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Abstract. Temperature fields evolving during metal cutting processes have also been of major interest. Tem-

peratures in the tool influence the wear behaviour and hence costs, temperatures in the work-piece are directly

responsible for later product quality. Due to the high significance of temperatures, many modelling attempts for

temperature fields have been conducted, however failed to deliver satisfying results. The present paper describes

a novel analytical model using complex functions based on potential theory. Relevant heat sources in metal cut-

ting as well as changing material constants are considered. The model was validated by an orthogonal cutting

process and different real machining processes.

1 Introduction

Temperatures occurring during metal cutting processes were

of major interest for research since scientific investigations

in this field are existing. First documented work is accredited

to Thompson (1798) who examined the mechanical equiva-

lent of heat when deephole-drilling brass. Even though his

objectives for the experimental work were rather aimed at an

understanding of the nature of heat itself than understand-

ing of the metal cutting process, his work marked the start-

ing point for consideration of thermal issues in metal cutting.

The precise and quantitative determination of temperatures

during the metal cutting process in terms of measurements

was first conducted from Shore (1925), Gottwein (1925) and

Herbert (1926) almost at the same time, who measured tem-

peratures by means of measurement of electromotive forces,

i.e. application of thermocouple method. Measurements of

heat radiation in terms of pyrometers and infrared camera

were first conducted by Schwerd (1933), Ueda et al. (1998)

and Müller (2004). Both physical principles have their ad-

vantages and disadvantages, however in summary, measure-

ment of temperatures in the metal cutting process are elab-

orate and mostly error-prone. A recent overview of temper-

ature measurements in material removal processes is given

from Davies et al. (2007).

Due to the difficulties in measurement, the need for mod-

elling of temperatures in metal cutting was expressed by re-

searchers several times, e.g. Shaw (2005) and Komanduri

(2003). Regarding the different types of modelling, i.e. em-

pirical, simulation and analytical, empirical and simulative

models mostly fail to be transferable to other circumstances

like different cutting parameters, tool and work material and

cutting process. This is mainly due to the early lineariza-

tion of the physical problem. Analytical models, however

not applicable on complex cutting engagement situations,

strengthen the basic understanding of the nature of tempera-

ture distribution and are in principle transferable to all similar

physical problems. Due to this reason, the present paper de-

scribes the development of a novel approach for analytical

modelling of temperatures in the metal cutting process. The

derivation and parameterisation are presented in distinct sec-

tions of this paper. The model was validated by experimental

trials on a fundamental cutting test rig and on a broaching

machine. The aim of this paper is to assess the potential of

the novel approach presented, i.e. use of the potential theory

for prediction of temperature fields in metal cutting.

2 Analytical temperature models in metal cutting

In order to derive analytical models for temperature distri-

bution in metal cutting, the governing physical equation, i.e.

the partial differential equation for heat conduction has to be
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solved:

∂2T (x,y)

∂x2
+
∂2T (x,y)

∂y2
= 0 (1)

The equation is shown for two spatial dimensions x and y,

stationary and constant heat conductivity, which should be

the assumptions for the model derivation in this paper. Phys-

ical meaningful solutions can be found either in real-valued

functions or complex-valued functions. Nowadays analytical

models are exclusively using real-valued functions as will be

described in the following.

2.1 Real-valued functions

Regarding the various analytical models available, the ap-

proach from Komanduri and Hou (2000) can be indicated

the most advanced analytical model which was only slightly

modified in recent times (e.g. Karas et al., 2013). When

analysing their solution, the basic function that was used as

a solution for Eq. (1) is one originally invented by Carlslaw

and Jaeger (1959) and first applied by Hahn (1951):

T (x,y)=
ql

2πλ
e
−xv
2a ·K0

(
Rv

2a

)
. (2)

In physical means, the solution can be interpreted as a mov-

ing line heat source with velocity v. The solution was used

by Komanduri and Hou (2000) to form a moving band heat

source with an inclination angle relative to the direction of

motion. The adiabatic boundaries and further boundary con-

ditions in metal cutting were considered using mirror heat

sources, exploiting the resulting symmetrical nature of the

temperature distribution plot. Indeed, the vast majority of an-

alytical models are using the Hahn (1951) solution as basic

solution and differ from each other only in terms of different

boundary conditions and heat source shape, like the model

of Carlslaw and Jaeger (1959), which is commonly used in

simulation models for temperature prediction.

Most analytical models based on Hahn solution or other

similar real-valued functions do not sufficiently model the

nature of the metal cutting process or are not validated at

all. The main problem occurring is the deviation of the pre-

dicted distribution, which suggests that not the right mathe-

matical function describing the nature of metal cutting was

found. Furthermore, the existing analytical models are appli-

cable only with restrictions, as the integrals of Eq. (2) are

very complex and only symmetrical situations can be mod-

elled when boundary conditions, e.g. adiabatic surfaces or

heat sources, are considered.

2.2 Complex-valued functions

Besides solutions in the real-valued space, complex functions

solving Eq. (1) are existing. A complex function is a function

of the complex variable z, where z= x+ iy. The two spa-

tial dimensions are separated by the complex number i. The

complex function can be expressed as:

F (z)=8(x,y)+ i ·9(x,y). (3)

The functions 8 and 9 itself are real-valued functions and

can be plotted in x and y graph. To find solutions of Eq. (1),

there is a special group of complex functions called potential

functions. These functions fulfil the following requirement:

∂F

∂y
= i,

∂2F

∂y2
=

d2F

dz2
i2. (4)

Taking into account that i2 =−1 these functions fulfil Eq. (1)

if Eq. (4) is true. If the function F (z) is a potential func-

tion then the real part 8 is orthogonal to the imaginary part

9 when plotting both in an x− y diagram. For potential

functions furthermore the principle of superposition is true,

i.e. if F1(z) and F2(z) are solutions of Eq. (1), then also

F3(z)= F1(z)+F2(z) is also a solution.

Potential functions are firstly only mathematical solutions

of Eq. (1), however they are applied successfully in other en-

gineering fields. Most famous application can be found in

fluid mechanics where solutions of potential theory are used

to predict stream fields, compare e.g. Anderson (2011). The

fact that exactly the same partial differential equation, i.e.

Eq. (1), needs to be solved, yields the lack of available solu-

tions for temperature distribution in metal cutting.

3 Model derivation

In order to derive new models for prediction of temperature

rise distribution for metal cutting, the following method was

applied:

– Identification of suitable basic complex functions from

potential theory and superposition of these functions.

– Parameter study of each coefficient of the function, as-

sessment of physical relevant numerical range.

– Application of model on metal cutting process, i.e. con-

sideration of relevant heat sources and boundary condi-

tions.

The three steps can be understood with iterative character, es-

pecially because the last step, i.e. the application on the metal

cutting process is the most important. The results presented

in this paper are concluded from a detailed iterative approach

using the stated method.

3.1 Identification of function

The basic functions used in potential theory can be physi-

cally interpreted with the help of the streamline analogy. Fig-

ure 1 shows three distinct functions, a uniform flow, vortex

and corner flow, when plotting the imaginary function 9 in

an x− y diagram.
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Figure 1. Basic functions and combined modell approach.

Figure 2. Variation of parameter A.

Transferring the physical interpretations to temperature

lines for the metal cutting process, detailed analysis of more

basic functions revealed that the superposition of these three

functions yield a plot which appears similar to the tempera-

ture distribution in metal cutting. The not yet parameterised

plot of 9 of the combined function is shown at the right side

of Fig. 1. The function F (z) can be expressed as:

F (z)= Funiform+Fvortex+Fcorner

= Aze−iα +
Bi

2π
ln(z+ zsum)+C · zkrot. (5)

The distinct parameters A, α, B, zsum, C, zrot and k are de-

scribed in detail in Sect. 3.2. Taking into account the stream-

line analogy it appears strange at a first glance that the vortex

flow and not a source or sink function is used in the com-

bined function. As stated before this was the outcome of a

detailed iterative approach yielding better results in regard

to an application on the metal cutting process. The solutions

were chosen due to an iterative methodology. Physical inter-

pretations of the solutions, in terms of their influences on the

run of the isotherms are known, e.g. the vortex flow bends

the isothermal field.

3.2 Parameter study

The parameter study of A, α, B, zsum, C, zrot and k showed

different kind of influences on the temperature plot and hence

different kinds of possible interpretations referred to the

metal cutting process. Due to the high number of unknown

parameters, each parameter was varied taking into account

the nature of each parameter for the basic flow analogy, e.g.

parameters A and α belong to the uniform flow and influence

velocity and angle of the flow. Figure 2 shows the variation of

parameter A as an example. The parameter study shows that

a variation of A from 0.1 to 1.0 does not change the shape of

the temperature distribution field significantly, the isotherms

shape does vary with rising value of A but the general be-

haviour stays constant.

The plot in the upper left of Fig. 2 in contrast, shows a be-

haviour which is not typical for temperature distribution in

Table 1. Numerical values for F (z).

Parameter Values correlation to . . .

A 0.1–1.0 heat source strength

α 0.5–1.2 cutting speed, chip thickness

B 11.0–14.0 cutting speed

C 0.20–0.26 chip thickness

k 1.85 chip thickness

θ (0.025–0.05)π shear zone angle

metal cutting, i.e. the isotherms run into the rake face of the

tool, which is a discrepancy to the known literature results

and own experimental trials that are presented later in this

paper. In a similar way of parameter study, numerical sensi-

ble values for each parameter were determined, summarised

in Table 1.

The last row of the table gives an indication of possi-

ble correlation to cutting parameters and nature of the heat

sources shear and friction. However these values are only

yielded by observation and were not validated. The major

conclusion of the parameter study shows that all shown pa-

rameters stay in a relative narrow numerical band when con-

sidering that apart from any experimental data only extreme

situations were used to define the numerical boundaries as

described in Fig. 3. In Table 1, the parameter θ is replacing

the term zrot from Eq. (5) considering:

zrot =

√
(x cosθ − y sinθ )2+ (x sinθ + y cosθ )2. (6)

Summarised, the parameters presented in this Section seem

to be almost constant respectively only slightly changing for

all temperature fields that can be predicted with this model

approach. The parameter zsum in Eq. (5) however was found

not to be constant.

3.3 Application on metal cutting process

Considering the stream flow analogy of Eq. (5), the term zsum

describes number and direction of vortexes that can be placed

at different locations. The term zsum can be expressed as:

zsum = zch+ zsh+ zcon, (7)

where the term zch locates the vortexes on the contact line be-

tween rake face and chip, the term zsh considers the strength

shear plane heat source and zcon the length and angle of the

shear plane, compare Fig. 3.

For term zch the expression

zch =

m∑
−1

(xch,m+ i · ych,m)=

m∑
−1

[1+ i · (2m+ 1)] (8)

can be formulated. The number of vortexes along chip side

hereby is m. The initial negative value under the summa-

tion is due to the chosen coordinate system. For the vortexes
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Figure 3. Vortex locations and metal cutting process.

along the shear plane heat source pertains:

zsh =

n∑
0

xsh,n

+ i · ysh,n =

n∑
0

{(2n+ 1)+ i · [(2n+ 1) · tan(φ)]} (9)

where n is the number of vortexes along the shear plane and

ϕ is the shear angle. The last term zcon can be formulated as:

zcon = t + i · 0.5 ·OR · cos(φ) (10)

where t is the uncut chip thickness, OR is the length of the

shear plane heat source and ϕ again the shear angle. Plug-

ging Eqs. (8), (9) and (10) into Eq. (5) yields the following

expression for the function 9(x,y):

9total(x,y)= Asin(α)−
B

2π
ln

(√
x2

total+ y
2
total

)
+C

· [

√
(x cosθ − y sinθ )2+ (x sinθ + y cosθ )2]

k sin(kθ ). (11)

As stated in Sect. 2.2, 9 hereby is only the imaginary part

of F (z), i.e. all expressions that contain the imaginary unit i.

The real part of F (z) is not plotted but can be considered as

a graph with orthogonal lines. The terms xtotal and ytotal are

defined as:

xtotal = x+ 1+ t +

n∑
0

(2n+ 1)

ytotal = y+ 0.5 ·OR · cos(φ)

+

n∑
0

(2n+ 1) tan(φ)+

m∑
−1

(2m+ 1). (12)

Plotting the function 9(x,y) yields a graph which need to

be scaled to get temperature distribution fields, where the pa-

rameters A, α, B, C, θ and k can be considered as nearly

constant as described in Sect. 3.2. The uncut chip thickness

t is known, solely length of the shear plane heat source OR

and number of vortexes on shear plane n and friction zone m

have to be measured or modelled.

4 Model validation

The presented model in form of Eqs. (11) and (12) were

parameterised using the findings from the parameter study.

Figure 4. Comparison of model plot and infrared image (for In-

conel 718, HSS tool, cutting depth 30 µm).

Figure 5. Model validation for Inconel 718 and C45 steel.

The mentioned data for length of shear plane heat source and

shear angle were taken out of an infrared image for simpli-

fication reasons. Figure 4 shows a comparison between the

parameterised model and results from experimental data. As

only the shape of the isotherms is of importance no scale is

provided.

The experiments were conducted on an analogy test rig for

orthogonal metal cutting, the test rig is described in Klocke et

al. (2011). The infrared images were taken by an online cal-

ibration measurement method combining two-colour param-

eter with a high-speed infrared camera, details can be found

in Gierlings and Brockmann (2013).

The comparison shown in Fig. 4 shows a good accordance

in the chip and near the contact zone between tool and work

piece, especially in terms of temperature field distribution.

The line in the model plot shows that the tool geometry can

be found in the model plot. The comparison presented here

should be understood as a first qualitative validation showing

promising results for the potential of the derived model.

Further validation work was done for a broaching process

which can also be found in Gierlings and Brockmann (2013).

Figure 5 shows further validation trials for steel C45 and an

Nickel-based alloy (Inconel 718).

The temperature rise distribution along the shear plane

heat source and frictional heat source for chip-tool interface

was found by using experimental result for steel material C45

and IN718 respectively at different cutting speeds. Therefore,
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the average temperature for these examples was considered

to be a reference for calculate the temperature between the

shear plane heat source and frictional heat for chip-tool inter-

face. Figure 5 shows the temperature distribution for the C45

and IN718 work material along the shear plane heat source

for different cutting velocity with plots the temperature along

the selected profile length. The following parameters were

used from Shaw (2005):

– Chip velocity: vch = 60 cm s−1

– Friction force: Ff = 605 N

– Heat flux: q = 605× 60/100/(0.0833× 0.025)=

68 042.8 W cm−2 ◦C

– Chip thickness: t2 = 0.0833 cm

– Shear angle: ∅= 16.7◦

The chosen model parameters are:

– Number of vortex flow along the shear plane line:

OR= 11

– Number of vortex flow along the chip-tool interface

line: OP= 22

– Parameter for uniform flow: A=D× (q ′′)//λ= 5×

10−5
× 68 042.8/0.436= 0.78 ◦C cm−1

– Parameter of (Alpha): α = vct1/(40× a)= 1.036

– Parameter for vortex flow: B = E×vc/a = 8×10−3
×

200/0.1206= 13.266 cm−1

– Parameter for corner flow: C = r/(5.5w)= 0.24 cm−1

– Parameter for corner flow: k = 1.8, θ = π/30.

The temperature rise along the chip-tool interface is also cal-

culated. The average temperature rise distribution are con-

sidered, this will be also the reference temperature that can

used to approximate the temperature rise in the chip-tool in-

terface for the complex potential flow model. Using the aver-

age value for temperature rise distribution for the shear plane

heat source and chip-tool interface, the combined effect for

both the shear plane heat source and chip-tool interface fric-

tional heat source can be represented by using this data. For

the final plots for the temperature rise distribution further cal-

ibration was required.

5 Summary and discussion

The presented paper shows a novel approach for analytical

modelling of temperature field distribution for metal cutting

processes. For the derivation of the model, complex func-

tions solving the partial differential equation for heat con-

duction were considered. The complex functions belong to a

certain group of functions called potential functions, which

already showed good results in other engineering fields e.g.

fluid mechanics, where solutions of exactly the same par-

tial differential equation are needed. The analysis revealed

the combination of three basic functions to yield temperature

plots that show a huge potential for application in the metal

cutting process. The combined function was parameterised

to suit the situation in metal cutting, mainly by taking into

account length and strength of the two heat sources friction

and shear zone. Beyond this first approach of using complex

functions of the potential theory for modelling temperature

fields in metal cutting, still a lot of parameters need to be

correlated systematically to the cutting parameters. The fi-

nal verification of the model is outstanding as more cutting

process need to be investigated using the basic function de-

scribed in this paper.

Acknowledgements. The presented modelling work is part

of project A02 of the Collaborative Research Center SFB/TR

96: “Thermo-energetic design of machine tools”, funded by the

German Science Foundation DFG.

Edited by: M. Cotterell

Reviewed by: G. Fromentin and one anonymous referee

References

Anderson, J. D.: Introduction to flight, McGraw-Hill Science, 7,

251–362, 2011.

Carslaw, H. S. and Jaeger, J. C.: Conduction of heat in solids. 2nd

ed. Oxford [Oxfordshire], New York, Clarendon Press, Oxford

University Press, 1959.

Davies, M. A., Ueda, R., M’Saoubi, R., Mullany, B., and Cooke, A.

L.: On the Measurements of Temperature in Material Removal

Processes, CIRP Annals Manufacturing Technology, 56, 581–

604, 2007.

Gierlings, S. and Brockmann, M.: Analytical Modelling of Tem-

perature Distribution using Potential Theory by Reference to

Broaching of Nickel-Based Alloys, Adv. Mat. Res., 769, 139–

146, 2013.

Gottwein, K.: Die Messung der Schneidentemperatur beim Drehen,

Maschinenbau Betrieb, 4, 1129–1135, 1925.

Hahn, R. S.: On the temperature development at the shear plane

in the metal cutting process, Proc. of First National Congress of

Applied Mech., 661–666, 1951.

Herbert, E. G.: The measurement of cutting temperatures, Proceed-

ing of the Institution of Mechanical Engineers, 1, 289–329, 1926.

Karas, A., Bouzit, M., and Belarbi, M.: Development of a thermal

model in the metal cutting process for prediction of temperature

distributions at the tool-chip-workpiece interface, J. Theor. Appl.

Mech., 51, 553–567, 2013.

Klocke, F., Bergs, T., Busch, M., Rohde, L., Witty, M., and Cabral,

G. F.: Integrated approach for a knowledge-based process layout

for simultaneous 5-Axis milling of advanced materials, Adv. in

Tribology, 2, 108–115, 2011.

Komanduri, R.: NSF workshop on research needs in thermal aspects

of material removal, Oklahoma, 2003.

www.mech-sci.net/6/89/2015/ Mech. Sci., 6, 89–94, 2015



94 F. Klocke et al.: Analytical model of temperature distribution

Komanduri, R. and Hou, Z. B.: Thermal modeling of the metal cut-

ting process – part I, Int. J. Mech. Sci., 42, 1715–1752, 2000.

Müller, B., Renz, U., Hoppe, S., and Klocke, F.: Radiation ther-

mometry at high-speed turning process, J. Manuf. Sci. E.-T.

ASME, 126, 488–495, 2004.

Schwerd, F.: Über die Bestimmung des Temperaturfeldes beim

Spanablauf, Zeitschrift des VDI, 9–77, 211–216, 1933.

Shaw, M. C.: Metal cutting principles, Oxford University Press, 2,

29–30, 2005.

Shore, H.: Thermoelectric measurement of cutting tool tempera-

tures, J. Washington Academy of Science, 15, p. 85, 1925.

Thompson, B.: An inquiry concerning the source of heat which is

excited by friction, Philos. T. R. Soc. Lond., 18, 278–287, 1798.

Ueda, T., Sato, M., and Nakayama, K.: The temperature of a single

crystal diamond tool in turning, Annals of the CIRP, 47, 41–44,

1998.

Mech. Sci., 6, 89–94, 2015 www.mech-sci.net/6/89/2015/


	Abstract
	Introduction
	Analytical temperature models in metal cutting
	Real-valued functions
	Complex-valued functions

	Model derivation
	Identification of function
	Parameter study
	Application on metal cutting process

	Model validation
	Summary and discussion
	Acknowledgements
	References

