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Abstract. When a capillary bridge of a constant volume is formed between two surfaces, the shape of the liquid

bridge will change as the separation between those surfaces is varied. To investigate the variable forces and

Laplace pressure of the capillary bridge, as the shape the bridge evolves, a pseudo-three-dimensional force model

of the capillary bridge is developed. Based on the characteristics of the slender structured surface, an efficient

method is employed to directly solve the differential equations defining the shape of the capillary bridge. The

spacing between the plates satisfying the liquid confined within the hydrophobic region of the structured surface

is calculated. The method described in this paper can prevent meshing liquid surfaces such that, compared with

Surface Evolver simulations, the computing speed is greatly improved. Finally, by comparing the results of the

finite element simulations performed with Surface Evolver with those of the method employed in this paper, the

practicality of the method is demonstrated.

1 Introduction

The capillary bridge between two structured surfaces is

very important in research into, and application of, micro-

mechanical structures, surface mount technologies, micro-

fluid dynamics, biological bionics, and other technical fields

(Stewart et al., 2013; Bowden, 1997; Gau et al., 1999; Mlota

et al., 2010; Saad and Neumann, 2014). The forces exerted

by the liquid bridge have a great effect on the life and relia-

bility of microelectromechanical systems (MEMS), flip-chip

alignment, and the mobility of fluids in micro-channels (Guo

et al., 2009; Chen and Soh, 2008; Bush et al., 2010; Dalin

et al., 2010; Krammer, 2014). Therefore, research into the

mechanical properties of a liquid bridge has great practical

significance. By using micro-contact printing, vapor deposi-

tion, photolithography, and other techniques, a hydrophobic

substrate surface can be patterned with hydrophilic strips to

produce a structured surface, so as to control the morphology

of the capillary bridge and achieve the desired mechanical

properties. This has a high application value in fields such as

microelectronics, semiconductors, MEMS, and microchan-

nels (Bowden, 1997; Gau et al., 1999; Bush et al., 2010;

Lipowsky, 2001; Broesch and Frechette, 2012; Broesch et

al., 2013).

The capillary bridge between two structured surfaces can

be used as a simplified model for biological adhesives, mi-

crofluidic channels, and self-assembly (Gau et al., 1999;

Bush et al., 2010; De Souza et al., 2008; Broesch et al., 2014;

Mermoz et al., 2012; Ferraro et al., 2012; Luo et al., 2014).

In particular, a structured surface has the shape character-

istics of a slender rectangle, which has great potential for

application to the field of microchannels (Gau et al., 1999;

Valencia et al., 2001; Lipowsky et al., 2000). Some studies

have expressed concern about the effect of these slender rect-

angular structured surfaces. Some of these studies (Broesch

and Frechette, 2012; Broesch et al., 2013) have addressed

the relationship between the force of the capillary bridge be-

tween two slender structured surfaces and the morphologi-

cal evolution of a liquid–gas interface, but the conclusions

drawn could not be applied to situations where the length of

the capillary is confined. One study (Swain and Lipowsky,

2000) addressed a slab geometry with a wetting phase con-

fined between two chemically patterned substrates, but the

results obtained through 2-D analysis did not correspond to
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Figure 1. Change in contact angle θ caused by differences in wet-

tability.

the actual situation. Another study (Valencia et al., 2001) ad-

dressed the morphology of the liquid phases within chemi-

cally structured slit pores, using the finite element method to

evolve the surface towards minimal energy, but this suffered

from the trade-off between computing speed and accuracy.

Surface Evolver uses the gradient descent method to mini-

mize the free energy of the system, and can be applied to a

wide range of problems, rather than being optimized to deal

with a specific problem (Brakke, 1994). To obtain a precision

solution, therefore, it is necessary to progressively refine the

surfaces by applying a tessellated mesh and allowing more

time for the computing. Surface Evolver has some shortcom-

ings, such as the fact that surfaces are allowed to intersect

with each other and convergence to a minimum energy level

can be difficult to determine (Brakke, 1994). Therefore, there

is a need for a high-efficiency method capable of overcoming

these issues.

We adopted the method of equivalent tension to estab-

lish a pseudo-three-dimensional force model for the capillary

bridge. Considering the marginal effects of the slender cap-

illary bridge profile and the Young–Laplace equation, we set

out to solve the differential equations defining the shape of

a capillary bridge having a constant volume. To maximize

the efficiency with which the initial-value problem can be

solved, an efficient mathematical analysis method is used to

solve the boundary-value differential equations for the cap-

illary bridge profiles, therefore optimizing the initial value.

Finally, the relationship between the forces and the shape pa-

rameters of the capillary bridge is explored. For every cal-

culation, we employ the equation defining the equilibrium of

the forces to solve the differential equations, then the change

processes for the capillary bridge shape parameters are ob-

tained by means of a decline process defining the separa-

tion between the plates, which satisfies the physical boundary

constraints. As there is no need to consider meshing liquid

surfaces, the computing speed is greatly improved relative to

the simulations performed with Surface Evolver. Moreover,

there are no shortcomings, such as surfaces intersecting with

each other or convergence to a minimum energy being diffi-

cult to judge.

Figure 2. (a) Structured surface of the plate and (b) capillary

bridge.

2 Characteristic parameters and force analysis for

the capillary bridge

2.1 Characterizations

On a smooth homogeneous surface, the contact angle be-

tween a liquid–gas interface and a liquid–solid interface re-

mains constant. This is known as the “wetting angle” (Lang-

bein, 2002; Bonn et al., 2009). Under a specific gas atmo-

sphere, the size of the wetting angle is affected only by

the surface tension between the liquid and the solid (Lang-

bein, 2002; Bonn et al., 2009; Pozrikidis, 2012; Oliver et

al., 1977). As shown in Fig. 1, when the triple contact line

slips on the structured surface and reaches the point where

the wettability changes, then the triple contact line will be

pinned and the contact angle will be changed. This is known

as “canthotaxis” (Lipowsky et al., 2000; Herminghaus et

al., 2008; Liu et al., 2012; Langbein, 2002). If the liquid

is static in region I or II, then the contact angles will be

θr or θa , respectively. The variation in the contact angle θ

is: θr ≤ θ ≤ θa when ldx =Lx , θ = θr when ldx <Lx , and

θ = θa when ldx >Lx .

As shown in Fig. 2, the slender capillary bridge consists

of two plates parallel to each other, both of which have slen-

der rectangular structured surfaces. The structured surface is

produced by depositing hydrophilic strips (region I) on a sub-

strate with a hydrophobic surface (region II) through differ-

ent techniques (Gau et al., 1999; Lipowsky, 2001; Broesch
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and Frechette, 2012; Broesch et al., 2013; Valencia et al.,

2001) (see Fig. 2a). The length of region I is set to Ly and

its width to Lx . Region I has a high aspect ratio (Ly�Lx).

In this paper we only consider a capillary bridge confined

within the region I, that is, the case where ldx =Lx . Ignor-

ing the roughness of the structured surfaces and evaporation

from the capillary bridge, a change in the spacing between

the plates causes the two ends of the capillary bridge to ad-

vance or recede along the length of the region I, while the

contact angles at both ends of the capillary bridge remain

constant (Broesch and Frechette, 2012; Broesch et al., 2013;

Valencia et al., 2001; Swain and Lipowsky, 2000). This is

termed the “slipping” of the triple contact lines on region I.

The widths (ldx) of the liquid–solid interfaces are confined

by the hydrophobic region II and are constant, but the con-

tact angle and the curvature of the lateral liquid–gas interface

along the length of the hydrophilic region I will vary with

the decline in the capillary bridge height, termed the “hinge

movement” of the bilateral liquid–gas interfaces at the lo-

cation where the wettability varies (Broesch and Frechette,

2012; Broesch et al., 2013; Valencia et al., 2001; Yaneva et

al., 2005). As the spacing between the plates decreases fur-

ther, the triple contact line at the two ends of the capillary

bridge slips and touches region II, at which point the triple

contact line is pinned and the all-around liquid–gas interface

of the capillary bridge hinges, which inevitably leads to vari-

ations such as the forces of the capillary bridge, internal pres-

sure, surface curvature, and contact angles (Lipowsky, 2001;

Broesch and Frechette, 2012; Broesch et al., 2013).

2.2 Force analysis for capillary bridge

Based on the three-dimensional shape characteristics of the

capillary bridge, a pseudo-three-dimensional force model of

the capillary bridge was developed by applying the tension

equivalent method. In the Cartesian coordinate system, the

upward direction of the force is positive. As shown in Fig. 2,

taking advantage of the symmetry of the capillary bridge, the

force analysis of the right end and the right side of the liquid–

gas interfaces is represented by Fig. 3a and b.

The hydrostatic equilibrium equation of the capillary

bridge in the vertical direction can be written as

Wz+ ldx ldypb − ρgV0− 2T
(
ldx sinθdi + ldy sinθdj

)
= 0. (1)

At the bottom of the capillary bridge, the pressure is

pb =
2T
(
ldx sinθdi + ldy sinθdj

)
+ ρgV0−Wz

ldx ldy
(2)

where ρ is the density of the liquid and T is the surface

tension of the liquid–gas interface. The length of the liquid–

solid interface on the lower plate is set to ldy , while its width

is set to ldx . θdi and θdj are the contact angles between the

liquid–gas interface and the liquid–solid interface along the

width and length of the liquid bridge, respectively. V0 repre-

sents the volume of the liquid; Wz represents the total force

Figure 3. (a) Right end of liquid–gas interface force diagram with

different spacings and (b) lateral liquid–gas interface force diagram

with different spacings.

applied to the top of the capillary bridge by the upper plate in

the vertical direction, which involves the capillary force and

the vertical component of the surface tension.

3 Differential equations defining capillary bridge

characterizations

3.1 Transformation of Young–Laplace equation

Unknowns Wz and pb cannot be solved using Eqs. (1)

and (2), but the hydrostatic equilibrium equation shows that

the unknowns are closely related to the shape characteristic

parameters of the capillary bridge. To solve unknowns Wz

and pb, solving the differential equations defining the cap-

illary bridge shape becomes key to the problem. Assuming

that the liquid volume is constant and transforms the Young–

Laplace equation (Padday, 1971), we can develop differential

equations to define the shape of the capillary bridge. Because

of the high aspect ratio of the capillary bridge (ly� lx , where

ly and lx are the length and width of the capillary bridge, re-

spectively, as shown in Fig. 3), the bilateral curved surfaces

of the liquid–gas interface can be regarded as approximating

to cylindrical surfaces. Then, one of the major radiuses of

curvature of the Young–Laplace equation

1/γ + 1/γ ′ =1p/T (3)

approximates to infinity (γ ′⇒∞). The curvature of the bi-

lateral curved surfaces can thus be written as:

1/γ =1p/T (4)
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where 1p is the Laplace pressure. We can employ

the surrounding atmospheric pressure as a reference

(1p=pb−pz), where pz= ρgz represents the variation in

the internal pressure due to gravity, and pb is the pressure at

the bottom of the capillary bridge.

The top view at the right end of the slender capillary bridge

is shown in Fig. 4. Given the slender shape of the capillary

bridge, the major radius of curvature of the two-end curved

surfaces can be approximated as being equal to half the cap-

illary bridge width lx . Based on Eq. (3), the curvature of the

two-end curved surfaces can be expressed as:

1/γ =1p/T − 1/γ ′ (5)

where γ ′= xj , xj = 0.5lx and the capillary bridge width lx
varies with the height coordinate z.

As shown in Fig. 3, the height coordinate z is chosen as

an independent variable in order to satisfy the coordinating

relationship between the shape characteristic parameters and

pressure, such that the differential expressions of the charac-

teristic parameters can be obtained. For different separations

between the plates, the volume differential equation for z is

obtained by assuming that the capillary bridge volume is con-

stant. The differential equations for the shape characteristic

parameters can thus be written as follows:

dθi
dz
=

1
sinθi

(
1p
T
−

1
γ ′

)
dyi
dz
= 1/ tanθi

dθj
dz
=

1p
T sinθj

dxj
dz
= 1/ tanθj

dV
dz
= 4xjyi − 2

(
2x2
j −

πx2
j

2

) (6)

where suffixes i and j are the labels of both ends and

the bilateral liquid–gas interface profile curves, respectively;

z∈ [0, zu], where zu is the separation between the plates (the

height of the capillary bridge in the stable state), θi and θj
are the slope angles of the outline curves in the yoz and

xoz planes, respectively, and yi and xi are the abscissas of

the outline curves in the yoz and xoz planes, respectively (see

Fig. 3).

3.2 Boundary conditions of capillary bridge between

slender plates

Based on the constraints and the characterization of the cap-

illary bridge, the boundary values for the bottom and top of

both ends and the bilateral liquid–gas interface profile curves

are related as follows:

1. when z= zu,

xj (zu)= 0.5lux = 0.5Lx; θj (zu)= θuj ;

θi (zu)= θui; yi (zu)= 0.5luy; V (zu)= V0, (7)

Figure 4. Top view of right end of capillary bridge.

2. when z= 0,

xj (0)= 0.5ldx = 0.5Lx; θj (0)= θdj ; θi(0)= θdi;

yi(0)= 0.5ldy; V (0)= 0, (8)

where θdj ∈ [θr , θa]. The length of the liquid–solid in-

terface on the capillary bridge top is set to luy , and its

width to lux . When the triple contact lines at the two ends

of the capillary bridge have not yet touched region II,

θi(zu)= θui = θr , θi(0)= θdi = θr . When the triple contact

lines touch the ends of the region I, yi(zu)= 0.5luy = 0.5Ly ,

yi(0)= 0.5ldy = 0.5Ly .

The solution to differential Eq. (6) is equivalent to solving

for the boundary values of first-order nonlinear differential

equations, obtaining five unknowns with only one indepen-

dent variable z (z∈ [0, zu]). Because of the mutual coupling

between the contact angle θdi and θdj at the bottom of the

capillary bridge, differential Eq. (6) can thus be solved.

4 Methods for solving differential equations

4.1 Making the boundary-value problem equal to an

initial-value problem

To maximize the efficiency with which an initial-value prob-

lem can be solved, the boundary-value conditions for Eq. (8)

are assumed to be equivalent to the initial-value conditions,

but the solution to the initial-value problem cannot satisfy the

boundary-value of Eq. (7), which becomes a problem of ob-

jective function minimization. Obtaining the boundary-value

conditions for Eq. (7) is equivalent to minimizing relative er-

ror objective functions (Eqs. 9 and 10).

When ldy <Ly , θi(zu)= θi(0)= θr . The objective function

can then be written as

Mech. Sci., 6, 211–220, 2015 www.mech-sci.net/6/211/2015/
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Min :F
(
θ∗dj , l

∗

dy,W
∗
z

)
=

(θi (zu)− θr )
2

(θr )
2

+

(
xj (zu)− 0.5Lx

)2
(0.5ldx)2

+
(V (zu)−V0)2

V 2
0

(9)

which includes the implied variables such as bilateral contact

angles θ∗dj , the length l∗dy at the bottom of the liquid–solid in-

terface and the force W ∗z on the top of the capillary bridge

to be optimized. [z∗u2, z∗u1] are the spacing ranges between

the plates (capillary bridge height zu) satisfying boundary-

value conditions for Eqs. (7) and (8). If the spacing between

the plates is greater than z∗u1, there is a tendency for the bi-

lateral contact angles θ∗dj >θa . Thus, the triple contact lines

constituted by the bilateral liquid–gas interfaces and plates

will be free from restraint and slide into region II. When the

triple contact lines at the end of the capillary bridge touch re-

gion II, the separation between the plates is z∗u2, ldy =Ly and

θi(zu)= θi(0)= θr . With a further reduction in the height zu,

the liquid–gas surfaces of both sides and two ends will hinge

at the same time.

When ldy =Ly , yi(0)= 0.5ldy = 0.5Ly . The objective

function is as follows:

Min :F
(
θ∗di,θ

∗

dj ,W
∗
z

)
=

(
yi (zu)− 0.5Ly

)2(
0.5ldy

)2
+

(
xj (zu)− 0.5Lx

)2
(0.5ldx)2

+
(V (zu)−V0)2

V 2
0

(10)

which includes the implied variables, such as the contact an-

gles of the two ends θ∗di , the bilateral contact angles θ∗dj and

the force W ∗z on the top of the capillary bridge, which has to

be optimized. Here, [z∗u3, z∗u2] are the capillary bridge heights

zu satisfying boundary-value conditions for Eqs. (7) and (8).

If the spacing between the plates is less than z∗u3, the triple

contact lines will be free from restraint and slide into re-

gion II.

For a height range zu ∈ [z∗u3, z∗u1], as the height zu is

reduced, there are m capillary bridge heights (zu= zu(0),

zu(1), · · ·, zu(m)). Under those constraint conditions in which

the capillary bridge could degrade, there are m values of bi-

lateral contact angles. When z= zu, the implicit variables are

obtained by optimizing the implicit variables (if ldy <Ly , the

implicit variables are θ∗dj , l∗dy and W ∗z ; if ldy =Ly , the im-

plicit variables are θ∗di , θ
∗

dj andW ∗z ) in order to attain the per-

missible errors of the objective function (Eqs. 9 or 10), and

to make the boundary-values at the top end of the capillary

bridge satisfy Eq. (7).

The flowchart for solving differential Eq. (6) is shown in

Fig. 5.

4.2 Range of capillary bridge height

If the boundary values at the top and bottom of the out-

line curves satisfy Eqs. (7) and (8), the method intro-

Figure 5. Flowchart for solving differential equations.

duced in Sect. 4.1 can be employed to calculate the spac-

ing ranges between the plates, provided the liquid does not

overflow into hydrophobic region II. The height z∗u1 which

satisfies the constraint conditions can be obtained by opti-

mizing objective function (Eq. 11), when θj (0)= θdj = θa
and ldy <Ly . The height z∗u2 can be obtained by optimiz-

ing objective function (Eq. 12), when θi(zu)= θi(0)= θr
and yi(zu)= 0.5luy = 0.5Ly . The height z∗u3 which satis-

fies the constraint conditions can be obtained by optimiz-

ing objective function (Eq. 13), when θj (0)= θdj = θa and

yi(zu)= 0.5luy = 0.5Ly .

Min :F
(
z∗u1, l

∗

dy,W
∗
z

)
=

(
θi
(
z∗u1

)
− θr

)2
θ2
r

+

(
xj
(
z∗u1

)
− 0.5ldx

)2
(0.5ldx)2

+

(
V
(
z∗u1

)
−V0

)2
V 2

0

(11)

Min :F
(
z∗u2,θ

∗

dj ,W
∗
z

)
=

(
θi
(
z∗u2

)
− θr

)2
θ2
r

+

(
xj
(
z∗u2

)
− 0.5ldx

)2
(0.5ldx)2

+

(
V
(
z∗u2

)
−V0

)2
V 2

0

(12)
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Table 1. Parameters for capillary bridge and flat plate.

Parameters Lx V0 Ly Wetting Wetting Density ρ Surface

(mm) (µL) (mm) angles θr angle θa (kg mm−3) tension T

(N mm−1)

Group a 1 5 10 30, 45, 60◦ 135◦ 1× 10−6 7.2× 10−5

Group b 1 7.5 10 30, 45, 60◦ 135◦ 1× 10−6 7.2× 10−5

Group c 0.5 5 10 30, 45, 60◦ 135◦ 1× 10−6 7.2× 10−5

Min : F
(
z∗u3,θ

∗

di,W
∗
z

)
=

(
yi
(
z∗u3

)
− 0.5Ly

)2(
0.5Ly

)2
+

(
xj
(
z∗u3

)
− 0.5ldx

)2
(0.5ldx)2

+

(
V
(
z∗u3

)
−V0

)2
V 2

0

(13)

Objective functions (Eqs. 11 to 13) are implied optimization

variables: z∗u1, l∗dy , W ∗z ; z∗u2, θ∗dj , W ∗z and z∗u3, θ∗di , W
∗
z .

5 Results and discussion

Three groups of liquid bridge systems are listed in Table 1.

The hydrophilic regions I for different wetting angles, the

curves of the morphological parameters, the forces, and inter-

nal pressures for a range of heights are analyzed. Moreover,

the results are compared with the Surface Evolver simula-

tions.

5.1 Relationships between morphological parameters

The outline curves satisfying boundary-value conditions for

Eqs. (7) and (8) are obtained by programming for solving

differential Eq. (6). Figures 6 and 7 show the outline curves

for V0= 5 µL, Lx = 1 mm, and θr = 30◦.

When the range of the spacing between the two plates is

zu ∈ [z∗u2, z∗u1], the triple contact lines of the two ends do not

touch hydrophobic region II (ldy <Ly). In Fig. 6a, both sides

of the liquid–gas interface gradually change from convex to

concave and the contact angles θdj decrease with the height

zu. However, the width at the bottom of the capillary bridge is

constant (ldx =Lx), because the bilateral triple contact lines

are pinned by hydrophobic region II along the length of re-

gion I, and the bilateral liquid–gas interfaces are in a “hinge

movement” state. In Fig. 6b, the contact angles θdi of the

capillary bridge’s two ends are constant (θdi = θr ), but the

spacing between the two plates can vary. The length of the

capillary bridge can change freely, the contour surfaces of its

two ends are always concave, and the triple contact lines of

the two ends “slip” in region I. As shown in Fig. 6b, it can be

found that gravity has a significant effect on the morphology

of the capillary bridge (there is a large difference between

abscissas y(0) and y(zu) of the upper and lower endpoints an
and bn of the contour curves), when the height of the capil-

lary bridge is greater (zu> 1.25 mm). When zu< 1.25 mm,

Figure 6. Profiles of the capillary bridge when the two ends’ triple

contact lines are unconstrained. (a) Bilateral side contour curves

and (b) right end contour curves.

|y(0)− y(zu)|⇒ 0, gravity has an increasingly smaller influ-

ence on the morphology of the capillary bridge. The contour

curves of the capillary bridge will approximate to a circular

arc.

When the height zu ∈ [z∗u3, z∗u2], the triple contact lines are

also pinned by hydrophobic region II (ldy =Ly) at the two

ends of region I. In Fig. 7, the liquid–gas interfaces around

the capillary bridge are in a “hinge movement” state and

gradually bulge outward.

For different volumes V0 or widths Lx , the bottom lengths

of the liquid–solid interfaces are as shown in Fig. 8, when

Mech. Sci., 6, 211–220, 2015 www.mech-sci.net/6/211/2015/
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Figure 7. Profiles of capillary bridge when triple contact lines are

pinned. (a) Right-side contour curves and (b) right-end contour

curves.

the triple contact lines of the two ends “slip” in region I as

the height zu falls. It can be found that the lengths of the

liquid–solid interfaces are in quantitative agreement with the

result of the Surface Evolver simulations when the height zu
is low, but as the height increases, we find that the results

from our theory underestimate the simulation results. When

the height of the capillary bridge is greater (zu/Lx > 1.5),

we assume that the deviation observed at higher values of

zu is caused by a decrease in the aspect ratio (ly/lx) of the

bridge, at which point one of the major curvature radiuses

of Eq. (3) approximates to infinity (γ ′⇒∞). By integrating

Fig. 8a and c it can be found that, for the same volume V0,

a smaller value of Lx will greatly reduce the variation in the

height zu (z∗u1 becomes smaller, z∗u3 becomes larger).

For variable V0 or region I width Lx , Fig. 9 indicates the

variations in the bilateral contact angles θdj with the reduc-

tion in the height zu. Based on the changes in the wetta-

bility of region I, the ranges of the contact angles are [θr ,

θa], (θr is 30, 45 or 60◦; θa is 135◦). When the capillary

bridge can freely advance along the length of region I, θdj
decreases with the height, which is in agreement with the re-

sults of experiments described in the literature (Broesch and

Frechette, 2012) as well as those of the Surface Evolver sim-

ulations. Once the triple contact lines at the left and right

ends of the capillary bridge have been pinned by region II

(ldy =Ly), θdj will increase as the height zu decreases. As

the height of the capillary bridge increases (zu/Lx > 1.5),

the deviation also increases relative to the results of the Sur-

face Evolver simulations. The variation in the bilateral con-

tact angles θdj is in agreement with the results of the Surface

Evolver simulations, except when the wetting angle θr = 60◦

and Lx = 0.5 mm (see the inset in Fig. 9c), because the re-

sults of the Surface Evolver simulations showed that the ends

of the capillary bridge did not touch region II in the spacing

variable range determined using our theory.

By combining Figs. 9 and 10, it can be seen that θdj
is always greater than θdi (θdj >θdi), corresponding to the

same height zu, which implies that a bulge appears on the

side of the liquid–gas interfaces first, and then the bilateral

triple contact lines depart from pinning and overflow into hy-

drophobic region II when the height zu is greater than z∗u1 or

less than z∗u3. The contact angle θdi remains constant when

both ends of the liquid bridge are able to freely “slip”. When

the two ends of the capillary bridge are constrained by the re-

gion II (ldy =Ly), θdi will increase. Based on Figs. 9 to 10,

the ranges of variable zu are influenced by the changes in the

wetting angle θr , volume V0, and the widthLx of the region I.

For the same group of parameters in Table 1, θr only influ-

ences z∗u1, the upper limit on the range of the height zu. If θr
were smaller, z∗u1 could attain a greater value. V0 mainly in-

fluences z∗u3, the lower limit on the range of the height zu. If

V0 were smaller, z∗u3 could attain a smaller value. The varia-

tions in the bilateral contact angles θdi are in agreement with

the results of the Surface Evolver simulations, except when

the wetting angle θr = 60◦ and Lx = 0.5 mm (see the inset in

Fig. 10c), because the Surface Evolver simulations indicate

that the ends of the capillary bridge do not touch region II,

such that θdi = 60◦ remains constant.

5.2 Stiffness characteristics curves of capillary bridge

The force Wz acting on the capillary bridge upper end is

related to zu. The height of the capillary bridge as deter-

mined by the curves known as the “stiffness characteristics

curve” of Wz is shown in Fig. 11. As zu decreases, the force

Wz continues to increase, to the point where the triple con-

tact lines at the ends of the capillary bridge move into the

“slipping” stage. According to Eq. (1), the change in Wz de-

pends on variables ldy , pb and θdj . As sin θdj and ldy in-

crease, pb decreases (see Fig. 12), thus demonstrating that

the variation in Wz is mainly a result of the surface tension.

As the width of region I decreases, the change in the wet-

tability of region I exerts a greater influence on the change

in Wz (see Fig. 11c). As zu further decreases, the triple con-

tact lines touch region II, which are pinned. At this point,

the all-around liquid–gas interfaces are in the “hinge move-

ment” stage. Here, the pressure pb is rapidly increasing, but
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Figure 8. Variations in bottom length of liquid–solid interfaces. (a), (b), and (c) refer to parameters groups a, b, and c listed in Table 1

for a range of wetting angles. The data points are as obtained with our theory and the lines are those obtained from the Surface Evolver

simulations. The inset shows the change in the bottom length of the liquid–solid interfaces when the wetting angle θr = 60◦.

Figure 9. Changes in contact angle θdj at both sides. Here, (a), (b), and (c) correspond to parameter groups a, b, and c listed in in Table 1

for different wetting angles. The data points are as obtained with our theory and the lines are those obtained from the Surface Evolver

simulations.

Figure 10. Changes in contact angles θdi at both ends. Here, (a), (b), and (c) refer to parameter groups a, b, and c that are listed in Table 1

for different wetting angles. The data points are as obtained with our theory and the lines are those obtained from the Surface Evolver

simulations.

the force Wz exerted on the capillary bridge by the upper

plate is rapidly declining and it changes from stress to pres-

sure as the height decreases, which is mainly affected by the

capillary force on the capillary bridge. When we compare the

predictions obtained from the Surface Evolver simulations

with the results obtained with our method, we find that the

two sets of results are in quantitative agreement, but as the

region I widths Lx = 0.5 mm and wetting angle θr = 60◦ (see

the inset in Fig. 11c), we can see that the results of the Sur-
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Figure 11. Stiffness characteristic curves of Wz. Here, (a), (b), and (c) correspond to parameter groups a, b, and c, listed in Table 1

for different wetting angles. The data points are as obtained with our theory and the lines are those obtained from the Surface Evolver

simulations.

Figure 12. Variations in bottom pressure of capillary bridge. Here, (a), (b), and (c) refer to groups a, b, and c listed in Table 1 for different

wetting angles. The data points are as obtained with our theory and the lines are those obtained from the Surface Evolver simulations.

face Evolver simulations are about 15 % less than the results

obtained with our theory.

Figure 12 shows the changes in the pressure pb. When the

triple contact lines are “slipping”, the decline in the upper

plate causes the capillary bridge to elongate. When the value

of pb is falling slowly, a transition from negative to posi-

tive values at around zu/Lx = 1 can be seen for parameter

group a and the wetting angle θr = 30◦. This corresponds di-

rectly to the transition in the contact angles θdj from greater

than 90◦ to less than 90◦, as shown in Fig. 9a. When the

all-around liquid–gas interfaces are in the “hinge movement”

stage, the capillary bridge does not elongate any further. The

descent of the upper plate causes the internal pressure to in-

crease rapidly. This corresponds to a variation in the con-

tact angles θdj and θdj , shown in Figs. 9 and 10. When the

height of the capillary bridge is greater (zu/Lx > 1.5), we

can see that the results of our theory underestimate the re-

sults obtained with the Surface Evolver simulations, due to

the breakdown of the Eqs. (4) and (5) approximation, as dis-

cussed in the previous sections.

6 Conclusions

A pseudo-three-dimensional force model of a capillary

bridge was developed by the application of the tension equiv-

alent method based on the three-dimensional shape charac-

teristic of the capillary bridge. First, the rules governing the

capillary bridge’s characteristic parameters were identified

by integrating the initial values and final values of differential

equations for the capillary bridge characteristic parameters

and by optimizing the initial values for obtaining the bound-

ary values of differential equations. Then the rules governing

the changes of the contact angles were analyzed for the “slip-

ping” and “hinge movement” stages. Further, the stiffness

characteristic curves of the capillary bridge were obtained by

analyzing the relationship between the forces and the separa-

tions between the plates. Finally, the changes in the internal

pressure of the capillary bridge were explored. It is found that

the rules governing the forces and the capillary bridge’s char-

acteristic parameters are in better agreement with the Surface

Evolver simulations, and agree especially well for low val-
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ues of zu/Lx . The theory highlights the fact that the comput-

ing speed is greatly improved, relative to the Surface Evolver

simulations. Moreover, there are no shortcomings, such as

surfaces intersecting with each other or convergence to the

minimum energy level being difficult to judge. This is partic-

ularly useful for the study of these issues. This would reduce

the computing time needed to determine the equilibrium po-

sitions when a package with a large number of solder joints

is assembled onto a PCB.
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