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Abstract. Dealing with robot calibration the neglection of joint and drive flexibilities limit the achievable posi-

tioning accuracy significantly. This problem is addressed in this paper. A two stage procedure is presented where

elastic deflections are considered for the calculation of the geometric parameters. In the first stage, the unknown

stiffness and damping parameters are identified. To this end the model based transfer functions of the linearized

system are fitted to captured frequency responses of the real robot. The real frequency responses are determined

by exciting the system with periodic multisine signals in the motor torques. In the second stage, the identified

elasticity parameters in combination with the measurements of the motor positions are used to compute the real

robot pose. On the basis of the estimated pose the geometric calibration is performed and the error between the

estimated end-effector position and the real position measured with an external sensor (laser-tracker) is mini-

mized. In the geometric model, joint offsets, axes misalignment, length errors and gear backlash are considered

and identified. Experimental results are presented, where a maximum end-effector error (accuracy) of 0.32 mm

and for 90 % of the poses a maximum error of 0.23 mm was determined (Stäubli TX90L).

1 Introduction

One of the main characteristics of industrial robots is their

positioning accuracy, strongly depending on the sensor reso-

lution and the geometric parameters. The calculation of the

real geometric parameters is called geometric robot calibra-

tion and is crucial for accurate robot movements. In litera-

ture different calibration methods exist (see Khalil and Dom-

bre, 2004 or Siciliano and Khatib, 2008). However, they are

dealing with kinematic models only, neglecting the effects of

flexibilities in the joints and drives and thus cause a system-

atic error in the calculation of the real geometric parameters.

This systematic error limits the achievable positioning accu-

racy of the robot essentially. Only a few publications where

flexibilities of the robot in the calibration are considered ex-

ist, see Whitney et al. (1986), Gong et al. (2000) or Khalil

and Besnard (2002). In the paper Whitney et al. (1986) simi-

lar to our contribution a two stage method is proposed. They

first identified a compliance model by performing multiple

experiments with different external forces and then secondly

the geometric calibration is performed by including displace-

ments according to the identified model from stage one. The

papers of Gong et al. (2000) and Khalil and Besnard (2002)

include the elastic displacements in the calculation of the ge-

ometric parameters but assumed that the stiffness is known.

The goal of this contribution is to present a procedure, which

in the first stage identifies the main flexibilities of our robot

without external hardware. To this end, the methods pre-

sented in Hardeman (2008) and Wernholt (2007) are imple-

mented which both performed frequency domain identifica-

tions of industrial robots. In the second stage, the elastic de-

flections are considered in the geometric calibration leading

to reliable geometric parameters.

In Sect. 2 the dynamic model of our 6-axis articulated

robot with joint and drive elasticities is derived. Section 3

deals with the modeling of the geometric error parameters,

like joint offsets, axes misalignment, length errors and gear

backlash. Subsequently, in Sect. 4 the elasticity parameters

are identified, using a frequency domain approach as in the

work of Hardeman (2008) and Wernholt (2007). The identi-

fication of the robots frequency response matrix is presented,
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Figure 1. Arm coordinates of the Stäubli TX90L.

where the computation of suitable excitation signals are of

prime importance. Then the matching between the transfer

matrix of the dynamic model and the identified robot fre-

quency response matrix is discussed. Finally in Sect. 5 the

computation of the geometric parameters is addressed and

the results for an industrial robot Stäubli TX90L are pre-

sented.

2 Dynamic modeling

This section deals with derivation of a dynamic model for

the 6-axis industrial robot depicted in Fig. 1. Looking at the

mechanical setup, the flexibilities of the first three joints and

drives influence the positioning accuracy of the robots end-

effector essentially. Hence, a finite bearing and drive stiff-

ness is modeled leading to 4 degrees of freedom (DOF) for

each axis i ={1, 2, 3}. The 4 DOF are composed of the mo-

tor position qiM, the small bearing distortions qix and qiy
and the arm rotation qi (see Fig. 2). The bearing distortions

and the arm rotation are combined in the vector qTi = [qix ,

qiy , qi] representing the arm orientation. The modeling of

flexible joints is motivated by the work of Hardeman (2008)

which showed that the bearing and drive stiffness is at the

same order of magnitude. Elastic effects of the last three axes

(the spherical wrist) are of minor importance w.r.t. the end-

effector positioning accuracy and are thus modeled without

flexibilities. For the derivation of the dynamic model, the

transformation from the body fixed frame of the previous

arm (p) into the body fixed frame of the current arm (c) is

necessary. Hence, the rotation matrix

Rcp = Rα|α=qix Rβ
∣∣
β=qiy

Rγ
∣∣
γ=qi

(1)

is introduced, where successive rotations about the main axes

are performed. The rotation matrix for a rotation about the x,

y or z axis is given by

Rα =

 1 0 0

0 cos(α) sin(α)

0 −sin(α) cos(α)

 ,
Rβ =

 cos(β) 0 −sin(β)

0 1 0

sin(β) 0 cos(β)

 or (2)

Rγ =

 cos(γ ) sin(γ ) 0

−sin(γ ) cos(γ ) 0

0 0 1

 , (3)

respectively. The modeling is based on the paper of Öhr et al.

(2006) where consecutive rotations are suggested to model

joint and drive compliance. In total, the robot is represented

by the vector qT = [qTM, qTA, qTSW] consisting of the mo-

tor coordinates qTM= [q1M , q2M , q3M ] the arm coordinates

qTA= [qT1 , qT2 , qT3 ] and the coordinates of the spherical wrist

qTSW= [q4, q5, q6]. For the dynamic model, the bearing stiff-

ness is modeled with linear springs and dampers cix , ciy and

dix , diy respectively and the drive stiffness and damping with

the parameters ci and di for axis i={1, 2, 3}. For further

details about the dynamical modeling see Öhr et al. (2006).

Finally, the dynamic model is derived with the Projection

Equation, see Bremer (2008) leading to the equation of mo-

tion

M(q)q̈ +g
(
q, q̇,pelast

)
= BMτM+BSWτSW

=

 I

0

0

τM+

 0

0

I

 τSW (4)

with the mass matrix M(q)∈R15×15, the motor torques of

the first three axis τM ∈R3×1 and the motor torques of the

spherical wrist τSW ∈R3×1. Throughout the whole paper, the

identity matrix is represented by I and the zero matrix/vector

by 0. The vector g(q, q̇, pelast) contains the Coriolis, cen-

trifugal, gravitation and friction forces as well as the stiffness

and damping parameters which are going to be identified and

are combined in the vector

pTelast =
[
c1x,c1y,c1,c2x,c2y,c2,c3x,c3y,c3,d1x,d1y,d1,

d2x,d2y,d2,d3x,d3y,d3

]
.

It is apparent from Eq. (4), that we are dealing with an under-

actuated system.

2.1 Linearized dynamic model

Basis for the calculation of the transfer matrix is the lin-

earization of the dynamic model. A static equilibrium q0

(q̇0= 0, q̈0= 0) is used as linearization point. The computa-

tion of the static equilibrium is presented in Sect. 2.3. For the
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Figure 2. Model of the third axis.

linearization, a Taylor series expansion of Eq. (4) at the equi-

librium configuration q0 up to order 1 is carried out, leading

to

Mlin1q̈ +Dlin1q̇ +Klin1q = BM1τM+BSW1τSW

−
(
g
(
q0,0,pelast

)
−BMτM0−BSWτSW0

)
(5)

with the mass matrix

Mlin =M
(
q0

)
, the damping matrix Dlin =

∂g
(
q, q̇,pelast

)
∂ q̇

∣∣∣∣∣
q=q0,q̇=0

,

the stiffness matrix Klin =
∂M(q)q̈ +g

(
q, q̇,pelast

)
∂q

∣∣∣∣∣
q=q0,q̇=0,q̈=0

and τM= τM0+1τM and τSW= τSW0+1τSW. The vec-

tors τM0 and τSW0 represent the constant motor torques in

the static configuration q0. Thus, if q0 is a valid static config-

uration the term g(q0, 0, pelast)−BM τM0−BSW τSW0 van-

ishes, and we get the linearized equations of motion

Mlin1q̈ +Dlin1q̇ +Klin1q = BM1τM+BSW1τSW. (6)

2.2 Motor transfer matrix

For the identification of the modeled elasticity parameters,

see Sect. 4, the transfer matrix from the motor torques τM

to the motor accelerations q̈M is necessary (Only the first

three axes are included). By using the motor accelerations the

double integrator behavior in the transfer matrix is avoided.

Starting with the linearized robot dynamics of Eq. (6), the

system is reduced to the coordinates qM by using the selec-

tion matrix FTM= [I, 0] and the relation 1qM=FTM1q. Us-

ing the principle of virtual work, we get the linearized motor

equations

FTMMlinFM1q̈M+FTMDlinFM1q̇M+FTMKlinFM1qM

= FTMBM︸ ︷︷ ︸
I

1τM. (7)

The motor torques of the spherical wrist τSW vanish because

FTM BSW= 0. Applying the Laplace transformation to Eq. (7)

we get

FTMMlinFM1aM+FTMDlinFM1aM

1

s

+FTMKlinFM1aM

1

s2
=1τM (8)

with 1aM=1q̈M. The vectors 1aM and 1τM are the

Laplace transformed values of 1aM and 1τM, respectively.

Thus the transfer matrix leads to

G[q0] =1aM1τ
−1
M =

(
FTMMlinFMs

2
+FTMDlinFMs

+FTM KlinFM

)−1

Is2 (9)

where the superscript q0 denotes the linearization point.

2.3 Determination of a static equilibrium

The calculation of a static equilibrium q0 for our under-

actuated system, see Eq. (4) is neccessary for two different

reasons. First, for the correct evaluation of the transfer ma-

trix by using the correct linearization point, and second for

the evaluation of the real robot pose and thus for the real end-

effector position and orientation in a static configuration.

The motor position qM and the coordinates of the spher-

ical wrist qSW are measured. Hence, only the static val-

ues of the arm coordinates qA have to be computed. There-

fore the linear system Eq. (5) is reduced to the coordinates

of interest i.e. the arm coordinates qA, by again applying

the principal of virtual work and the relation 1qA=FTA1q

with FTA= [09×3, I, 09×3]. Assuming a static solution – time

derivatives of 1q are zero – we get

FTAKlinFA1qA = FTABM1τM+FTABSW1τSW

−FTA
(
g
(
q0,0,pelast

)
−BMτM0−BSWτSW0

)
. (10)

Since the arm coordinates are not actuated

FTA BM=FTA BSW= 0, Eq. (10) leads to

FTAKlinFA1qA =−FTAg
(
q0,0,pelast

)
. (11)

If q0 is a static pose of our robot, then g(q0, 0, pelast)= 0

otherwise the displacement 1qA is calculated by

1qA =−

(
FTAKlinFA

)−1

FTAg
(
q0,0,pelast

)
(12)

according to Eq. (11). Thus the static solution q0 can be cal-

culated iteratively by

q
(i+1)
0 = q

(i)
0 +FA1qA (13)
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with the iteration index i. Because the stiffness of our robot

is quite high, the initial solution

q
(0)
0 =

[
q1M,q2M,q3M,0,0,q1M,0,0,q2M,0,0,

q3M,q4,q5,q6

]T
(14)

is obvious and often one iteration is sufficient to obtain a

valid static solution. Having a valid static solution calculated,

a geometric model is needed to evaluate the corresponding

end-effector position and orientation.

3 Geometric model

The forward kinematics describes the end-effectors position

I rE and orientation ϕE (see Fig. 1). Furthermore, it depends

on the arm and wrist coordinates, qA and qSW respectively,

and also on the geometric parameters. In this paper, the geo-

metric parameters are separated into the known nominal val-

ues pnom which describe the nominal kinematics of the robot

and the unknown geometric error parameters pge compris-

ing joint offsets, axes misalignment, length errors, and gear

backlash. To model a joint offset p0 for a rotation around the

x axis with the DOF q the rotation matrix R leads to

R= Rα|α=q+p0
. (15)

Axes misalignment, also for the example of a rotation around

the x axis are introduced by adapting the rotation matrix R

to

R= Rα|α=q Rβ
∣∣
β=pβ

Rγ
∣∣
γ=pγ

(16)

with pβ and pγ as misalignment angles. To include length

errors the connection vector r which describes the links of

our robot, is extended by the length error parameters plx , ply

and plz leading to

r =

 lx +plx

ly +ply

lz+plz

 . (17)

Note, the parameters lx , ly and lz are the nominal values of

r . In contrast to the previous errors, gear backlash is not a

geometric error and depend on the pose of the robot. In order

to identify the direction in which the clearance is present, the

center of mass of each body must be considered. To avoid

the evaluation of the body dynamics the decision is based on

the sign of the motor torque τM in each axis leading to the

rotation matrix

R= Rα |α=q+sign(τM)pBL
with sign(τM)=

{
−1 τM < 0
0 τM = 0
1 τM > 0

. (18)

In the final geometric model of our robot, joint offsets,

axes misalignments and length errors combined in the

vector pi = [p0i , pβi , pγ i , plxi , plyi , plzi]
T for all axes

i={1, . . . , 6} as well as for the end-effector tool i=E are

included. Gear backlash pBLi is only modeled for the second

and third axes i={2, 3}. The offset of the inertial frame of

the robot and the external sensor (laser-tracker) is modeled

by the length errors plxI , plyI and plzI . Thus finally, 47 error

parameters combined in the vector pge= [plxI , plyI , plzI ,

pT1 , pT2 , pBL2, pT3 , pBL3, pT4 , pT5 , pT6 , pTE ]
T describe the

end-effector position I rE(qA, qSW, pnom, pge) and orienta-

tion ϕE(qA, qSW, pnom, pge) of the robot. Since the end-

effector position and orientation depend on the arm coordi-

nates, and the arm coordinates highly depend on the elasticity

parameters their identification is treated in the next section.

4 Identification of elasticity parameters

For the identification of elasticity parameters, first the non-

parametric frequency response matrix (FRM) see Pintelon

and Schoukens (2012) of the real robot is determined, and

second the transfer matrix calculated in Eq. (9) is adapted to

the real one by adapting the elasticity parameters.

4.1 Identification of the non-parametric frequency

response matrix

In standard operation mode, the robot is controlled by a feed-

back PD controller. To improve the identification accuracy,

the influence of the PD controller is reduced by using small

feedback gains. To ensure that the robot maintains the posi-

tion, feed forward torque calculated from the inverse dynam-

ics is added. The measurement setup is depicted in Fig. 3.

The system is excited with periodic motor torques while si-

multaneously the actual motor torque and motor position

is measured. The obtained measurement data is then trans-

formed into the frequency domain and used for the FRM cal-

culation. To reduce the effects of stick-slip transitions a sine

wave with an amplitude of 3◦ serves as reference signal qMd

for the position controller. For the excitation of the system,

normalized random multisine signals are used which leads to

a separation of the FRM in three parts

G (jωk)=GBLA (jωk)+GS (jωk)+NG (jωk) (19)

with GBLA(jωk) the best linear approximation (BLA),

GS(jωk) the stochastic nonlinear contributions and NG(jωk)

the errors due to the output noise (see Pintelon and

Schoukens, 2012). We are interested in GBLA(jωk) which

is used for the identification of the elasticity parameters in

Sect. 4.2.

4.1.1 Calculation of the FRM

Assuming an appropriate excitation of the system, the mea-

sured motor torques and motor positions can be transformed

to the frequency domain using the fast Fourier transforma-

tion (FFT). Note a signal x is represented in the frequency

Mech. Sci., 6, 191–201, 2015 www.mech-sci.net/6/191/2015/
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domain as x or F{x}. In order to reduce the nonlinear contri-

butions GS, Nr different excitation signals and to reduce the

noise contribution NG, Np periods are recorded. The FRM

for an excitation signal r in pose q is calculated by

Ĝ[r,q] = F
{
Q̈M

}
F
{
0M

}−1

(20)

with Q̈M= [q̈M,1 q̈M,2 q̈M,3] and 0M= [τM,1 τM,2 τM,3] re-

sulting from measurement data for 3 orthogonal excitations,

see Sect. 4.1.2. For different excitation signals, also slightly

different FRM results are computed which have to be com-

bined using averaging techniques. The choice of the averag-

ing method depend on the signal to noise ratio (SNR) of the

measurement data and the measurement setup. A comparison

of different strategies is discussed in the paper of Wernholt

and Moberg (2008). For our robot, the simple arithmetic av-

eraging is useful, which is given by

Ĝ[q] =
1

Nr

Nr∑
r=1

Ĝ[r,q]. (21)

4.1.2 Synthesis of the excitation signal

The quality of the FRM highly depends on the excitation

signal. For frequency domain identification, periodic signals

are very useful because they do not suffer from leakage ef-

fects. Furthermore the frequency resolution and power spec-

trum can be customized for the robot resulting in a minimum

measurement time by a maximum quality of the signals (see

Pintelon and Schoukens, 2012). Odd random phase multisine

signals feature all these properties and are given by

τi,exc(t)=

Nf−1∑
k=0

Ak cos(ωkt +φk) ,ωk = (2k+ 1)ω0,

φk ∈ [0,2π ), (22)

consisting of Nf different frequencies of odd multiplicity of

the basis frequency ω0. We selected uniform distributed ran-

dom phases φk and a constant amplitude spectrum Ak . Be-

cause the FRM of the first three axes should be identified, a

excitation signal for each motor has to be generated. Further-

more, for the FRM calculation with Eq. (20) the motor torque

matrix 0M must have full rank. To get this property, three

sets of orthogonal excitation signals are calculated. There-

fore, three different odd random phase multisine signals ac-

cording to Eq. (22) are generated and combined in a diagonal

matrix leading to

D
[r]

R (k)=

 τ 1,exc(k) 0 0

0 τ 2,exc(k) 0

0 0 τ 3,exc(k)

 . (23)

Matrix D
[r]

R is generated in the frequency domain and k rep-

resents the discrete frequency index. The columns of D
[r]

R (k)

are orthogonalized using the matrix

Tpq = n
−1/2
u ej2π (p−1)(q−1)/nu (24)

with nu the number of input signals (nu= 3). This yields the

excitation matrix

0[r]exc(k)= D
[r]

R (k)T. (25)

Each column of 0
[r]
exc(k) represents one set of excitation sig-

nals and is orthogonal to the other ones. Using the matrix T

in combination with the multisine signals D
[r]

R (k) an arbitrary

number of different but orthogonal excitation signals can be

calculated.

4.1.3 Measurement procedure for the FRM identification

To calculate the FRM of our robot, Nr different excitation

signals are calculated, each for Np periods. Note, at least the

first period of the measurement data can not be used for the

FRM calculation because the system has to be in steady state.

To reduce nonlinear contributions each excitation signal is

www.mech-sci.net/6/191/2015/ Mech. Sci., 6, 191–201, 2015
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Figure 4. Measurement schedule for the FRM calculation of one realization.

applied once with positive and negative sign but with the

same reference trajectory qMd. Then the measurement data of

these two excitations are subtracted from each other and are

used for FRM calculation, as suggested in Hardeman (2008).

Figure 4 shows a graphical representation of the procedure.

It starts with the calculation of three independent excitation

signals τ i,exc using Eq. (22), and it ends with an accurate es-

timate of the FRM Ĝ[r,q] for one excitation r in pose q. The

procedure is performed Nr times, leading to Nr slightly dif-

ferent FRM results which are in a next step averaged using

Eq. (21). Our experiments have shown that Nr= 4 different

realizations each with 4 periods, two periods for the calcu-

lation of the transfer matrix and two periods to get in steady

state are convenient. The basis frequency of the excitation

signal (see Eq. 22) is defined to ω0= 2π 0.25 rad s−1. Hence

the signal has a period of 4 s. The excitation of the system for

obtaining the transfer matrix for a single realization requires

96 s. This time is composed of the duration of the 3 orthogo-

nal excitations (see Fig. 4) where each consists of a measure-

ment with positive and negative sign with 4 periods. Thus all

measurements (4 different realizations) are completed after

384 s. This yields Ĝ[q] which is shown in Fig. 5 for the pose

qP 1 of Fig. 6. To get a global representation of the robot,

the FRM is identified in 3 different joint configurations. The

selected poses are depicted in Fig. 6. These poses represent

extrema regarding the moment of inertia in the considered

axes. By using poses with extrema in the inertia, the obtained

transfer matrices are assumed to be sufficiently different to

identify global valid parameters. For all poses the FRM is

Mech. Sci., 6, 191–201, 2015 www.mech-sci.net/6/191/2015/
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Figure 5. Calculated FRM Ĝ[qP1] with Nr= 4.

Figure 6. Poses for the FRM calculation represented by qP 1, qP 2

and qP 3 from left to right respectively.

identified and used for the elasticity parameter identification

of our robot.

4.2 Identification of the elasticity parameters

To identify the elasticity parameters, the parametric transfer

matrix of our robot – derived in Sect. 2.1 and given by Eq. (9)

– is fitted to the measured one, by changing the parameters

pelast. The fitting procedure performs a minimization of the

cost functional

J
(
pelast

)
=

∑
q∈{qP 1,qP 2,qP 3}

∑
k=1...Nω

[
1[q]

(
ωk,pelast

)]∗
W[q] (ωk)

[
1[q]

(
ωk,pelast

)]
(26)

with the complex vector

1[q]
(
ωk,pelast

)
= log

(
vec

(
Ĝ[q] (ωk)

))
− log

(
vec

(
G[q]

(
ωk,pelast

)))
. (27)

The minimization is carried out by applying a genetic algo-

rithm followed by a gradient based minimization algorithm.

The vector 1[q](ωk , pelast) represents the complex error be-

tween the measured FRM and the transfer matrix of the lin-

earized system see Eq. (9). The superscript ∗ denotes the con-

jugate transpose matrix. To get a good fit in the region of in-

terest, a weighting matrix W[q](ωk) is introduced. Especially

the error in the vicinity of poles and zeros in the diagonal ele-

ments is amplified, leading to reasonable system parameters.

Figure 7 shows both, the non-parametric FRM Ĝ[qP1] and

the optimized parametric transfer function G[qP 1] in the first

pose of the robot. It can be seen, that the coupling between

the first and the other two axes is quite low and thus the mea-

sured and identified transfer functions agree not very well.

Furthermore, the weighting matrix was tuned to get a good

fit in the diagonal elements of the transfer matrices of poses

qP 1, qP 2 and qP3. Figures 8 and 9 show the diagonal ele-

www.mech-sci.net/6/191/2015/ Mech. Sci., 6, 191–201, 2015



198 M. Neubauer et al.: A two-stage calibration method for industrial robots with joint and drive flexibilities

 

 

PSfrag replaements

measuredidenti�ed
Frequeny in Hz

MagnitudeindB
3 5 10 20 40 1003 5 10 20 40 1003 5 10 20 40 100

10

25

40

55

−20

0

20

40

−80

−40

0

40

−10

5

20

35

0

10

20

30

−80

−40

0

40

−80

−40

0

40

−80

−40

0

40

−20

0

20

40

Figure 7. Comparison of the non-parametric FRM Ĝ[qP1] and the identified parametric one G[qP1].
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Figure 8. Comparison of the measured non-parametric FRM Ĝ[qP2] and the identified parametric one G[qP2].

ments of the non-parametric and optimized parametric trans-

fer matrices of the poses qP 2 and qP 3. Unfortunately, not

all poles and zeros agree exactly, which is mainly attributed

to nonlinearities in the stiffness parameters. Overall, a good

fit between the non-parametric and parametric transfer func-

tions is achieved and the identified parameters are listed in

Table 1. Note, if only one pose is matched the accordance of

the identified and measured FRM is very high but the param-

eters are not reliable anymore.

5 Geometric calibration

With the identified dynamic model of the last section the real

robot pose due to the motor positions can be calculated. This

estimated poses in combination with the real end-effector po-

sition, measured by an external sensor (laser-tracker), is used

to calibrate the geometric model of Sect. 3. Our external sen-

sor can not measure the end-effector orientation and thus the

geometric calibration is discussed by using end-effector po-

sitions only.

5.1 Calculation of the estimated geometric parameters

The estimated end-effector position I r
[q]
E (qA, qSW, pnom,

pge) can be evaluated by inserting the calculated arm coordi-

nates qA in Eq. (13) and the measured spherical wrist coor-

dinates qSW. Assuming small geometric errors we start with

the initial vector of p
(0)
ge = 0. Thus the end-effector error for

a set of N poses follows
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Table 1. Identified elasticity parameters.

kNm rad−1 kNm rad−1 kNm rad−1 kNms rad−1 kNms rad−1 kNms rad−1

c1x c1y c1 d1x d1y d1

349.9 753.5 143.7 45.9 192.1 115.1

c2x c2y c2 d2x d2y d2

797.7 697.1 250.7 52.1 211.2 70.6

c3x c3y c3 d3x d3y d3

181.4 149.2 57.1 47.6 39.1 32.9
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Figure 9. Comparison of the measured non-parametric FRM Ĝ[qP3] and the identified parametric one G[qP3].

egeo =

 I r
[q1]
E,m−I r

[q1]
E

...

I r
[qN ]
E,m−I r

[qN ]
E

 (28)

with I r
[q]
E,m the end-effector position measured by the laser-

tracker in pose q of the robot. Performing a Taylor series

expansion on egeo at pge=p
(i)
ge of order 1 we get

egeo,lin =21pge+ egeo|p
(i)
ge

(29)

with 2=
degeo

dpge
|
p

(i)
ge

. The superscript (i) indicates the current

set of parameters. Unfortunately, not all geometric error pa-

rameters are independent, i.e. rank of2 is less than the num-

ber of parameters pge. These linear dependencies must be

eliminated. Therefore a numerical regularization algorithm

which is based on a QR-decomposition is applied (see Gau-

tier, 1991). 30 independent parameters out of the 47 modeled

error parameters are found. The parameters pge are calcu-

lated by minimizing the error egeo, using e.g. the Levenberg–

Marquardt algorithm. The quality of the calibration result

highly depends on the poses.

5.2 Calculation of optimal poses for the calibration

In order to get a good excitation of the geometric parameters

the calibration poses are very important. In the paper of Sun

and Hollerbach (2008a) the choice of the observability index

for the pose calculation and in Sun and Hollerbach (2008b)

and Zhuang (1994) selection algorithm for the computation

of optimal poses are presented. We used the algorithm pre-

sented in Sun and Hollerbach (2008b) where the minimum

singular value of the covariance matrix 3=2T 2 is maxi-

mized. Finally, 40 optimal poses are calculated with a mini-

mum singular value of σmin= 0.46. Exemplarily, 3 out of the

40 poses are depicted in Fig. 10. For all optimal poses the

end-effector is measured with a laser tracker and the actual

motor positions are measured by the motor encoders. Then,

the estimated arm angles qA are evaluated using Eq. (13)

and the error of Eq. (28) is minimized using the Levenberg-

Marquardt algorithm. The absolute positioning accuracy for

the uncalibrated and calibrated case is depicted in Fig. 11.

The positioning accuracy for the calibrated case is shown in

Fig. 12. For the calibration poses, a positioning accuracy of

about 0.1 mm is obtained which is in the range of the repeata-

bility of our robot, and thus a very good result.

5.3 Evaluation of the absolute positioning accuracy

With the geometric parameters pge identified in the last sec-

tion, the positioning accuracy in the whole workspace should

be evaluated. Therefore 150 random poses in the whole

workspace of the robot are generated and measurements with

the laser-tracker. The calculated end-effector position due to

the estimated robot configuration is compared to the mea-

sured position and the obtained absolute positioning accu-

racy is shown in Fig. 13. For 150 arbitrary poses an absolute

error less than 0.32 mm and in 90 % of the poses an error

less than 0.23 mm is obtained. If the elastic deflections are

not considered in the calibration, the maximum error for the
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200 M. Neubauer et al.: A two-stage calibration method for industrial robots with joint and drive flexibilities

Figure 10. Three of the 40 optimal poses.
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Figure 11. Absolute error of the end-effector for the calibration

poses.

same poses is 0.7 mm which thus justifies the effort of the

presented procedure.

6 Conclusions

This paper presents the identification of geometric param-

eters by including stiffness and damping parameters in the

calibration process. Not only the inclusion of the elasticity

parameters also their identification was discussed. The iden-

tification was carried out in the frequency domain, where

the transfer matrix of the linearized system was adapted to

the real robots transfer matrix by changing the elasticity pa-

rameters. Regarding the calculation of the real robots trans-

fer matrix, the excitation signal is crucial and thus it is dis-

cussed in detail. The identification of globally valid param-

eters requires different poses. In this paper, the poses were

selected manually. The calculation of optimal poses for the

elasticity parameter identification is part of future work. With

the identified elasticity parameters, the real robots configu-

ration is estimated using the system dynamics and the ge-

ometric calibration is performed. Experimental results for a
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Stäubli TX90L are reported. Thereupon geometric model pa-

rameters were identified which lead to a positioning accuracy

of 0.32 mm in the whole workspace.
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