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Abstract. Motor-driven flexible manipulator systems (MDFMSs) are widely used in industry robot fields. Dur-

ing the dynamic modeling, the separate investigation method which neglects the dynamic behavior of the driving

motor will cause an error in the dynamic analysis of the flexible manipulator, especially with high-speed oper-

ations. This paper proposes a coupled dynamic model of the MDFMS in which the driving motor and flexible

manipulator are considered as an integrated system, which can clearly reflect the influence of the dynamic effect

of the driving motor. Based on the proposed dynamic model, the vibration responses of the flexible manipulator

under different velocities, accelerations and structure parameters, as well as the effect mechanism of the driving

motor on the vibration responses, are investigated. The results obtained in this paper contribute to the structure

design, motion optimization and dynamic analysis of flexible manipulators.

1 Introduction

Flexible manipulators have been actively developed and

widely used, particularly in aerospace and robot fields be-

cause of their lightweight feature (Ge et al., 1998; Dwivedy

and Eberhard, 2006), which can meet the purposes of high-

speed operation and high energy utilization efficiency. Due

to their constructional features, however, the damp and stiff-

ness of the flexible manipulators are generally lower; as a

result, undesirable elastic deformations and residual vibra-

tions will be easily excited during the operation tasks of the

flexible manipulators, such as starting, transforming gestures

and stopping, which are inevitable and have a significant in-

fluence on the operation precision and structural life of pre-

cision operating systems, especially in high-speed operations

(Dwivedy and Eberhard, 2006; Maria et al., 2013). In order

to control the flexible manipulators more accurately, numer-

ous researchers have studied the dynamic modeling of the

flexible manipulators in order to investigate the dynamic be-

haviors (Mohsen et al., 2004; Qiu, 2012; Kerem et al., 2009;

Qiu et al., 2012).

As a typical coupled system, the flexible manipulator can

be modeled as a flexible arm and a driving base (Siciliano and

Khatib, 2008). Generally, the flexible arm can be described as

a flexible beam to reflect its lower damp and stiffness as well

as its elasticity properties, while the driving base is defined

by translational motions or rotational motions for driving the

flexible arm and executing the tasks. In these existing stud-

ies, however, the dynamic investigations have mainly focused

on the flexible arm and the dynamic behavior of the driving

base has been neglected. Due to the fact that the flexible arm

is coupled with the driving base, this separate investigation

method will cause an error in the dynamic analysis (Zhang

et al., 2010; Li et al., 2008). On the other hand, as a typical

electromechanical integrated system, the motor-driven flexi-

ble manipulator system (MDFMS) conveys the driving mo-

tor, transmission mechanism and flexible arm and will ex-

hibit complex dynamic behaviors because of the coupled ef-

fect between each component (Siciliano and Khatib, 2008),

which will influence the performance of the flexible manip-

ulator and lead to certain motion fluctuations in the driving

force and torque or the motion velocities and accelerations

of the driving base, especially for systems using harmonic
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drives (Zhao et al., 2014). The main reason for this is the

effect of the motor parameters and mechanism inertias (Li et

al., 2008; Liou et al., 1991; Andreaus and Casini, 2001; Liu et

al., 2015), such as the unbalanced mass of motor in different

rotational speeds and the backlash between the splines (Tut-

tle and Seering, 1996). However, it is worth noting that the

driving force and torque or the motion velocities and acceler-

ations of the driving base in the existing studies are assumed

to be constant without any fluctuations (Li et al., 2008; Wei et

al., 2006). From the above analysis we can see that this ideal

assumption deviates from the actual cases and will cause an

error in the dynamic analysis for a precision system. Thus, in

order to conduct an accurate dynamic analysis for the flexi-

ble manipulator, the dynamic modeling should also consider

the dynamic behavior of the driving base. The observation

by Smaili et al. (1996) indicated that their devised dynamic

model, which treats the linkage and its drive train as a sys-

tem, can provide a more accurate estimation for the dynamic

response of a mechanism during start-up. Considering the

driving motor and the linkage mechanism as an integrated

system, Li et al. (2008) investigated the nonlinear vibration

of a three-phase AC motor-linkage mechanism system.

From reviewing these current studies, it can be seen that

most of the related investigations considering the dynamic

effect of the driving motor mainly focus on the linkage mech-

anism systems and that few surveys have studied the flexible

manipulator. Moreover, as the flexible manipulator has ac-

tual motions and structure parameters, the effect mechanism

of the dynamic effect on the vibration responses character-

istic of the flexible manipulator under different motions and

structure parameters, as well as the strategies to suppress the

influence of the driving motor, has not yet been reported. The

objectives of this paper are to establish the coupled dynamic

model of the MDFMS considering the dynamic effect of the

driving motor and investigate the dynamic property and vi-

bration responses characteristic of the flexible manipulator

under different motion velocities, accelerations and structure

parameters. Also, based on the proposed dynamic model and

analysis, the effect mechanism of the dynamic effect of the

driving motor on the vibration characteristic and the relevant

suppressing strategies are presented, which is meaningful for

the motion optimization and vibration control for the flexible

manipulator. The remainder of this paper is organized as fol-

lows. Section 2 presents the coupled dynamic model of the

MDFMS. The analysis results based on the dynamic model

are presented and discussed in Sect. 3. Finally, Sect. 4 con-

cludes the paper.

Figure 1. Schematic diagram of the MDFMS.

2 Coupled dynamic model of the MDFMS

A schematic diagram of the MDFMS is shown in Fig. 1,

which gives a description of the comprising components: the

driving motor connects the ball screw system through a cou-

pler, and the flexible arm together with the end effector on its

tip is clamped on the moving slider of the ball screw system.

Due to the damp and stiffness being lower, the flexible arm

and the end effector will be easily excited by elastic defor-

mations and residual vibrations during the operation tasks.

These undesirable elastic deformations and residual vibra-

tions conflict with the precision demand of the end effector.

In this section, to analyze the dynamic performance of the

flexible manipulator, the coupled dynamic model taking the

driving motor and the flexible arm as an integrated system is

firstly established, and the dynamic equations obtained will

be used for the following investigation of the characteristic

vibration responses.

2.1 Dynamic equation of the motor and flexible

manipulator system

As an integrated system, the dynamic equation of the

MDFMS should consider the behaviors of the driving motor

and the flexible arm. In the dynamic modeling, the flexible

arm is modeled as a flexible beam to describe its lower damp

and stiffness properties, and it is assumed that the flexible

beam satisfies the Bernoulli–Euler beam assumption, and the

transverse vibrations are the main motions considered. Thus,

the transverse vibration displacement of the flexible manipu-

lator can be expressed as

Y (x, t)= y(t)+w(x, t), (1)

where y(t) denotes the displacement of the moving slider and

w(x, t) denotes the transverse vibration displacement of the

flexible arm; according to the assumed modes method (Sin-

giresu, 2004), this yields
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w(x, t)=

n→∞∑
i=1

Wi(x)qi(t), (2)

where qi(t) denotes the ith generalized coordinate andWi(x)

denotes the ith orthogonal mode shapes, which can be writ-

ten as (Singiresu, 2004)

Wi(x)= sinkix− sinhkix+ ζ (coskix− coshkix) . (3)

Here ζ =−
sin ki L+ sinh ki L
cos ki L+ cosh ki L

, k4
i = ρAω

2
i /EI , in which ωi is

the ith natural frequency of the flexible arm; L, ρ, A and

E are the length, mass density, cross-sectional area and

Young’s modulus of the flexible arm, respectively; and I de-

notes the cross-sectional moment of inertia about the neural

axis and can be expressed as I = bh3/12, where b and h are

the width and thickness of the flexible arm, respectively.

The kinetic energy of the MDFMS is

Ek =
1

2
ms

(
dy

dt

)2

+
1

2
mt

[
dy

dt
+
∂w(L,t)

∂t

]2

+
1

2

L∫
0

ρA

(
dy

dt
+
∂w

∂t

)2

dx. (4)

Here, the first part of the equation denotes the kinetic energy

of the moving slider, the second part denotes the kinetic en-

ergy of the end effector, and the third part denotes the kinetic

energy of the flexible arm; ms and mt are the mass of the

moving slider and the end effector, respectively.

The potential energy of the MDFMS mainly considers the

elastic potential energy of the flexible arm and can be ex-

pressed as

Ep =
1

2

L∫
0

EI

[
∂2w(x, t)

∂x2

]2

dx. (5)

According to Eq. (2), Eqs. (4) and (5) can be further written

as

Ek =
1

2

∑
i

[
mtW

2
i (L)+Mi

]
q•i

2

+

∑
i

mtWi(L)+

L∫
0

ρAWi(x)dx

y•q•i
+

1

2
(ms+ ρAL+mt)y

•2, (6)

Ep =
1

2

∑
i

Kiq
2
i , (7)

where (•) denotes the time derivative and Mi and Ki denote

the ith generalized mass and generalized stiffness, respec-

tively, and can be defined as

Mi =

L∫
0

ρA

(
dWi

dx

)2

dx, (8)

Ki =

L∫
0

EI

(
d2Wi

dx2

)2

dx. (9)

Equations. (6) and (7) can be substituted into following La-

grange equation (Gross et al., 2011):

d

dt

(
∂T

∂q•i

)
−
∂T

∂qi
=Qi, (10)

where T =Ek −Ep and Qi represents the generalized force

undergone in the flexible manipulator and satisfies the fol-

lowing relationship:

Qi =

L∫
0

f (x, t)Wi(x)dx. (11)

Here f (x, t) denotes the external force generated at the

clamped end (x= 0) of the flexible arm and can be expressed

as

f (0, t)=msy
••(t). (12)

By combining Eqs. (11) and (12), the generalized force can

be obtained as

Qi =msy
••(t)

L∫
0

Wi(x)dx. (13)

Through substitution of Eq. (13) into Eq. (10), the dynamic

equation of the motor and flexible manipulator system can be

obtained as[
mtW

2
i (L)+Mi

]
q••i (t)+Kiqi(t)

=

(ms− ρA)

L∫
0

Wi(x)dx−mtWi(L)

y••(t). (14)

According to the Duhamel integral (Singiresu, 2004), the vi-

bration response equation of the flexible arm is obtained as

qi(t)= B1i cosβi t +B2i sinβi t

+
ξi

Ki

t∫
0

y••(τ ) sinβi(t − τ )dτ, (15)

where
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β2
i =

Ki

mtW
2
i (L)+Mi

, (16)

ξi = (ms− ρA)

L∫
0

Wi(x)dx−mtWi(L). (17)

B1i and B2i are coefficients determined by the initial condi-

tions and can be expressed as

B1i =
ρA

Mi

L∫
0

w(x,0)Wi(x)dx,

B2i =
ρA

Miβi

L∫
0

w•(x,0)Wi(x)dx. (18)

On the other hand, for the ball screw transmission system, the

displacement of the moving slider y(t) in Eq. (15) satisfies

y•(t)=
D

2
ϕ•(t), (19)

where D is the diameter of the ball screw and φ(t) is the

angle displacement of the electromotor shaft.

In this case, Eq. (15) further becomes

qi(t)= B1i cosβi t +B2i sinβi t

+
Dξi

2Ki

t∫
0

ϕ••(τ ) sinβi(t − τ )dτ. (20)

From Eq. (20), we can obtain the result that the vibration re-

sponses of the flexible arm are related to the angle displace-

ment of the driving motor, namely the dynamic behavior of

the driving motor or the dynamic equation of the electromo-

tor shaft should be also considered in the investigation of the

dynamic analysis of the flexible manipulator.

2.2 Vibration displacement equation of the flexible

manipulator

Section 2.1 shows that the dynamic equation of the electro-

motor shaft should be derived to determine the coupled dy-

namic equation of the system. According to the electrome-

chanical dynamic (Wach, 2011), the dynamic equation of the

electromotor shaft can be given as

JMϕ
••(t)=Mdc−Mfz−M0. (21)

Here Mdc denotes the electromagnetic torque of the electro-

motor relating to the types and control strategies of the mo-

tor; Mfz denotes the load torque of the electromotor, which

is mainly caused by the moving slider in the slideway pair

and the ball screw pair; M0 denotes the torque loss of the

electromotor caused by the power loss in the transmission

system, which is much smaller than Mdc; and JM denotes

the rotational inertia of the electromotor shaft, which can be

expressed as

JM = JR+ Jb+ Js. (22)

Here JR is the rotational inertia of the rotor determined by

the motor type and structure, and Jb is the rotational inertia

of the ball screw, which can be written as

Jb =
πρbD

4Lb

32
, (23)

where ρb and Lb are the mass density and length of the ball

screw, respectively.

Js is the rotational inertia of the load which can be deter-

mined using the law of conservation of energy. The conver-

sion rotational inertia of the load satisfies

1

2
Jsϕ
•

2

(t)=
1

2
msy

•2(t). (24)

Through combination of Eqs. (19) and (24), Js can be ob-

tained as

Js =
1

4
msD

2. (25)

To determine the dynamic equation of the electromotor shaft

as shown in Eq. (21), the electromagnetic torque and the load

torque of electromotor should also be determined. As indi-

cated above,Mdc is related to the types and control strategies

of the motor. In this paper, a three-phase AC motor is consid-

ered and Mdc can be expressed as

Mdc =
PM

2πf1

p, (26)

where f1 is the power frequency, p is the number of pole

pairs of the motor; PM denotes the electromagnetic power

PM= 3 I ′2
2
r ′2/s, where s is the slip ratio; r ′2 is the conversion

resistance of the rotor; and I ′2 is the conversion current of the

rotor, which can be further written as

I ′2 =
Uv√(

r1+
r ′2
s

)2

+
(
x1+ x

′

2

)2 , (27)

where Uv is the voltage of the motor, r1 and x1 are the resis-

tance and reactance of the stator, respectively, and x′2 is the

conversion reactance of the rotor.

Substituting Eq. (27) into Eq. (26) yields

Mdc =
3p

2πf1

·
U2

v

r ′2
s(

r1+
r ′2
s

)2

+
(
x1+ x

′

2

)2 . (28)

Equation (28) shows that Mdc relates to the voltage, power

frequency and structure parameters of the motor. By deriving
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Mdc with respect to s and assigning the result as zero, we

obtain

sm =
r ′2√

r2
1 +

(
x1+ x

′

2

)2 . (29)

Here sm denotes the critical slip ratio.

Through combining Eqs. (28) and (29), the maximum

electromagnetic torque can be given as

Mmax =
3p

4πf1

·
U2

v[
r1+

√
r2

1 +
(
x1+ x

′

2

)2] . (30)

By combining Eqs. (28) and (30), the result can be obtained

that

Mdc

Mmax

=

2r ′2

[
r1+

√
r2

1 +
(
x1+ x

′

2

)2]
s

[(
r1+

r ′2
s

)2

+
(
x1+ x

′

2

)2] . (31)

According to Eq. (29), Eq. (31) can be simplified as

Mdc

Mmax

=

2+ 2 r1
r ′2
sm

s
sm
+
sm
s
+ 2 r1

r ′2
sm
. (32)

Generally r1≈ r
′

2; substituting this relation into Eq.(32)

yields

Mdc =
2λmMN

sm
s. (33)

Here λm denotes the overload factor of the motor and can

be expressed as λm=Mmax/MN ,MN = 9550PN/nN , where

PN and nN denote the rated power and the rated speed of the

motor, respectively.

For the constant load torque system, λm and sm satisfy the

following relationship:

sm = sN

(
λm+

√
λ2

m− 1

)
. (34)

Generally λm= 1.6� 2.2, and by combining Eqs. (33)

and (34), Mdc can be subsequently determined.

For the MDFMS, the load torque of the electromotor is

mainly generated by the moving slider, and during the mo-

tion, the friction force that the moving slider suffered in the

slideway pair can be expressed as

Fs = µmsg, (35)

where µ is the friction coefficient of the interface and

g= 9.8 m s2.

The other part of the load torque is the friction torque gen-

erated in the ball screw pair, which can be written as

Mb =
µ0ND

2
, (36)

where µ0 is the friction coefficient of the ball screw pair,

which is relatively small for its transmitting style, and N is

the load on the ball screw generated by the moving slider and

workpiece – this paper mainly considers that of the moving

slider; thus N =ms g.

According to the law of energy conservation, we obtain

Mfzϕ(t)•ηt = Fsy
•(t)+Mb. (37)

Here ηt is the energy transmission efficiency.

Through combination of Eqs. (19), (35) and (37), Mfz can

be obtained as

Mfz =
(µ+µ0)msgD

2ηt

. (38)

Because the torque loss of the electromotor is relatively

small, M0 can be neglected for the purpose of simplifying

the analysis.

With substitution of Eqs. (33) and (38) into Eq. (21), the

dynamic equation of the electromotor shaft becomes

JMϕ
••
=

2λmMN

sm
s−

(µ+µ0)msgD

2ηt

. (39)

Here, s= 1− n/n1, n denotes the rotation speed of the motor,

n= 60ϕ•/(2π ), n1 is the synchronous rotation speed of the

motor, and n1= 60f1/p. Thus,

s = 1−
p

2πf1

ϕ•. (40)

Substituting Eq. (40) into Eq. (39) yields

JMϕ
••
+
λmMN

sm
·
p

πf1

ϕ• =
2λmMN

sm
−

(µ+µ0)msgD

2ηt

. (41)

According to Eq. (41), the rotation acceleration of the motor

shaft can be obtained as

ϕ•• =

(
2πf1

p
α2
−αγ

)
e−αt , (42)

where α=
λm MN

JM sm
·
p
πf1

, γ =
(µ+µ0)ms g D

2JM ηt
.

With Eq. (42) substituted into Eq. (20), vibration responses

of the flexible arm can be written as

qi(t)= B1i cosβi t +B2i sinβi t

+
Dξi

2Ki

t∫
0

(
2πf1

p
α2
−αγ

)
e−αt sinβi(t − τ )dτ. (43)

With Eq. (43) substituted into Eq. (2), vibration response dis-

placement of the flexible arm can be subsequently obtained

as
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w(x, t)=

n→∞∑
i=1

B1i cosβi t +B2i sinβi t

+
Dξi
2Ki

(
2πf1
p α2

−αγ
)

α

α2+β2
i

sinβi t −
βi

α2+β2
i

cosβi t

+
βi

α2+β2
i

e−αt


Wi (x), (44)

where

f1 =
p

πD(1− s)
y•(t). (45)

Equation (44) shows the vibration responses characteristic of

the flexible manipulator considering the dynamic behavior

of the driving motor. The situation where the flexible manip-

ulator has velocities and accelerations is considered in this

paper. For the ideal situation that the slider has constant ve-

locities which ignore the dynamic effect of the driving motor,

the velocity of the moving slider can be expressed as

v = y•(t). (46)

By substituting Eqs. (19), (20) and (46) into Eq. (2), the vi-

bration response displacement of the flexible arm can be ob-

tained as

w(x, t)=

n→∞∑
i=1

(B1i cosβi t +B2i sinβi t)Wi(x). (47)

By combining Eqs. (19), (41) and (45), s in Eq. (44) can be

determined as

sv =
(µ+µ0)msgDsm

4λmMNηt

. (48)

Similarly, for the ideal situation that the slider has constant

accelerations, the acceleration of the moving slider can be

expressed as

a = y••(t). (49)

With Eqs. (19), (20) and (49) substituted into Eq. (2), the

vibration response displacement of the flexible arm can be

obtained as

w(x, t)=

n→∞∑
i=1

[B1i cosβi t +B2i sinβi t

+
aξi

βiKi
(1− cosβi t)

]
Wi(x). (50)

By combining Eqs. (19), (41) and (49), s in Eq. (44) can be

determined as

sa =
(µ+µ0)msgDsm

4λmMNηt

+
JMsm

λmMND
a. (51)

Equations (47) and (50) show the vibration responses of

the flexible manipulator ignoring the dynamic effect of the

driving motor. With substitution of Eqs. (48) and (51) into

Eq. (44), the vibration responses of the flexible manipula-

tor considering the dynamic effect of the driving motor can

be subsequently investigated. Through comparison investi-

gation of Eqs. (44), (47) and (50), the dynamic effect of the

driving motor on the vibration response characteristic and the

effect mechanism under different motion velocities and ac-

celerations can be investigated.

3 Results and discussion

In this section, numerical simulations are conducted to inves-

tigate the influence of the dynamic effect of the driving motor

on the vibration responses characteristic of the flexible ma-

nipulator under different motion velocities, accelerations and

structure parameters.

The parameters of the flexible arm are length L= 0.800 m,

width b= 0.080 m, thickness h= 0.002 m, Young’s modulus

E= 197 GPa and mass density ρ= 7850 kg m−3. The driv-

ing motor is a three-phase AC motor with the parameters

as follows: pole pairs p= 3, rated power PN = 2.2 kW, rated

rotation speed nN = 1430 r min−1, overload factor λm= 1.8,

and rotational inertia of the rotor JR= 0.0054 kg m−2. The

diameter and length of the ball screw are D= 10 mm and

Lb= 800 mm. The mass of the slider ms= 500 g, and the

mass of the end effector mt= 50 g. The energy transmis-

sion efficiency ηt= 0.9, the friction coefficient of the slide-

way µ= 0.004, and the friction coefficient of the ball screw

µ0= 0.001.

Figure 2 shows the vibration responses of the MDFMS un-

der velocity motions and acceleration motions. During the

simulations, the motion velocity and acceleration are as-

signed as v= 0.05 m s−1 and a= 1.0 m s−2. It can be seen

that the vibration responses considering the dynamic effect of

the driving motor are different to the ideal situation ignoring

the dynamic effect of the driving motor. The response ampli-

tudes are larger than those of the ideal situation, especially in

the initial time, for the acceleration motions. This indicates

that the dynamic effect of the driving motor increases the vi-

bration responses and the ideal situation will cause an error

in the dynamic analysis of the flexible manipulator.

Figure 3 shows the frequency responses of the MDFMS

under velocity motions. During the simulations, the motion

velocity is assigned as v= 0.05 m s−1. The result indicates

that the frequency responses considering the dynamic ef-

fect of the driving motor are similar to the ideal situation.

It should be noted that a consistent result can also be ob-

tained for the MDFMS that has acceleration motions. Fig-

ures 2 and 3 provide a conclusion that the dynamic effect of

the driving motor has a significant influence on the dynamic

characteristic of the flexible manipulator, primarily in that it

increases the vibration response amplitude.

To further investigate the effect mechanism of the driving

motor on the vibration responses, vibration responses of the

MDFMS under different motion velocities and accelerations
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Figure 2. Vibration responses of the MDFMS under velocity (a)

and acceleration (b) motions.

Figure 3. Frequency responses of the MDFMS under velocity mo-

tions.

are presented in Figs. 4 and 5. With the purpose of simplify-

ing the analysis process, only the results of steady-state re-

sponses are considered in the following investigations.

Figure 4 shows the vibration responses of the MDFMS

under different motion velocities. During the simulations,

the motion velocities are assigned as v= 0.05, 0.1 and

0.15 m s−1. It can be seen that, for the ideal situation ig-

noring the dynamic effect of the driving motor, the steady-

state responses of different motion velocities are consistent

and show minor changes, as described by the dotted red line,

which can also be obtained from Eq. (47). However, consid-

Figure 4. Vibration responses of the MDFMS under different mo-

tion velocities.

Figure 5. Vibration responses of the MDFMS under different mo-

tion accelerations.

ering the dynamic effect of the driving motor, the velocities

exhibit noticeable influence on the vibration responses and

the response amplitudes are larger than the ideal situations;

moreover, as the velocities increase, the response amplitudes

become smaller and the influence decreases.

The vibration responses of the MDFMS under different

motion accelerations are presented in Fig. 5. During the sim-

ulations, the motion accelerations are assigned as a= 1.0,

1.5 and 2.0 m s−2. It can be found that the vibration responses

considering the dynamic effect of the driving motor are ob-

viously larger than the ideal situation, and the results show

an obvious difference, especially in the initial time; as time

progresses, the difference decreases and the results gradually

approach the ideal situation. Moreover, if we do not consider

the dynamic effect of the driving motor, the influence of ac-

celerations on the vibration responses is not obvious. How-

ever, when the dynamic effect of the driving motor is consid-

ered, the accelerations show a considerable influence; as the

accelerations increase, the difference of the results and the

influence of the driving motor decrease, which is similar to

the velocity motion situation.
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Figure 6. Velocity (a) and acceleration (b) characteristics of the

MDFMS under varied power frequencies.

Figures 4 and 5 demonstrate that the influence of the dy-

namic effect of the driving motor is more considerable, es-

pecially in the initial time, and the influence decreases as

the velocities and accelerations increase, which indicates that

larger velocities and accelerations have a suppressing effect

on the influence of the driving motor. As we know, for a con-

stant moment load, the velocity and acceleration character-

istics and the response time of the system are determined

by the power frequency. Therefore, to illustrate this phe-

nomenon, Fig. 6 shows the velocity and acceleration char-

acteristics of the MDFMS under different power frequencies

assigned as f1= 40, 50 and 60 Hz. We can obtain the result

that, for lower power frequencies, the velocity response and

the acceleration response are more rapid, and the vibration

responses are more intense, as shown in Fig. 7, which can

also be obtained from Eq. (28,) which gives a description

that lower power frequencies can obtain larger electromag-

netic torques; as a result, if the load torques are constant, the

response processes will become more rapid.

The flexible arm and the end effector are the main com-

ponents of the operation system; both have a significant

influence on the structural service and dynamic perfor-

mance. Generally, the flexible arm can be structured us-

ing lightweight materials of different Young’s modulus, and

the end effector can be established with different masses.

Figure 8 shows the vibration responses of the flexible

arm with a different Young’s modulus, assigning E= 65,

Figure 7. Vibration responses of the MDFMS under varied power

frequencies.

Figure 8. Effect of Young’s modulus on the vibration responses of

the MDFMS: (a) response amplitudes and (b) response frequencies.

113 and 197 GPa. The result reveals that Young’s modulus

will change the dynamic performance and have considerable

influence on the vibration responses. If the flexible arm is

structured using a smaller Young’s modulus, the vibration re-

sponse amplitudes increase and the response frequencies be-

come lower, which indicates that the vibration responses are

enhanced and lower-frequency vibrations are easily excited.

Moreover, in this case the influence of the driving motor will

become more noticeable and should be given more consider-

ation.

Figure 9 shows the influence of the end effector on the vi-

bration responses. During the simulations, the mass of the

end effector is assigned as mt= 10, 20 and 50 g. We can see

that the vibration responses vary with the mass of the end
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Figure 9. Effect of the end effector on the vibration responses of the

MDFMS: (a) response amplitudes and (b) response frequencies.

effector; for lighter end effectors, the response amplitudes

are smaller, and as mass increases, the response amplitudes

increase while the response frequencies decrease. This re-

sult can also be obtained from Eq. (16). This indicates that a

lightweight end effector contributes to suppressing the vibra-

tion responses of the arm, which is meaningful for the struc-

ture design and vibration control of the flexible manipulator.

4 Conclusions

A coupled dynamic model of the MDFMS is established

which can clearly reflect the dynamic effect of the driving

motor. Based on the proposed coupled dynamic model, the

vibration responses of the flexible manipulator under differ-

ent velocities, accelerations and structure parameters, as well

as the effect mechanism of the driving motor on the vibra-

tion responses, are investigated. The results demonstrate that

the dynamic effect of the driving motor has a significant in-

fluence on the dynamic characteristic of the flexible manip-

ulator, primarily in that it increases the vibration responses

amplitude; furthermore, the ideal assumption ignoring the

dynamic effect of the driving motor, which is generally re-

garded in recent research, will cause an error in the dynamic

analysis, especially in the initial time. The response ampli-

tudes are larger than the ideal situations; as the velocities

and accelerations increase, the response amplitudes become

smaller and the influence decreases. It can also be observed

that larger velocities and accelerations have a suppressing

effect on the influence of the driving motor. Moreover, the

Young’s modulus of the flexible arm and the mass of the end

effector have a considerable effect on the vibration responses,

which indicates that a smaller Young’s modulus increases the

vibration response amplitudes and the influence of the driv-

ing motor is more noticeable; further, a lightweight end ef-

fector contributes to suppressing the influence of the driving

motor. The results obtained in this paper are meaningful for

the structure design, motion optimization and dynamic anal-

ysis of the flexible manipulator.
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