. 5. Here, the loop coupling equa-

tion between the three loops Li , Lj and Lk can be expressed

as

Rk(ξ,ψ,ζ )= Rj (η,θ,γ ) ·Ri(α,ϕ,β), (4)

where R(. . .) denotes the rotation matrix in terms of (z-x-

z) Euler angles in the order of the arguments. The coupling

equation can be interpreted such that the three internal rota-

tions ξ,ψ , ζ of loop Lk result numerically as a (nonlinear)

function of the three internal rotations α,ϕ,β and η,θ,γ of

loops Li and Lj , respectively. Topologically, this coupling

has particular properties due to the implicitly assumed iso-

lated DOFs about the bars that are incident to the spherical

joint, which can be described qualitatively without resorting

to the explicit resolution of the spatial loop coupling condi-

tions in terms of the output angles ξ,ψ , ζ , as discussed next.

Assuming that the other bar ends in Fig. 5 (not shown) of

the bars are also attached to spherical joints, the bars will be

allowed to spin about their longitudinal axes. However, only

one rotation per bar can be regarded as truly fully isolated: if

a loop “registers” one isolated spin as fully isolated, then for

the neighboring loop this rotation becomes transmitted. This

is shown by the chosen colors in Fig. 5: assuming that the

spin of bars 1 and 2 have been registered as fully isolated in

loop Li , these can be regarded as immaterial spinnings of the

pins within the sleeves of the joints of bars 1 and 2, denoted

by angles α and β, respectively; however, the rotation within

loop Lk about bar 1, denoted by ξ , is then not fully isolated

anymore, and actually sways the brown chain of loop Lk as

when unfolding two faces of an origami at the edge folded

along the axis of bar 1. Thus the angle ξ is a transmitted iso-

lated DOF. Similarly, the rotation within loop Lj about bar 2,

denoted by η, rotates the blue chain within loop Lj about the

axis of bar 2, and is thus again a transmitted isolated DOF.

Finally, the rotation γ of the inner pin of the revolute joint

along bar 3 can be regarded again as a fully isolated DOF

once, which in the case of Fig. 5 has been arbitrarily assigned

to loop Lj . This makes the rotation about bar 3 within loop

Lk , denoted by ζ , again a transmitted isolated DOF.

By the loop coupling conditions, one can recognize that,

if loop Lk is the “output” of the coupling conditions accord-

ing to Eq. (4), then two of the incoming variables of loop

Lk , namely ξ and ζ , are transmitted isolated DOFs that do

not affect the inner kinematics of loop Lk , but the third one,

namely ψ , is a proper transmission angle which regulates

the relative orientation of bars 1 and 3 with respect to each

other. This angle is a function of the opening angles ϕ and

θ of loops Li and Lj , respectively, but also of the transmit-

ted isolated DOF η of loop Lj , which thus becomes mate-

rial. If the three loops Li , Lj , Lk are assumed to be trian-

gles with spherical joint nodes (as will be the case for the

regarded mechanism), then the angles ϕ, θ , ψ must remain

Mech. Sci., 7, 107–117, 2016 www.mech-sci.net/7/107/2016/



F. Simroth et al.: Solving the double-banana rigidity problem: a loop-based approach 113

f=3
L2

f=3
L4

f=3
L5

f=3
L3

f=3
L1

3

f=6
L11

f=3
L7

f=3
L9

f=3
L10

f=3
L8

f=3
L6

3

3
3

3

3 3

3 3

3 3

3
3

3

3

3

3

3

E D F G

A A

Figure 6. The undirected kinematical network of the “double-banana” mechanism.
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Figure 7. The directed kinematical network of the “double-banana” mechanism.

constant, which means that loop Lk induces an implicit con-

straint equation for the transmitted isolated DOF η of loop

Lj . This kind of tracking of transmitted isolated DOFs up

to locations of implicit constraint equations will prove use-

ful for detecting rigid and movable substructures in multiple

spherical-spherical bar mechanisms, as shown below.

6 Kinematical network of the “double-banana”

mechanism

As described in section 3, initially the interconnected kine-

matical loops are chosen as a set of “smallest” independent

loops, in which the sum of numbers of relative joint vari-

ables within each loop over all loops is smallest. While the

number nL of independent loops is unique, the choice of the

independent loops can have many solutions (Kecskeméthy,

1993). In the present case, we have nL = 11 for which we

choose 10 triangles within the two bipyramid halves and the

quadrilateral loop L11 between them shown in Fig. 2. At the

beginning, each loop is regarded as an independent trans-

mission element, i.e., all relative motions within a loop are

regarded as independent. The loop coupling condition gives

one spherical coupling condition at joints E, G, D and F and

two spherical coupling conditions at joint A. Using the cou-

pling conditions described in Section 5, one obtains for the

“double-banana” example of Fig. 2 the undirected kinemati-

cal network shown in Fig. 6.

In the process of orienting the edges of the kinematical

network, the following steps arise:

1. Each of the loops L1,. . . , L10 displays 3 local DOFs,

which are the three isolated DOFs about the three

bars; likewise, loop L11, which comprises four spher-

ical joints, displays 6 local DOFs.

2. At each coupling joint, three coupling equations accord-

ing to Eq. (4) are produced. Two of these coupling con-

ditions go into isolated DOFs, while one propagates into

a transmission angle, which is the aperture angle of the

intermediate joint of the z-x-z decomposition.

3. By the sink method, one can start the orientation of the

edges with the sink loops L1, L4, L6, L10 and L11.

However, for each of these loops, the “intermediate”

aperture coupling angle (θ in the case of loop L1) actu-
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Figure 9. Pruned graphs for each of the four special shared joints.

ally transmits into the loop kinematics and is subject to a

constraint condition there due to the triangle condition.

Thus, the sink loop actually introduces an implicit equa-

tion (marked “1×” in a gray box within the loop) which

must be fulfilled by the transmitted DOFs entering the

loop. On the other hand, each sink loop features an addi-

tional fully isolated DOF, which is about the third edge

that is not shared with any other loop. Thus, after ori-

enting the edges into the sinks one obtains one implicit

equation and one “true” DOF per sink (Fig. 7).

4. After having determined all sinks, the orientation of the

edges of the remaining loops are completed by feed-

ing enough inputs to each loop such that the local loop

DOF count is obeyed. Here, it is important that, as dis-

cussed above, exactly (only) one fully isolated DOF is

registered for each bar. In the example of Fig. 7, we

registered all three isolated DOFs of loop L3 as fully

isolated; thus in loop L2 we can only register two iso-

lated DOFs as fully isolated, while the third (about the

common bar with L3) must be chosen as a transmitted

isolated DOF. After receiving its inputs at joints D and

F (which can be regarded as fixed), loop L11 can de-

tect locally (internally) a fully isolated DOF about the

axis connecting joints A and B, which is registered as a

structurally additional fully isolated DOF operating on

this loop.

The fully isolated DOFs can be applied irrespectively of the

rest of the structure, thus from Fig. 7 one can see that there

are in total 19 fully isolated DOFs, 18 representing the spins

of the bars, and one in loop L11 representing the spinning ro-

tation between the two bananas about the implied axis A-B.

Thus the kinematical network already is able to detect that,

apart from the 18 isolated bar spins, loop L11 features an ad-

ditional DOF that is not canceled by the rest of the structure.

However, it remains to detect which parts of the structure are

rigid or over-rigid. This is done in the next section.

7 Loop connection graph and rigidity detection for

the “double-banana” case

A kinematical network can be transformed into a “loop con-

nection graph” describing the level of dependency of the in-

dividual loops and possible implicit conditions (Xia et al.,

2012). We show here the loops as boxes and implicit condi-

tions as gray disks, with the number n of implicit equations

denoted by “n×” within the disk, and the indices i, j , ... of

loopsLi ,Lj , ... embracing these implicit conditions in braces

besides the disk. The connections between loops and circles

are represented by weighted edges, where the weight repre-

sents the number of joint variables transferred through this

edge. External inputs are depicted by edges from the source

“S” to the corresponding loop, while the level of dependency

is expressed by the distance (in rows) from the source to the

node, as shown in Fig. 8a.

According to (Xia et al., 2012), rigidity detection can be

performed on this acyclic graph by evaluating directed “cuts”

such that the source is on one side, the sink(s) is on the

other, and all edges through which the cut passes are di-
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Figure 10. Minimal cuts and resulting DOFs for each substructure.

rected from the “upstream” to the “downstream” side. The

sum of weights of the cut edges is termed the weight of the

cut, while the sum of implicit equations in the downstream

side of the cut is termed the absorbing degree of the cut. The

DOF of the cut is equal to its weight minus its absorbing

degree. This DOF is equal to the DOF of the nodes on the

downstream side of the cut. Whenever the DOF of the cut is

less or equal to zero, the downstream subsystem will repre-

sent a rigid or an overconstrained subsystem. The cut with

the minimal DOF will determine the most overconstrained

substructure. Such cuts can be easily determined using state-

of-art graph-theoretic methods (Abel and Bicker, 1982).

For example, the cut X1 in Fig. 8a displays a weight of 23

and an absorbing degree of 5, which results into a DOF of 18

that correspond to the 18 isolated bar rotations. But since the

isolated degrees of freedom need not be taken into account

for rigidity detection, only the transmitted isolated DOFs

(dashed lines) need to be regarded, leading to the reduced

loop connection graph in Fig. 8b, where the weight of cutX1

now can be recognized as 4 with an absorbing degree of 5.

Thus, the whole loop transmission structure without isolated

DOFs is recognized as over-rigid with DOF=−1. However,

as there is an additional structurally isolated DOF entering

loop L11, one can recognize a global proper DOF. The ques-

tion of which parts are rigid and which parts are movable can

be answered by regarding so-called pruned graphs containing

subsets of implicit constraints and their predecessor nodes

from the root of the loop connection graph, as explained be-

low.

As a “pruned” sub-graph, one understands the sub-graph

obtained when taking some sinks and removing all nodes

that are not on any path from the sink to the source (Fig. 9).

Clearly, only one such pruned sub-graph has a cut with non-

positive DOF (X2 in Fig. 9a). Thus the subsystem L1, L2, L3

can be replaced by a rigid body. Restarting the algorithm with

these loops replaced by a rigid body gives Fig. 10a, which

again displays a cut X3 with DOF = 0, hence the subsystem

L1, L2, L3, L4, L5 is again rigid. Replacing this again by a

rigid body and carrying out the analogous steps for the right

half of the “double-banana” graph gives the pruned graph

of Fig. 10b. This graph has now a cut X4 with transmitted

weight zero (not counting the fully isolated DOF of loopL11)

and an absorbing degree of 1, hence the cut has DOF =−1.

As a result, the algorithm is able to detect both halves of the

“double-banana” as rigid, and also to detect that their assem-

bly into loop L11 features one structurally isolated DOF.

8 Discussion

The proposed approach shows that by regarding loops as

transmission elements and tracking the transmission of iso-

lated DOFs through the mechanism one can detect non-

trivial cases of rigidity involving implied hinges. Although

the method may seem complicated, it can actually be broken

down into simple steps for which graph-theoretic algorithms

already exist. For example, steps for dissecting a mechanism

into kinematical loops and setting up the kinematical network

and loop connection graph have already been implemented

in Mathematica by our group using well-known graph the-

oretical algorithms for finding minimal cycles or minimal

cut sets (Kecskeméthy, 1993). The advantage of using loops

for transmission evaluation lies evidently in the fact that one

can combine substructures of different mobility spaces such

as planar, spherical or spatial, and that structurally isolated

DOFs can be detected within one loop by regarding the corre-

sponding isotropy groups (Kecskeméthy, 1993). Thus, in our

opinion this new methodology could prove useful for rigid-

ity detection algorithms in other areas of applications. While

the automatic implementation of the classification of differ-

ent types of isolated DOFs is still to be completed, we be-

lieve that this is accomplishable in a general setting. Future

research will be devoted to demonstrate that the presented

algorithm also holds for so-called nucleation free mecha-

nisms (Cheng et al., 2009), which comprise individual mo-

bile structures that become rigid and form “implied hinges”

once embedded in a certain mechanism.

9 Conclusions

Based on the concept of the kinematical network, a loop-

based rigidity detection method is proposed to detect mo-
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bility and rigidity for systems featuring spherical-spherical

pairs, such as the “double-banana” case. The method consists

in viewing the mechanism as an assembly of coupled inde-

pendent kinematical loops instead of regarding it as a system

of coupled bodies and joints (or bars and nodes). Due to this,

it is possible to track isolated degrees of freedom separately

from transmitted joint angles, and by this to detect rigid sub-

systems and “implied hinge” finite mobility for complex sys-

tems as the “double-banana” case. In this setting, it is in-

teresting to note that this approach is implementable using

standard tools from graph theory. Although we have not yet

completed this automation, we believe that this is feasible,

which is a topic of future research.
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