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Abstract. Different from the prior art concentrating on the primary translation of bistable translational mech-

anisms this paper investigates the off-axis rotation behaviour of a bistable translational mechanism through

displacing the guided primary translation at different positions. Moment-rotation curves obtained using the non-

linear finite element analysis (FEA) for a case study show the multiple stable positions of the rotation under each

specific primary motion, suggesting that an infinitely-stable rotational mechanism can be achieved by controlling

the primary motion. In addition, several critical transition points have been identified and qualitative testing has

been conducted for the case study.

1 Introduction

A compliant mechanism is multistable if it has more than

two stable translational/rotational positions that refer to zero

force/moment points with positive stiffness (Oh, 2008; How-

ell et al., 2013). Multistable compliant mechanisms have a

variety of successful applications such as switches, valves,

relays, grasper, adaptive end effectors, sensors, energy har-

vesting devices and vibration isolators (Oh, 2008; Howell et

al., 2013; Lassooij et al., 2012; Chen and Lan, 2012; Hansen

et al., 2007; Liu et al., 2013; Shaw et al., 2013). Unlike the

traditional ways of using locking mechanisms and detents, a

compliant mechanism based multistable mechanism obtains

multistability through the storage and release of potential en-

ergy stored in their flexible members during post-buckling.

This paper focuses on bistable translational mechanisms

using fixed-clamped beams (Lassooij et al., 2012; Chen and

Lan, 2012; Hansen et al., 2007; Dunning et al., 2012; Kim

and Ebenstein, 2012; Holst et al., 2011; Zhang and Chen,

2013), rather than using the fixed-pinned (Qiu et al., 2004)

and the pinned-pinned beams (Sonmez and Tutum, 2008)

that are hard to manufacture monolithically. There are mainly

two methods to design the fixed-clamped bistable transla-

tional mechanism (Dunning et al., 2012). One method is to

use the fixed-guided beam via an inclined arrangement where

the beam has no deformation at the initial position without

the input force. The other method is to pre-stress the fixed

ends of a pair of fixed-clamped non-inclined beams to intro-

ducing buckling where the beam deforms at the initial posi-

tion without the input force. However, the second method is

out of scope of this paper. The bistable translational mech-

anism studied in this paper is shown in Fig. 1a, which is

composed of two fixed-clamped inclined beams connected at

the middle (motion end). Under the primary force only, each

beam will work like a fixed-guided beam due to the sym-

metrical nature. The typical force-displacement relation of

this bistable mechanism in the primary direction is shown in

Fig. 1c with the critical points and regions being marked.

Different from the above reported works in Lassooij et

al. (2012), Chen and Lan (2012), Hansen et al. (2007),

Dunning et al. (2012), Kim and Ebenstein (2012), Holst et

al. (2011) and Zhang and Chen (2013) which employ the pri-

mary translation to achieve finite multi-stable statuses, this

paper studies on the multistable off-axis rotation behaviour

of the bistable translational mechanism in order to obtain

an infinitely-stable rotational mechanism. This off-axis ro-

tation behavior with multistable points has also potential ap-

plications in human joint rehabilitative devices, dynamic and

static balancing of machines, and human mobility-assisting

devices (Hou and Lan, 2013) when combining with a posi-

tive stiffness spring.
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Figure 1. Embodiment of the bistable mechanism.

This paper is organized as follows. Section 2 describes the

displacement-controlled FEA (finite element analysis) simu-

lation. The off-axis rotational analysis of a bistable transla-

tional mechanism is implemented in Sect. 3 showing the in-

finite stable rotational positions. A conceptual design of an

infinitely-stable rotational mechanism is followed. Discus-

sions are drawn in Sect. 4.

2 Displacement-controlled FEA simulation

Due to the strongly nonlinear characteristics of post-buckling

behaviour, it is very difficult to model buckled beams cor-

rectly. There have been a large amount of works on ac-

curately modelling the force-displacement characteristics of

buckled beams as well as modelling the exact curvature

and inflection points of the beam as it travels between two

stable equilibrium points. These modelling techniques in-

clude the curve decomposition method (Kim and Ebenstein,

2012) and elliptic or comprehensive elliptic integral solutions

(Holst et al., 2011; Zhang and Chen, 2013). Each has pro-

vided an insight into the post-buckling behaviour of com-

pliant mechanisms, but has its own limitations. Compared

to the method using the comprehensive elliptic integral in

Zhang and Chen (2013), the combined method in Holst et

al. (2011) or the curve decomposition method in Kim and

Ebenstein (2012) is unable to solve large deflections of thin

beams with multiple inflection points and subject to any

kinds of load cases. The models in Kim and Ebenstein (2012)

and Zhang and Chen (2013) ignoring axial elongation can

also causes that the linear region that the beam undergoes be-

fore the buckling point disappears and that the snap-through

region is also incorrect, while the combined model (Holst et

al., 2011) incorporating the axial elongation is much closer

to the actual experimental result.

Nonlinear FEA (Dunning et al., 2012), however, can ac-

curately predict post-buckling behaviour of bistable mecha-

nisms as well as accurate stress values without any assump-

tions as mentioned above, which surpasses these fast numeri-

cal methods in Kim and Ebenstein (2012), Holst et al. (2011)

and Zhang and Chen (2013). In addition, nonlinear FEA can

analyse off-axis characteristics that these methods in Kim

and Ebenstein (2012), Holst et al. (2011) and Zhang and

Chen (2013) cannot deal with. It can be easily employed by

most engineers and researchers.

As the force-displacement curve for post-buckling beams

goes through a negative stiffness range, simple force-

controlled simulations are not suitable since the controlled

force is no longer a monotonic control parameter. There-

fore, the bistable mechanism analysis needs displacement-

controlled FEA simulation. For the simulation cases in

bistable mechanisms, there is a necessity to apply an en-

forced displacement and measure the load generated at

the restrained node. Enforced-displacement control is what

is needed to correctly model the post-buckling behaviour

of a beam, especially if the off-axis analysis for exam-

ple is being tested. In the off-axis analysis, the beam must

be fixed (preloaded) at a specified position while other

loads/displacements are applied, which cannot be achieved

using force-controlled methods.

The nonlinear FEA in this paper was performed in Strand7

software, a powerful nonlinear FEA solver, using the 20-

node brick meshing element. The customizability of Strand7

allows the modelling of the bistable mechanism to be eas-

ily achieved. The simulation method is to first apply an en-

forced displacement and then to determine the resultant reac-

tion forces developed due to these enforced displacements.

The simulations can be modified to simultaneously change

restraints and loads. The Strand7 solver is also much more

intuitive allowing the user to monitor the solution conver-

gence behaviour with a convergence graph when a simulation

is running for example. The FEA solver can be monitored

and adjusted in much greater detail.

3 Off-axis rotational analysis

In this section, a case study is analysed for investigating the

off-axis rotation behaviour. The beam length was set up to

L = 50 mm with the in-plane thickness T = 1 mm, out-of-

plane depth B = 5 mm, inclined angle θ = 10◦ and Young’s

Modulus E= 2.4 GPa. In order to avoid the high-order buck-
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(a) Initial configuration 

 
(b) Buckled beam being rotated 

Figure 2. Off-axis rotation.

ling with high peek force and high stress, an optimised slight

curvature (1/1000 mm−1) (Dunning et al., 2012) was applied

to the beam, which is trivial in comparison to the beam length

but is enough to perturb the beam to buckle at lower bending

modes (Fig. 1b).

The FEA simulations of in-plane off-axis rotation for the

bistable mechanism (Fig. 2) were performed on Strand7.

Before implementing the off-axis rotational analysis, the

primary translational analysis of the bistable mechanism

was conducted as shown in Fig. 3. As can be seen ap-

proximately,D1= 1.1 mm,D2= 9.1 mm,D3= 11.7 mm and

D4= 13.2 mm when referring to Fig. 1c.

To determine the off-axis rotational behaviour, the bistable

mechanism was guided (by applied constraint) to displace

only in the primary motion direction (y axis) by the

displacement-controlled FEA simulation. For each guided

primary displacement increment, the rotational test was per-

formed where the bistable mechanism was displaced in the

rotation direction and the reaction moment in this rotational

direction was then recorded. Under the conditions that the

primary motion is incremented from 0 to 14 mm with 0.5 mm

each step and that the rotation is incremented from 0 to 15◦

with 0.15◦ each step, the graph of moment versus rotation

is shown in Fig. 4. The stable rotational points can be ob-

served from the FEA results when there is a zero moment

point with a positive rotational stiffness. Similarly, the insta-

ble rotational points can be seen when there is a zero moment

point with a negative rotational stiffness.

It is shown from Fig. 4a and b that there is no other sta-

ble rotational point except the zero point (home position)

for Y = 0 mm or Y > 13.0 mm, which complies with our ex-

pectation. For Y = 0 the bistable mechanism also acts as a

conventional compliant rotational joint with positive stiff-

ness thereby having only one stable rotational point at the

home position. For Y > 13.0 mm the bistable mechanism is

approximately beyond the second stable point of the pri-

mary translation with positive stiffness, so it is expected to

have only positive rotational stiffness over the rotation range

(i.e. only one zero stable rotational point). For each primary

motion Y over [0.5 mm, 12.5 mm], there are either three or
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Figure 3. Load-displacement relation in the primary direction for

the case study.

two stable points of the rotation. Figure 5 shows the number

of the stable rotational points with regard to each primary

motion, and indicates that after about Y = 3.0 mm but before

Y = 12.5 mm, the number of stable points reduces from three

(two non-zero positions and one zero position) to two (two

non-zero positions). The positive stable rotational position

corresponding to each primary motion is shown in Fig. 6. It

can be found that the stable position increases before a crit-

ical transition point at about Y = 6.0 mm but decreases af-

ter this critical point. It can be also noted from Fig. 4 that

near the zero rotational point the rotational stiffness is ap-

proximately zero under small specific primary motion (ex-

cept Y = 0) or under the specific primary motion between

Y = 12.5 mm and Y = 13.0 mm, i.e. there is approximately

constant moment.

It is interesting to be seen that with the increase of

the primary motion Y , the positive rotational displacement

at the maximal negative moment point increases before

Y = 3.0 mm but decreases after Y = 3.0 mm, and the maxi-

mal negative moment value has an increasing trends before

Y = 7.0 mm but a decreasing trends after Y = 7.0 mm.

Therefore, by controlling the primary motion from

Y = 3.5 to 12.5 mm as shown in Figs. 5 and 6, the mecha-

nism can automatically rotate to one stable rotational status

for any primary motion since the rotation zero point is an un-

stable position. This suggests that an infinitely-stable mech-

anism can be achieved due to the fact that there are infinite

stable positions of rotation corresponding to infinite primary

motion positions. A conceptual design of the infinitely-stable

rotational mechanism is shown in Fig. 7.

In order to qualitatively verify the multistable off-axis ro-

tation behaviour as discussed in this section, a similar (sim-

ple) prototype made of polycarbonate was fabricated by CNC

milling machining as shown in Fig. 8. By manually displac-

ing the bistable mechanism in the primary translational di-

rection using the sliding guide, the rotational bistable behav-

iors at two specific primary translation positions (Y = 6.0 and

www.mech-sci.net/6/75/2015/ Mech. Sci., 6, 75–80, 2015
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(a) Primary motion increase from 0 mm to 6 mm 
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(b) Primary motion increase from 6 mm to 14 mm 
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Figure 4. Moment versus rotation graph for the bistable mechanism.
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Figure 5. Number of stable rotational points under the specified

primary motion.
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Figure 6. Positive stable rotational positions under different pri-

mary motions.

10.5 mm) have been observed (Fig. 8c–f). It is shown that

the stable rotational displacement is larger under Y = 6.0 mm

than that under Y = 10.5 mm, which agrees with the FEA re-

sutls (Fig. 6).

4 Conclusions

The off-axis rotation characteristics of a bistable translational

mechanism have been investigated in detail through displac-

ing the guided primary translation/motion at different po-

sitions. For each primary motion, a moment-rotation curve

has been obtained using the nonlinear FEA, which shows the

multistable statues of the rotation. The idea of an infinitely-

stable rotational mechanism that can be stable at any rotation

position is proposed by controlling the primary motion.

Future works include fast numerical modelling, experi-

mental testing verification and geometrical optimization for

the off-axis rotation behavior.
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