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Abstract. The time optimal path tracking for industrial robots regards the problem of generating trajectories that

follow predefined end-effector (EE) paths in shortest time possible taking into account kinematic and dynamic

constraints. The complicated tasks used in industrial applications lead to very long EE paths. At the same time

smooth trajectories are mandatory in order to increase the service life.

The consideration of jerk and torque rate restrictions, necessary to achieve smooth trajectories, causes enor-

mous numerical effort, and increases computation times. This is in particular due to the high number of optimiza-

tion variables required for long geometric paths. In this paper we propose an approach where the path is split

into segments. For each individual segment a smooth time optimal trajectory is determined and represented by a

spline. The overall trajectory is then found by assembling these splines to the solution for the whole path. Further

we will show that by using splines, the jerks are automatically bounded so that the jerk constraints do not have

to be imposed in the optimization, which reduces the computational complexity. We present experimental results

for a six-axis industrial robot. The proposed approach provides smooth time optimal trajectories for arbitrary

long geometric paths in an efficient way.

1 Introduction

Highly automated production lines with efficient exploitation

of the available resources become increasingly important for

high wage countries to stay competitive. The utilization of

present hardware plays a central role. This can be achieved

by an intelligent path planning, using mathematical models

of the mechanics to consider technical constraints in an opti-

mization for the determination of optimal motions. It is an es-

tablished approach to divide the problem into the geometric

path planning using a scalar path parameter s and optimiza-

tion (Bobrow et al., 1985; Pfeiffer and Johanni, 1987). The

path planning can for instance be done by combining lines

and circles via clothoids. A popular and comfortable way is

the definition of the path using polynomials or splines (Geu

Flores and Kecskemethy, 2012; Gattringer et al., 2014). In

Quang-Cuong (2014) a classification is proposed to divide

optimization strategies deriving an optimal trajectory in the

2-D-phase space with coordinates (s, ṡ) into three families:

1. Dynamic programming (DP): the phase space is divided

into a discrete grid. Based on Bellman’s optimality prin-

ciple (Bellman and Dreyfus, 1962) an optimal trajectory

is derived on this grid (Shin and McKay, 1985).

2. Numerical integration: the optimal solution for the path

parameter time evolution is obtained by integrating

maximum and minimum accelerations and finding op-

timal switching points for this acceleration and de-

celeration periods in the phase plane (Bobrow et al.,

1985; Pfeiffer and Johanni, 1987). Geu Flores and

Kecskemethy (2012) used this method to solve the so-

called generalized waiter motion problem.

3. Convex optimization: the third method is based on a

convex formulation of the optimization problem that

can be solved with efficient optimization packages (Ver-

scheure et al., 2009; Ardeshiri et al., 2011).

Published by Copernicus Publications.



246 M. Oberherber: Smooth time optimal robot path tracking

The tasks to be performed in industrial applications often

contain long paths with rough as well as fine contours. Fur-

thermore, the movement should be precise in order to com-

ply with required accuracies on the one hand, and the motor

torques should be smooth in order to avoid vibrations and to

protect the hardware. Short optimization times are also cru-

cial in order that the saving in execution time is not annihi-

lated by increased calculation times.

To overcome these demands, one may start to optimize the

whole path using one approach mentioned above consider-

ing kinematic (joint velocity and acceleration) and dynamic

(torque) constraints. Smooth trajectories can be achieved by

taking jerk or torque rate restrictions into account. In Con-

stantinescu and Croft (2000) and Oberherber et al. (2014)

methods to consider them in phase space are presented,

while Debrouwere et al. (2013) proposes a sequential con-

vex scheme to solve a nonlinear program. However, for stan-

dard six axis industrial robots and long geometric paths the

calculation effort is enormous due to the high number of opti-

mization variables and restrictions. This is also caused by the

fine discretization, required for a detailed implementation of

fine structures of the geometric path. A non-equidistant dis-

cretization, where only certain regions of the path are dis-

cretized finely, would be a first choice to reduce the size of

the problem. But, if the path is very long and contains many

finely discretized regions, this approach is not feasible. An-

other way to reduce the number of optimization variables is

a decomposition of the path into segments, performing the

optimization for the segments and assembling the solutions

to the whole optimal trajectory. In order to achieve a con-

tinuous trajectory, terminal conditions have to be defined at

the intersection points and regarded in the optimization. We

use a DP approach to calculate optimal trajectories for each

segment and subsequently for the entire path. For this task

we consider restrictions of path velocity, joint velocity and

acceleration and also torque limits. Neglecting the jerk re-

strictions is reflected in a bang-bang behavior of the motor

torques.

To obtain smooth robot movements in short optimization

times, we approximate the solution provided by the DP ap-

proach for each segment of the path with a spline. Subse-

quently, this approximation is used as initial guess for the

optimization of the spline using an active-set solver (No-

cedal and Wright, 2006), considering the same restrictions

as before. The degree of the splines and the number of con-

trol points determine the smoothness of the solution. Since

the initial state is near to the global optimum, the calculation

times remain low.

As the initial state for the spline optimization is derived

by a DP approach, the first part can be assigned to category

one. A categorization of the spline optimization is not really

possible, since we use an active set solver to optimize the

non-convex problem.

The paper is organized as follows: in Sect. 2 the geometric

path, describing the task the robot should perform, is defined.

Section 3 treats the time optimal path planning problem in

the parameter space in a general way, Sect. 4 introduces our

solution strategy. Section 5 addresses the used optimization

based on DP in detail. An approach to attain smooth trajec-

tories with short calculation times is introduced in Sect. 6.

Experimental results, realized on a Stäubli RX130L – a six-

axis industrial robot, are presented in Sect. 7.

In this paper we use the abbreviation ˙( )= d
dt

for the time

derivative of a quantity. The derivative with respect to the

path parameter is denoted with ( )′ = d
ds

. Bold lower case

letters characterize vectors, while capital letters are used for

matrices with the exception of commonly used notations in

mechanics. The euclidean norm of the vector x is denoted

with ‖x‖.

2 Geometric path planning

The aim of path planning is the definition of the robot’s task.

There are several methods to define such a geometric path,

like polynomials, combination of lines, circles and clothoids

(Müller et al., 2007) or splines (Bobrow, 1988; Gattringer et

al., 2014). The latter provide a comfortable way to define the

robots motion whether in joint coordinates q or in Cartesian

coordinates zE. To consider obstacles in the workspace, it is

common to define the geometric path in the Cartesian space

as shown in Fig. 1.

A three-dimensional spline curve, describing the end-

effector position can be written as

rE(s)=

nD∑
l=1

d lN
d
l (s), (1)

with the scalar path parameter s = [sB, sE] (sB – begin of the

path, sE – end of the path), and the nD control points d l defin-

ing the shape of the curve. These control points can either

be defined directly or can be determined using interpolation

points pl as shown in Gattringer et al. (2014). Nd
l (s) denote

the B-spline basis functions of degree d. There are different

ways to define this basis functions as local or global support

functions. For details we refer to De Boor (1978) and Piegl

and Tiller (1995). Unit Quaternions Q=
[
e0,e

T
]T

(scalar

part e0 and vector part e) are used for the definition of the

end-effector orientation QE. The evolution of the separate

coordinates e0, ex , ey and ez along the path is again defined

via splines with a subsequent normalization. The angular

velocity of the end-effector, represented in the end-effector

frame, can be calculated to EωE = 2[e0ė− ẽė− eė0].

3 Time optimal path tracking

3.1 Problem description

In Sect. 2 the geometric path is defined as a function of the

scalar path parameter s. The goal of this section is to find an

optimal relationship between the path parameter and time:
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Figure 1. Six-axis industrial robot with geometric path.

s(t). This is accomplished with an optimization considering

technical constraints like motor-torque, velocity and acceler-

ation restrictions. The general formulation of the path track-

ing problem is given by

min
tE∈R+,τ (·)

tE∫
0

(
k1+ k2τ

T τ
)

dt, (2)

wherein τ denotes the vector of motor torques as a function

of time. With the coefficients k1 and k2 a weighting between

time and energy optimality can be achieved. Basically we

are able to handle this general case, but in this paper we

concentrate on time optimal solutions, therefore the factors

k1 = 1 and k2 = 0 are used and the torques vanish from the

cost function. The cycle time tE represents the solution of

the optimization and is consequently an unknown quantity.

A change of the integration variable from t to s leads to

tE =

tE∫
0

1dt =

sE∫
sB

1

ṡ(s)
ds (3)

and the optimization problem can be written as

min
ṡ(·)

sE∫
sB

1

ṡ(s)
ds. (4)

3.2 Technical constraints

3.2.1 Process constraints

For the trajectory optimization several technical constraints

should be considered. The first one concerns the end-effector

velocity vE =

∥∥∥ drE

dt

∥∥∥, which is a process related restriction.

Such constraints can be found in grinding or welding opera-

tions. By using the chain rule

dx

dt
=

dx

ds

ds

dt
=

dx

ds
ṡ = x′ṡ, (5)

the path velocity follows as

vE =

∥∥∥∥drE

ds

ds

dt

∥∥∥∥= ∥∥r ′E(s)
∥∥ ṡ (6)

in the parameter range.

3.2.2 Manipulator constraints

Restrictions imposed by the used hardware concern the mo-

tor torque, joint velocity, and joint acceleration. In Sect. 2 the

path is determined in Cartesian coordinates whereas these

restrictions are defined in joint coordinates. Since the end-

effector coordinates are calculated with the forward kinemat-

ics z
E
= [rTEQTE ]T = f (q) for desired joint positions, the in-

verse kinematics q(s)= f−1(z
E

(s)) provides the joint angles

for desired end-effector coordinates. There are different ways

to solve this locally, but not globally unique problem. We use

a numerical approach based on the relation(
vE

ωE

)
= J(q)q̇ , (7)

with the end-effector velocities vE, ωE represented in the in-

ertial frame and the Jacobian

J=

(
∂vE

∂ q̇
∂ωE

∂ q̇

)
. (8)

With the chain rule Eq. (5), the joint velocity and acceler-

ation follow as

q̇ =
dq

ds
ṡ = q ′ṡ (9)

q̈ = q ′′ṡ2
+

1

2
q ′(ṡ2)′. (10)

The end-effector prime quantities are calculated, using

z′E(s)=
[(
r ′E(s)

)T
, (ωE(s))T

]T
,

z′′E(s)=
[(
r ′′E(s

)
)T ,
(
ω′E(s)

)T ]T
and the Jacobian J

q ′ = J−1z′E (11)

q ′′ = J−1
[
z′′E− J′q ′

]
. (12)

In order to formulate the torque restrictions, a dynamic model

of the robot is necessary. It is derived with the help of the Pro-

jection Equation (Bremer, 2008) resulting in the Equations of

Motion (EoM)

M(q)q̈ +g(q, q̇)= τ , (13)

wherein M(q) is the position dependent, symmetric and pos-

itive definite mass matrix. All other generalized forces like

www.mech-sci.net/6/245/2015/ Mech. Sci., 6, 245–254, 2015
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Coriolis-, gravitational-, centrifugal- and friction forces are

contained in g. The motor torques are represented by τ . As

well as the velocity and acceleration restrictions Eqs. (6),

(11), (12), also the torque restrictions are required in terms

of the path parameter. There exist different ways to express

the EoM in terms of the path parameter as those proposed in

Johanni (1988) and Geu Flores and Kecskemethy (2012). An

analytical formulation is shown in Gattringer et al. (2014),

where the parametrized EoM are written as

τ = a(s)(ṡ2)′+ b(s) ṡ2
+ c(s)+ dv(s)ṡ. (14)

The coefficients a, b, c and dv of the parametrized EoM fol-

low directly by rewriting and parametrizing the Projection

Equation.

By introducing the variable z= ṡ2 the optimization prob-

lem in parameter space follows as

min
z(·)

sE∫
sB

1
√
z(s)

ds (15)

s.t.
∥∥r ′E(s)

∥∥√z(s)≤ vE,max (16)

q̇min ≤ q
′(s)
√
z(s)≤ q̇max (17)

q̈min ≤ q
′′(s)z(s)+

1

2
q ′(s)z′(s)≤ q̈max (18)

τmin ≤ a(s)z′(s)+ b(s)z(s)+ c(s)+ dv(s)
√
z(s)≤ τmax. (19)

The values for the motor torque restrictions τmin, τmax

and joint velocity restrictions q̇min, q̇max can be taken from

the data sheets of the motors respectively gears. Generally

the lower limits are equal to the negative values of the upper

limits: τmin =−τmax and q̇min =−q̇max. The same applies

to the acceleration restrictions q̈min =−q̈max, which are usu-

ally defined in the joint controllers. Depending on the process

to be performed, the path velocity limit vE,max is set to the

optimal working speed.

The better the robot model matches the real system, the

better the limits can be exploited. Primarily parameters that

are necessary to simulate the kinematics, like link lengths or

distances between axis can be taken from CAD – data. The

parameters for the dynamic model – masses, centers of grav-

ity or inertia tensors can usually only be estimated with CAD

models. For a good match of the derived robot model with the

real system, a parameter identification as shown in Neubauer

et al. (2014) and Swevers et al. (1996) is indispensable.

4 General solution strategy

The requirements of smooth time optimal trajectories for

long geometric paths and short computation times were dis-

cussed in Sect. 1 as well as our idea to overcome this chal-

lenge. A reduction of optimization variables for a particular

optimization is achieved by dividing the path into sections

and performing the optimization for these segments. To get

z

s
sB = s1,b

zmax

zopt,1

zopt,2

zpr,1

zpr,2

so,1
so,2

sp,1
sp,2

s2,b

s1,e
s2,e

z(s1)
z′(s1)

z(s2)
z′(s2)

Figure 2. Solution strategy: successive dynamic programming

(SDP).

smooth trajectories in acceptable calculation times, we define

the evolution of z(s) in the “phase space” s× z as a smooth

spline curve and optimize its shape with an active-set solver.

For this kind of problem a suitable initial guess z0(s) is cru-

cial but is not always easy to define. In Verscheure et al.

(2009) a parabola is used. This approach works reasonably

well for zero velocity at the begin and end of the path, but is

not guaranteed to work in the general case of desired start and

end velocities. The division of the path into segments makes

their consideration mandatory to achieve a continuous over-

all trajectory. For that purpose we propose an elegant way

to derive the initial states by using a DP approach consider-

ing the terminal conditions and approximate its solution with

a spline curve. Since the DP approach provides the global

optimum, it yields an excellent approximation. However, the

discretization for this algorithm can be chosen coarse in or-

der to save computation time, since it only provides the initial

states for a further optimization of the spline curve.

The piecewise optimization procedure is sketched in

Fig. 2. It starts with the definition of an optimization so and

a prediction horizon sp. From sB to so,1+ sp,1 = s1,e the op-

timization is performed and provides an optimal trend, that

is split into zopt,1 and zpr,1. Along the optimization horizon

the optimal trajectory is stored and used as a part of the op-

timal trajectory of the whole path. The prediction horizon is

necessary to determine the terminal conditions. At the end of

the optimization horizon z(s1) and z′(s1) are stored as termi-

nal conditions. Afterwards the horizons are shifted forward

by so,1 and the next optimization starts at s2,b and leads to

s2,b+ so,2+ sp,2 = s2,e under consideration of z(s1), z′(s1).

This procedure is repeated till the end of the path is reached.

In further consequence we will call the sequential execution

of the algorithm successive dynamic programming (SDP).

The length of the horizons should be chosen carefully. A

short optimization horizon in combination with a long pre-

diction horizon leads to unnecessary long calculation times

since the solution of the prediction horizon is discarded. Con-

versely a long optimization horizon and a short prediction

Mech. Sci., 6, 245–254, 2015 www.mech-sci.net/6/245/2015/
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Figure 3. Graphical illustration of technical restrictions in the z×z′

plane.

horizon effects unnecessary deceleration phases. A general

choice can not be proposed, rather they have to be chosen

problem dependent.

5 Dynamic programming approach to determine an

initial solution

5.1 Graphical illustration of restrictions

For a fix point si on the path the restrictions in Eqs. (16)–

(19) can be graphically illustrated in the z× z′ plane. This is

exemplary shown in Fig. 3 for k = 2 degrees of freedom and

with the assumption that the lower restrictions are equal to

the negative upper restriction values.

The velocity restrictions can be squared and combined to

zL =min

[
q̇2
k,max

q ′2k

,
v2

E, max∥∥r ′E∥∥2

]
(20)

representing a vertical line in the z× z′ plane. For each joint

the acceleration limits follow to

z′
q̈±k
=

2
(
±q̈k,max− q

′′

k z
)

q ′k
(21)

and thus to linear functions in the z× z′ plane. Due to the

consideration of viscous friction (coefficient dv) each joints

torque restriction follows to

z′
τ±k
=
bk

ak
z+

ck

ak
+
dv,k

ak

√
z±

τk,max

ak
(22)

and thus to nonlinear functions in the z× z′ plane.

The set of curves provide a feasible region (shaded in

Fig. 3) for the states. Significant points are given by the

minimum and maximum feasible values of z, denoted with

zmin(si) and zmax(si). In Fig. 3 zmin(si) is equal to zero. Since

a numerical method is used to derive the feasible region it is

also possible to consider values zmin(si)> 0, as they occur

for example at the so-called waiter motion problem in Geu

Flores and Kecskemethy (2012). zmax(si) can either be given

by the intersection point of the lowest upper with the highest

lower restriction or can concur with the velocity restriction

zL. Within the range z= zmin. . .zmax(si) the feasible region

defines the minimum z′(z) and maximum z′(z) allowed gra-

dients.

5.2 Discretizing the problem

The DP approach is based on Bellman’s optimality princi-

ple. “[...] An optimal policy has the property that whatever

the initial state and the initial decision are, the remaining de-

cisions must constitute an optimal policy with regard to the

state resulting from the first decision (Bellman and Dreyfus,

1962) [...]”.

With a process running backwards, these decisions can be

picked up and optimized with respect to a desired optimal-

ity. For that purpose the first step is to discretize the whole

path into n segments s = sB. . .si . . .sE with a discretization

step size 1s = sE−sB
n

and i = 0. . .n. Then the optimization

horizon so with no discrete points and prediction horizon sp
with np discrete points are chosen as integral multiples of

1s. In the following only one segment s = sb. . .se is consid-

ered, where the start point is denoted with sb and the endpoint

with se. Afterwards we evaluate the minimum zmin(si) and

maximum admissible values zmax(si) at all discrete points as

shown in Fig. 3 resulting in the limiting curves zmin(s) and

zmax(s), that provide the base of operations. Further z is dis-

cretized with the step size1z=
zmax(si )−zmin(si )

m
intom pieces

in the range z= zmin(si). . .zmin(si)+j1z. . .zmax(si) with j =

0. . .m. The treatment of the path sections leads to a discrete

(no+ np)×m grid instead of a n×m grid (no+ np < n) in

the phase plane. Within this grid also the cost functional from

Eq. (15) has to be discretized to

W =

ne∑
i=nb

1s
√
zi

(23)

with nb = sb/1s and ne = se/1s.

5.3 Successive dynamic programming

The backwards running process starts at the paths end by ini-

tializing the cost functionW . Starting from a desired end ve-

locity represented by ze the gradients to all velocity points

ze−1,j on the path point se−1 are calculated with

z′e−1,j =
ze−1,j − ze

1s
. (24)

Subsequently they are compared to the minimum z′
e−1,j

and

maximum z′e−1,j allowed gradients at these points, provided

www.mech-sci.net/6/245/2015/ Mech. Sci., 6, 245–254, 2015
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j
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j

at zj .

by Fig. 4. The cost function is initialized with We−1,j =
1s
√
zj

at points with valid gradients (green solid in Fig. 5) and

with We−1,j →∞ for points with invalid gradients (green

dashed). With the cost function on hand the proceeding can

be continued for the path points se−2. . .sb. At these points

the cost function has to be considered in the calculation of

the optimal gradients. This is accomplished by determin-

ing the minimum and maximum allowed gradients z′
i,j

and

z′i,j using Fig. 4 of the actual point zi,j and calculating the

covered range [z
i,j
,zi,j ] at the following path point si+1.

Within this range along the z axis the location of the cost

functions minimum z∗i,j has to be found. A popular proce-

dure is a minimum search based on the golden ratio. How-

ever, we take advantage of its special shape for purely time

optimal trajectories W = 1s
√
z

. A closer examination shows

that the minimum is located at the highest value of z which

leads to a feasible value different to∞. This step is reflected

in a strongly reduced computation time. With z∗i,j the op-

timal gradient follows to z′i,j =
z∗i,j−zi,j

1s
and the cost func-

tion is adapted to Wi,j =Wi+1,j +
1s
√
zi,j

or Wi,j →∞ if it

is out of range. The whole procedure has to be executed for

every discrete point at the remaining ne− nb− 2×m grid.

After completion of the optimal gradient determination, the

optimal evolution of z(s) can be calculated iteratively with

zopt,i+1 = zopt,i + z
′

i,j1s (blue in Fig. 5), starting with a de-

sired start value zopt(sb)= zb and a valid gradient z′(sb)= z′b
provided by the terminal conditions.

6 Spline based smoothing of the initial solution

6.1 Local spline approximation

The solution provided by the DP approach in Sect. 5 leads

to a bang-bang – behavior in the motor torques, resulting in

heavy stress for the actuators and the mechanics. In Ober-

herber et al. (2014) an approach is proposed, that considers

torque derivative and joint jerk restrictions in the optimiza-

tion. This extension of the DP algorithm results in long cal-

culation times and is thus not feasible for long paths. For this

reason, we propose a different way in this paper to obtain

zz

zmax

z∗i,j
zi,j z′i,jz ′i,j

z
′ i,j

zi,j

zi,j

sb sisb+1 sese−1 Wopt W∞

ze

zb

z′e

z′b

zopt

0 0

Figure 5. Dynamic programming algorithm.

z

ssb se

zmax

zopt

ẑ0

ẑopt

d̂0

d̂

Figure 6. Spline approximation and optimal solution.

smooth trajectories. We approximate the optimal evolution

of zopt(s) derived by the dynamic programming algorithm,

with a spline curve.

In a first step the trend of z(s) is expressed as a spline

ẑ0(s)=

n̂D∑
l=1

Nd
l (s)d̂0,l (25)

whose n̂D control points d̂0 follow from a least squares ap-

proximation

min

d̂0∈Rn̂D

ne∑
i=nb

∥∥ẑ0(si)− zopt(si)
∥∥2

(26)

minimizing the error between optimal and approximated

trend at the discrete points s = sb, sb+1s. . .si, . . .se of the

DP algorithm. The spline ẑ0(s) is discretized to the originally

demanded fine discretization 1ŝ = sE−sB
n̂

with n̂ > n.

6.2 Ensuring consistency

6.2.1 Optimization problem

Since the approximation does not respect any restrictions, lo-

cal violations are the consequence. Therefore an optimization

of the control points, using d̂0 as initial states, is performed

Mech. Sci., 6, 245–254, 2015 www.mech-sci.net/6/245/2015/
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in order to satisfy the restrictions at all discrete points. The

optimization problem that has to be solved to fulfill the re-

strictions is

min

d̂∈Rn̂D

n̂e∑
i=n̂b

1ŝ√
ẑi

(27)

s.t.
∥∥r ′E∥∥√ẑ ≤ vE,max (28)

q̇min ≤ q
′
√
ẑ ≤ q̇max (29)

q̈min ≤ q
′′ẑ+

1

2
q ′ẑ′ ≤ q̈max (30)

τmin ≤ aẑ
′
+ bẑ+ c+ dv

√
ẑ ≤ τmax (31)

with n̂b = sb/1ŝ and n̂e = se/1ŝ. Figure 6 shows the SDP

solution zopt and the approximation ẑ0(s) with the control

points d0 used as initial states for the optimization. The

smooth time optimal trajectory ẑopt(s) follows from the opti-

mal control points d̂ provided by the optimization Eqs. (27)–

(31).

6.2.2 Gradients

For a fine discretization, the restriction check at every dis-

crete point is computationally expensive. A significant cal-

culation time reduction can be achieved by providing analyt-

ical expressions for the gradients of the cost functional and

restrictions with respect to the optimization variables. There

are actually software tools to compute gradient and Hessians

using automatic differentiation. Nevertheless, as the restric-

tions and the objective are given as analytical functions of the

optimization variables, the gradients can easily be calculated

analytically. By inserting the spline ẑopt(s)=
∑n̂D

l=1N
d
l (s)d̂l

into the discrete cost functional

W =

n̂e∑
i=n̂b

1ŝ√
ẑopt,i

, (32)

its gradient regarding the optimization variables d̂l follows to

∂W

∂d̂l
=

n̂e∑
i=n̂b

−
1
2
1ŝNd

l,i(
ẑopt,i

) 3
2

. (33)

Inserting the spline and its derivative with respect to the path

parameter ẑ′opt(s)=
∑n̂D

l=1N
d
l

′
(s)d̂l into the restrictions, their

gradients regarding the optimization variables d̂l follow to

∂vE

∂d̂l
=

1

2

∥∥r ′E∥∥ Nd
l√
ẑopt

(34)

∂ q̇

∂d̂l
=

1

2
q ′

Nd
l√
ẑopt

(35)

∂ q̈

∂d̂l
= q ′′Nd

l +
1

2
q ′Nd

l

′
(36)

∂τ

∂d̂l
= aNd

l

′
+ bNd

l +
1

2
dv

Nd
l√
ẑopt

. (37)

6.2.3 Terminal conditions

To achieve a continuous trajectory a consideration of the ter-

minal conditions for the spline optimization is necessary, as

with the DP algorithm. For this purpose the first two control

points have to be calculated separately. The first control point

is defined by the terminal condition for z(sb)

d1 = z (sb) , (38)

while the second control point follows to

d2 = z
′ (sb)− d1

Nd
1

′
(sb)

Nd
2

′
(sb)

(39)

for a transition gradient z′(sb) and the derivatives of the

first two basis functions Nd
1

′
and Nd

2

′
with respect to the

path parameter If also transition conditions z(se)= ze and

z′(se)= z′e at the end of the path are required, the same pro-

cedure also works for the last and second last control point.

The definition of z(s) as spline entails a further advantage

namely an easy way to achieve a smooth start and stop. Jerky

accelerations at the beginning and decelerations at the end of

the path lead to end-effector vibrations which are problemat-

ical especial for elastic systems since they need a long time

to settle to the desired endpoint. The definition of z′(sb)= 0

leads to a smooth start while z′(se)= 0 provides a smooth

stop.

7 Results

The experiments are realized with a Stäbli RX130L, a six-

axis industrial robot. It is controlled by a Bernecker und

Rainer system with PD controller and torque feed forward

control for each joint. We use a spline curve of degree d = 4

in form of our institute logo (a robin), shown in Fig. 7, as

geometric path. It is about l ≈ 7.8 m long and is discretized

into n̂= 2000 pieces to represent even the fine contours. The

end-effector orientation is held constant equal to the initial

orientation, so that an observer directly faces the robots end-

point.

For the calculation of the initial solution for the spline op-

timization with the SDP algorithm the velocity discretization

amounts m= 300, while the path is discretized into n= 250

in the range sB = 0. . .sE = 1. As horizons so = 0.2 (50 seg-

ments) and sp = 0.08 (20 segments) are defined which lead

to a subdivision of the total path into five segments.

Figure 8 shows the phase plane s×z with the liming curve

zmax, the optimal evolution zopt provided by the SDP ap-

proach and the smooth optimal trend ẑopt. This spline curve

of degree d = 4 contains n̂D = 40 control points for each

path segment.

A comparison of the motor torques, discontinuous (pro-

vided by the SDP approach) and smooth, is given by Fig. 9.

The basic behavior looks very similar, with the exception of

www.mech-sci.net/6/245/2015/ Mech. Sci., 6, 245–254, 2015
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Figure 7. Geometric path – logo of the Institute of Robotics at the

JKU Linz.
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Figure 8. Limiting curve and optimal evolution of the SDP ap-

proach and for the smooth solution.

a smooth start and stop, where the torques run into the static

torques. The difference becomes clearer by looking at the

torque rates in Fig. 10 and the joint jerks in Fig. 11. Fig-

ure 10 shows, that the torque rates of the discontinuous tra-

jectory are approximately ten times higher then the torque

rates of the smooth solution with n̂D = 40 control points for

each section.

The smoothness of the trajectory contrasts with an increas-

ing execution time from tE ≈ 3.72 s for the bang bang so-

lution to tE ≈ 4.02 s for the smooth solution with n̂D = 40

control points for each section. This smooth trajectory was

successfully implemented in simulations as well as on the

real system, a video clip of the implementation is available

on https://youtu.be/c5jllkLE4oU. A reduction of the number

of control points to n̂D = 25 leads to a smoother solution, but

increases the execution time to tE ≈ 4.22 s. Figure 11 shows

the joint jerks for the different cases. One can see, that the
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Figure 9. Motor torques, above: torque trends for the SDP solution,

below: torque trends for the smooth solution.
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Figure 10. Motor torque rates, above: torque rate trends for the

SDP solution, below: torque rate trends for the smooth solution.

reduction of the number of control points increases the exe-

cution time but reduces the joint jerks.

For validation purposes we implemented an optimization

with hard jerk constraints
...
qmax = 3000 rad

s3 , considered in the

spline optimization. This optimization converges only for a

low number of control points up to n̂D = 25. The calculation

time rises to tCPU ≈ 65 s, while the execution time tE ≈ 4.13 s

is nearly the same as without jerk restrictions.

Finally we tried to calculate a time optimal trajectory for

the whole path in one go, with n̂D = 100 control points. For

that purpose we implemented two different approaches to de-

rive an initial guess. A coarse discretized DP approach along

Mech. Sci., 6, 245–254, 2015 www.mech-sci.net/6/245/2015/
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Figure 11. Joint jerks, above: trend of joint jerks for the SDP

approach, middle: trend of joint jerks for a smooth solution with

n̂D = 40 control points for each section, below: trend of joint jerks

for a smooth solution with n̂D = 25 control points for each section.

the whole path, and inspired by Verscheure et al. (2009), a

parabola trend of the control points. For that purpose the lo-

cations of the control points d̂ are defined as

d̂k+1 =−min(zmax)
4k
(
−n̂D+ k+ 1

)(
n̂D− 1

)2 , (40)

with k = 1, . . ., n̂D and d̂0 = 0. The factor min(zmax) ensures,

that no velocity restriction is violated by the initial guess.

Both approaches require a coarse discretization of the path

(n̂= 1250) to achieve a convergence of the spline optimiza-

tion. Despite the coarse discretization, the calculation times

increase clearly. The slightly smaller execution times tE can

be attributed to the coarser discretization.

The results of the different methods are listed in Table 1. In

this table, SO is the abbreviation for spline optimization and

g indicates the usage of analytical gradients. Jerk suggests

the consideration of hard joint jerk restrictions in the spline

optimization. The last two lines of Table 1 show the results

for the optimization in one go with the DP and parabola ap-

proach for the initial guess.

The spline optimization was done with the active-set algo-

rithm of the Matlab optimizer fmincon. With the time tCPU

we indicate the computation time on a standard PC with a

CPU clock of 2.83 GHz. The results in Table 1, clearly indi-

cate the improvements of the presented approach compared

to an approach with jerk constraints. Nevertheless, the calcu-

lation times are significantly higher compared to the execu-

tion times. An improvement could for example be achieved

by implementing the optimization not in MATLAB, but in a

C-based optimization toolbox.

Table 1. Trajectory execution times tE and calculation times tCPU

for the different methods.

Method tCPU tE n̂D n̂

(s)

SDP 5 3.72 – 2000

SDP and SO 120 4.02 40 2000

SDP and SO and g 25 4.02 40 2000

SDP and SO and g 20 4.22 25 2000

SDP and SO and g and jerk 65 4.13 25 2000

DP and SO and g 58 4.01 100 1250

parabola and SO and g 101 4.01 100 1250

8 Conclusions

This paper presents an approach to derive smooth time opti-

mal trajectories for arbitrary long geometric paths. The main

idea is to split the path into sections, to calculate optimal

trajectories using terminal conditions, and to assemble the

solutions for the individual segments. To achieve smooth tra-

jectories in acceptable calculation times we propose a spline

optimization in the phase space. The problem of convenient

initial states for the optimization is solved with a DP ap-

proach in which terminal conditions can be considered in an

easy way. With the spline optimization it is also simple to

achieve a smooth start and stop of the robot. The presented

approach may be interesting for robot manufacturers which

already have algorithms for the path tracking problem and

want to extend them to achieve smooth trajectories. Exper-

iments to show the proper functionality of the method are

realized on a six-axis industrial robot. An extension of the

algorithm to consider jerk and torque rate restrictions in the

optimization will be part of future work.
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