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Abstract. Dimensional synthesis of mechanisms to trace given paths is an important problem with no exact

solution. In this paper, the problem is divided into representation of curve shape and learning the relation between

curve shape and mechanism dimensions. Curve shape is represented by Fourier descriptors of cumulative angular

deviation of the curve, which do not depend on the position or scale of the curve. An artificial neural network

(ANN) is trained to learn the (unknown) relation between the Fourier descriptors of a planar curve and the

dimensions of the mechanism tracing that curve. Presented with any simple, closed, planar curve, the ANN

suggests the dimensions of a four-bar whose coupler curve is similar in shape. A local optimization procedure

further refines the results. Examples presented indicate the method is successful as long as the curve shape is

such that the mechanism is able to trace it.

1 Introduction

Mechanical linkages are used extensively for transforming

motion and transmitting power in industrial machinery, agri-

culture, construction, automobiles and household gadgets.

The design of linkages involves determining dimensions of

constituting links so that the linkage moves in a manner nec-

essary to carry out the required task (Sandor and Erdman,

1988).

Figure 1 shows a common four-bar linkage whose tracer

point P generates a path known as the coupler curve when

the input link rotates. The problem of dimensional synthesis

for path generation requires calculation of suitable dimen-

sions for the linkage so that point P traces a desired contin-

uous path. An exact solution for this problem is not possible

because of the limited number of dimensions available, but

various techniques have been used for approximate solutions.

The most common techniques used include conventional op-

timization methods (Tomas, 1968; Sancibrian et al., 2004;

Diab and Smaili, 2008), using atlases of mechanisms (Zhang

et al., 1984), simulated annealing (Ullah and Kota, 1996),

and genetic algorithms or evolutionary algorithms (Cabrera

et al., 2002; Laribi et al., 2004; Starosta, 2008; Lin, 2010).

In this research, normalized Fourier descriptors are used

to represent the shape of coupler curves and artificial neural

networks (ANNs) are used for approximating the inverse re-

lationship between curve shape and linkage dimensions. A

brief introduction to Fourier descriptors is presented below,

followed by review of the relevant research.

Fourier descriptors are functions used for description of

shapes of object boundaries (or of any two-dimensional, sim-

ple closed curve). The boundary of a shape is represented

by a periodic function that, when expanded in a Fourier se-

ries, yields a set of coefficients containing the shape infor-

mation. Different types of Fourier descriptors have been pro-

posed in the literature, including Fourier descriptors of the

boundary (McGarva and Mullineux, 1993; Persoon and Fu,

1986) and Fourier descriptors of the angular orientation of

the curve (Zahn and Roskies, 1972; Buskiewicz et al., 2009).

The latter method is used here, which describes shape using

the net amount of angular bend of the curve relative to the

starting angle as a function of arc length φ(l)= θ(l)− θ(0),

as shown in Fig. 2. The main advantage of using this for-

mulation is invariance to translation, rotation and scaling of

the curve so that the shape of a coupler curve is represented,

independently of the position and size of the linkage pro-

ducing it. The Fourier descriptors can also be normalized to
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Figure 1. A four-bar linkage.

 

 

 

  

Figure 2. Net angular bend of curve boundary as a function of curve

length.

remove dependence on starting point of the curve, direction

of traversing the curve and to remove the difference between

mirror image curves; these properties are irrelevant to syn-

thesis of mechanisms.

After a change of variable to remove length dependence,

t = 2πl
L

, and addition of a linear part to remove discontinu-

ities, the function to be expanded in a Fourier series is given

by Eq. (1).

ϕ∗ (t)= ϕ

(
Lt

2π

)
+ t t ε [0,2π ], (1)

where L is the total length of the curve. This periodic func-

tion is expanded in a Fourier series and the coefficients of the

series are termed the Fourier descriptors.

Work on linkage synthesis using ANNs is not extensive.

Hoskins and Kramer (1993) used a radial basis function

(RBF) ANN in combination with optimization techniques to

construct an approximate inverse model of four-bar linkage.

In that work, coupler curve shape is represented by power

spectrum Fourier transform of curvature versus length. The

RBF. ANN used consists of 50 input nodes, 50 to 750 nodes

in the single hidden layer and 5 nodes in the output layer.

A constrained local optimization technique is used to refine

linkage parameters. Vasiliu and Yannou (2001) use normal-

ized Fourier descriptors of the boundary to represent curve

shape and then use an ANN with 17 input neurons, 2 hidden

layers of 22 neurons each and 5 output neurons to synthe-

size four-bar mechanisms for path generation. Xie and Chen

(2007) discuss motion synthesis of a crank-rocker based on

neural networks. The angle of the coupler link and the po-

sition of the coupler point are first mapped onto a curve in

image space, which is then described by a two-dimensional

Fourier transform. A separate three-layered ANN is designed

for relating each link dimension to the curve shape. It is

not clear, however, how a network can model the relation of

curve shape to one link dimension, without reference to other

links. Galan-Marin et al. (2009) use wavelet descriptors and

neural networks for linkage synthesis.

Peñuñuri et al. (2011) propose combined synthesis for

function, path, and motion generation by combining the

objective functions of all three. Kim and Yoo (2012)

demonstrate simultaneous number and dimension synthe-

sis for function generation problems. Ebrahimi and Pay-

vandy (2015) use the structural error objective function but

add a penalty for violation of workspace limits. They demon-

strate the use of the imperial competitive algorithm, a varia-

tion of genetic algorithms, to solve the problem.

In the next section, the methodology of the work is out-

lined, including the equations used. Section 3 presents the

design of the ANN, including the structure of network and

details of training and testing, followed by some example

problems. Finally, a discussion of the results is presented and

conclusions drawn in Sect. 4.

2 Methodology

The methodology used in this work comprises the following

steps:

1. Dimensions for a large number of four-bar mechanisms

were generated at random, keeping link length ratios

within a reasonable limit and ensuring all mechanisms

are crank-rockers so that the coupler curves produced

are closed curves.

2. Coupler curves of the generated mechanisms were ob-

tained, each as a set of points in the plane.

3. Each coupler curve was transformed into its Fourier de-

scriptors and descriptors were normalized.

4. An ANN was designed to take Fourier descriptors of the

generated curves as the input and corresponding mech-

anism dimensions as the output or target values. The

ANN was trained using the data generated.
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  Figure 3. Four-bar representation for analysis.

5. The trained network was tested by presenting new data

to it. Results were confirmed by numerical as well as

visual comparison of desired and proposed curves.

6. To determine the four-bar mechanism that will repro-

duce any desired curve, the curve is first converted to its

Fourier descriptors, which are then presented as input

to the trained ANN. The mechanism dimensions pro-

duced by the ANN are further refined by using a local

optimization procedure.

Each step is explained below in some detail.

2.1 Generation of crank-rockers

With reference to Fig. 3, a four-bar linkage can be repre-

sented by the lengths of its four links plus two variables for

locating the coupler point P, the path tracing point, on link 3.

For scale independence, the length of link 2 is taken as unity

and limits are imposed on the lengths of other links to obtain

a practical linkage. The five variables selected to represent a

four-bar are as given in Eq. (2).

1≤ r i ≤ 5 i = 1,3,4,5 and 0≤ θc ≤ 2π (2)

Link lengths are generated at random but still meeting the

Grashof conditions, as follows:

– Choose 1≤ p ≤ 5 at random.

– Choose l at random such that p ≤ l ≤ 5.

– Choose q at random such that s+ l ≤ p+ q ≤ p+ l,

where s = r2 to ensure a crank-rocker.

– The three lengths p, q, and l are arbitrarily assigned to

r1, r3, and r4.

The other two variables are generated at random between

chosen limits. Five thousand random crank-rocker linkages

were generated using this procedure.

2.2 Calculation of coupler curves

As shown in Fig. 3, the positions of various links are repre-

sented as variables in the complex plane. All link lengths are

known, as well as angles of r1 (taken as zero) and r2. The

following calculations (Eqs. 3–8) determine the position of

the coupler point P.

r7 = r2− r1 (3)

ψ = cos−1

[
r2

4 + r2
7 − r2

3

2 r4 r7

]
(4)

arg(r4)= arg(r7)−ψ (5)

r3 = r4− r7 (6)

arg(r5)= arg(r3)+ θc (7)

rP = r2+ r5 (8)

Repeating the calculations by varying the crank angle in the

range ≤ θ2 ≤ 2π , a set of complex numbers, V i , are ob-

tained, which are the vertices of the coupler curve.

2.3 Calculation of Fourier descriptors

The curve is converted from vertices to length–angle repre-

sentation, using Eqs. (9)–(11).

1li = V i+1−V i (9)

li = li−1+ |1li | (10)

1ϕi = arg(1li+1)− arg(1li) , (11)

where 1li is the ith side of the polygonal curve, li is the

length from the first to the ith vertex, and 1∅i is the change

in angle at the ith vertex.

The Fourier descriptors of the curve, 2m+ 1 in number,

are then calculated from Eqs. (12)–(16) (Zahn and Roskies,

1972). The polar form of Fourier descriptors was selected as

it is easier to normalize.

µ0 = −π −
1

L

n∑
i=1

li1ϕi (12)

ak = −
1

kπ

n∑
i=1

1ϕi sin
2πkli

L
k = 1, . . ., m (13)

bk = −
1

kπ

n∑
i=1

1ϕi cos
2πkli

L
k = 1, . . ., m (14)
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Figure 4. Example 1 (top row) and 2 (bottom row). On the left, the ANN output and on the right the optimized curve, both superposed on

the original curve.

Ak =

√
a2
k + b

2
k k = 1, . . ., m (15)

αk = tan−1 ak

bk
k = 1, . . .,m (16)

The amplitudes Ak are already normalized, while the phase

angles αk are normalized as follows to remove dependence

on starting point, direction of curve traversal and mirroring

(Buskiewicz et al., 2009). 1α =
αj
j

, where j is the index of

the first non-zero harmonic.

For k = 1, . . .,m,

αk = (αk − k1α)mod 2π. (17)

If αk > π,αk = (αk −π). (18)

If αk >
π

2
,αk = (π −αk) . (19)

3 Design of artificial neural network

An artificial neural network (ANN) is a mathematical struc-

ture that takes a vector of inputs (22 normalized Fourier de-

scriptors of a curve) and produces a set of outputs (the five

dimensions of a four-bar mechanism). To train the network,

it is provided with a large set of inputs and corresponding

outputs so that it “learns” the relationship between inputs

and outputs. After the network has been trained and tested,

it can be used by providing an input (Fourier descriptors of

a desired curve) and obtaining the output (dimensions of the

mechanism that will produce a curve shaped like the desired

curve).

A multilayer feed-forward neural network was selected

and trained using back propagation. After some experimen-

tation, m= 11 was selected in the above equations so that a

total of 22 Fourier descriptors were generated for each curve.

Accordingly, the neural network had 22 neurons in the input

layer. The output layer had 5 neurons, representing linkage

dimensions. The number of hidden layers and the number

of neurons in each layer were varied until satisfactory per-

formance was obtained. Specifications of the final network

architecture are shown in Table 1. The functions named in

that table are Matlab Neural Network Toolbox™ functions.

It is useful to scale the inputs and outputs before train-

ing the neural network so that they fall within a specific

range. This allows for efficient training but requires keeping

track of scaled and unscaled values. Matlab mapping func-

tion mapminmax was used to provide linear scaling in the

range [−1,1]. Training was carried out using the Broyden–
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Figure 5. Example 3. (Left panel) The original curve, and (right panel) the original and the final curves compared.

Fletcher–Goldfarb–Shanno algorithm to reduce the perfor-

mance function msereg, which is the average squared error

between actual output and the desired output of the network.

3.1 Simulation and testing

After designing and training the neural network using 5000

cases, it was tested for a new set of 50 coupler curves not used

in training. The dimensions of 50 four-bar linkages output

by the network were then used to construct coupler curves.

Checking of results was carried out by comparing dimen-

sions of linkages and values of Fourier descriptors as well as

visual comparison of the shapes of curves.

3.2 Example problems

In the first two example problems, a four-bar was chosen at

random, the Fourier descriptors of its coupler curve calcu-

lated and supplied as input to the trained ANN. The ANN

output dimensions of a four-bar were then optimized to min-

imize the difference between Fourier descriptors of input

and output curves. Table 2 shows the comparison of link-

age dimensions for the original four-bar, the output of ANN,

and the final, optimized four-bar for each example. Figure 4

shows the comparison of the curve shapes in each case. For

comparison, the output curves were superposed on the orig-

inal curve as follows (Buskiewicz et al., 2009): the output

curve is translated so that its centroid is positioned over the

centroid of the original curve. The curve is then rotated about

the centroid so that the orientations of the principal axes of

the two curves match and finally the curve is scaled so that

the lengths of the two curves match.

In the third example, a general desired curve was cho-

sen rather than a coupler curve, as shown in Fig. 5 (left

panel). The four-bar mechanism obtained has the coupler

curve shown in Fig. 5 (right panel) and the following dimen-

sions:

r1 = 1.1711,r3 = 13.8151,r4 = 13.8736,

r5 = 2.6779,θc =−0.8907 rad. (20)

Table 1. Structure of ANN used.

No. of input neurons 22

No. of hidden layers 03

No. of neurons in hidden layers [22,5,5]

Transfer function of hidden layers Tan-sigmoid

No. of output neurons 5

Transfer function of output neurons Purelin

Training function Trainbfg

Network performance function mseregs

4 Discussion and conclusions

In the first two examples presented, the desired curve was a

coupler curve obtained from a known four-bar mechanism.

The algorithm was able to find the same four-bar mechanism

in the first case but converged to a different four-bar having

similar coupler curve. This was observed in other example

cases also. Sometimes the curve obtained is a mirror image of

the original curve; however, that problem is easily corrected

by “flipping” the four-bar.

In the third example, a general desired curve (not being

a coupler curve) was used to determine the dimensions of a

four-bar that will produce a coupler curve similar in shape.

The results show that although the algorithm gets close, a

significant difference remains in curve shape. This is most

likely due to the limitations of available coupler curves that a

four-bar can generate, rather than problems in the algorithm.

In conclusion, a new method for approximate dimensional

synthesis of planar linkages has been proposed and examples

of application presented. The method is seen to be success-

ful provided the desired path is close to the type of curves

the mechanism is able to create. Although four-bar coupler

curves have wide-ranging shapes, it should be noted that the

method is limited to simple, closed curves; open curves (such

as those produced by double-rocker mechanisms) and curves

with crunodes are excluded.

www.mech-sci.net/6/29/2015/ Mech. Sci., 6, 29–34, 2015
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Table 2. Results for examples 1 and 2.

Four-bar dimensions r1 r3 r4 r5 θc (rad)

Example 1

Input four-bar 2.9587 3.4723 3.5771 3.3454 3.3771

ANN output four-bar 3.1876 3.4862 3.6964 3.1337 3.4049

Optimized four-bar 2.9662 3.5503 3.6504 3.3455 3.3798

Example 2

Input four-bar 3 3 2.5 1 5

ANN output four-bar 1.9640 2.1175 2.0717 0.7483 2.4803

Optimized four-bar 3.5368 2.7720 2.2270 1.0612 1.0333

Edited by: L. Birglen

Reviewed by: two anonymous referees
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