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Abstract. The kinematic modeling of multi-loop mechanisms requires a systematic representation of the kine-

matic topology, i.e. the arrangement of links and joints. A linear graph, called the topological graph, is used to this

end. Various forms of this graph have been introduced for application in mechanism kinematics and multibody

dynamics aiming at matrix formulations of the governing equations. For the (higher-order) kinematic analysis of

mechanisms a simple yet stringent representation of the topological information is often sufficient. This paper

proposes a simple concept and notation for use in kinematic analysis. Upon a topological graph, an order relation

of links and joints is introduced allowing for recursive computation of the mechanism configuration. An ordering

is also introduced on the topologically independent fundamental cycles. The latter is indispensable for formulat-

ing generically independent loop closure constraints. These are presented for linkages with only lower pairs, as

well as for mechanisms with one higher kinematic pair per fundamental cycle. The corresponding formulation

is known as cut-body and cut-joint approach, respectively.

1 Introduction

The kinematic topology of a mechanism refers to the exis-

tence and the arrangement of links and joints, i.e. kinematic

constraints. It is hence an adjacency relation that can be rep-

resented by an undirected linear graph, referred to as the

topological graph denoted with 0. This graph provides the

basis for a systematic treatment of the kinematics of mecha-

nisms and multibody systems (MBS).

Various types of topological graphs have been proposed in

the literature. They have been an important aspect for mod-

eling of complex MBS. Wittenburg (1977, 2008) introduced

a linear graph to represent general interconnections of rigid

bodies within a MBS. This linear graph includes not only

kinematic interconnections but also physical interactions like

springs and dampers. This concept was taken up by Ar-

czewski (1992a, b, c). An exhaustive overview of graph rep-

resentations in MBS dynamics was presented by Jain (2011a,

b). All these formulations can be used to derive compact ma-

trix formulations of the MBS motion equations.

For kinematical investigations of mechanisms a graph rep-

resentation of the kinematic topology has been proposed by

Davis (1981, 2015). In particular the velocity constraints

were considered as a variant of Kirchoff’s law for electric

circuits, and it was concluded that the principle concepts and

results available for electric networks can be adopted to the

velocity analysis of mechanisms. This approach addresses

the velocity analysis leading to systems of linear equations,

and thus adjacency matrices, incidence matrices, etc. could

be used to manipulate the governing equations. Wohlhart

(2004), for example, used the topological graph to derive the

first-order constraints for topologically independent loops,

and to deduced the connectivity of links.

Topological graphs have further interesting features re-

lated to generic properties of the mechanism. The essential

kinematic properties (of generic realizations) were investi-

gated by Simoni et al. (2013) using topological graphs. It

was shown that properties like mobility and connectivity are

preserved by any automorphism of the graph. This may be

important for topological synthesis.

Still, topological information are rarely exploited for kine-

matic analysis. One consequence often observed is that re-

dundant loop constraints are imposed for multi-loop mech-

anisms. This becomes critical in particular if higher-order

analyses are pursued. Furthermore, despite the vast literature
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Figure 1. (a) 3 DOF parallel manipulator consisting of 10 moving bodies (labeled with circles) connected by 12 joints (labeled with

rectangles). (b) Topological graph 0 for the manipulator.

on graph modeling of mechanisms and MBS topology, there

is no established approach and notation used in mechanism

theory. The aim of this paper is to summarize the basic con-

cept of graph representation and of formulations of loop con-

straints for multi-loop mechanisms in a way appropriate for

the higher-order kinematic analysis.

In this paper, the graph representation of the kinematic

topology is recalled, and the essential relations necessary for

introducing loop constraints are derived. Throughout the pa-

per relative coordinates (joint coordinates) are used to param-

eterize the configuration allowing for a recursive evaluation

of the mechanism kinematics. The essential topological rela-

tions are:

1. an order relation to define predecessors of bodies and

joints,

2. an indicator of the direction in which a relative joint mo-

tion is defined, and

3. an order relation defining predecessors of bodies and

joints within topologically independent loops.

The first and second allow for recursive determination of

configurations of bodies, and the third for a recursive formu-

lation of topologically independent loop constraints. To this

end, (1) an oriented spanning tree
→

G, (2) an oriented topo-

logical graph
→

0 , and (3) an oriented system of fundamental

cycles (FC) are introduced.

These topological relations provide the basis for kinematic

investigations, in particular the higher-order kinematic anal-

ysis. Matrix representations of topological relations (inci-

dence, adjacency, etc.) are omitted as they are of little help

for higher-order constraints.

2 Graph representation of mechanism topology

2.1 Topological graphs

The constituent structural elements of a mechanism are the

bodies (links, members) and the joints between them. The

topological graph is an undirected graph 0= (B, J ), where

B is the set of vertices (representing bodies) and J is the

set of edges (representing joints). The graph 0 is simple,

i.e. two vertices are connected by no more than one edge.

The number of joints and bodies is denoted with N : = |J |

and M : = |B|, respectively. Bodies are indexed with greek

letters α= 0, . . . ,M − 1. The index 0 is often used to refer to

a “fixed member” or to the “ground”. Joints are indexed with

Latin characters i= 1, . . . , N .

An edge is an unordered pair of vertices denoted Ji = (Bα ,

Bβ )∈ J . This indicates that body Bα and Bβ are connected

by joint Ji . For the sake of simplicity, the shorthand notations

Ji = (α, β)∈ J and (α, β)∈ J are used.

Figure 1b shows the topological graph for the parallel

mechanism in Fig. 1a that was reported by Carricato and

Parenti-Castelli (2002), Kim and Tsai (2002) and Kong and

Gosselin (2002). The mechanism contains M = 11 bodies

and N = 12 joints. Notice that for sake of simplicity, in all

figures throughout the paper, edges are denoted simply with

the index α instead of Bα .

2.2 Joint orientations and oriented topological graphs

The joint Ji = (Bα , Bβ ) constrains the relative motion of

the two bodies Bβ and Bα . That is, it can be considered

to determine the relative configuration of Bα w.r.t. Bβ or

that of Bβ w.r.t. Bα . The definition of this “joint direction”

is an indispensable step within the kinematics modeling

that further includes introduction of certain joint variables

(angles, displacements) to describe the joint motion. This is

Mech. Sci., 6, 137–146, 2015 www.mech-sci.net/6/137/2015/
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Figure 2. (a) A linkage with 5 revolute joints. The direction of positive joint angles is shown. (b) Edges in the oriented topological graph
→

0

are directed according to the positive joint angles.

not revealed by the undirected edge Ji ∈0. For example in

Fig. 2a, the joint angle of the revolute joint J2 measures the

rotation of B2 relative to B1, whereas the angle of joint J4

measures the rotation of B1 w.r.t. B4, so that the joint angle

has the opposite meaning. In order to represent the directions

in which the joint motions are to be interpreted, an oriented

graph
→

0 is introduced. This is obtained by considering the

edges of 0 as ordered pairs of vertices. That is, if (Bα ,

Bβ )∈
→

0 , then (Bβ , Bα) 6∈
→

0 . The vertex Bα is the source

(or tail) and Bβ is the target (or head) of the edge. This is

graphically indicated by an arrow. Then Ji = (Bβ , Bα)∈
→

0

means that joint Ji is assumed to define the motion of Bα

w.r.t. Bβ . Edges of
→

0 are called arcs. Figure 2b shows the

oriented topological graph for the mechanism in Fig. 2a.

Remark 1 Frequently the joint orientations are intro-

duced upon algorithmic considerations. In particular,

directions are often assigned so to form a root-directed

spanning (Jain, 2011a; Wittenburg, 2008). This limits

the generality, however. Moreover, in an MBS modeling

environment, joints are introduced with well-defined and

prescribed orientations. These orientations are in general

different from those introduced for an oriented spanning

tree, which is merely an algorithm construct (see next section

and Sect. 3.3).

2.3 Spanning trees and predecessor relations

A kinematic chain can be evaluated recursively by starting

from an initial body. For mechanisms with kinematic loops

there is a priori no unique chain between two bodies. Such

can be introduced with help of a spanning tree of 0. A span-

ning tree, denoted G= (B, JG), is an acyclic subgraph of 0,

i.e. there is exactly one path between any two vertices. The

spanning tree of a graph is not unique. Figure 3b shows a

spanning tree for the manipulator in Fig. 1.

The recursive evaluation of the kinematics further requires

an order relation that assigns to each body and joint its di-
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Figure 3. (a) A spanning tree G for the topological graph in Fig. 1.

(b) The corresponding unique root-directed tree
→

G 0.

rect predecessor. Such a relation is induced by directing the

spanning tree.

A root-directed tree, denoted
→

G 0, is introduced such that

there is a directed path in
→

G 0 from B0 (the ground) to every

vertex of 0. B0 is the root of the tree. Edges of
→

G 0 are called

arcs. Figure 3b shows the root-directed spanning tree for the

PKM example in Fig. 1.

Remark 2 Jain (2011a) called
→

G 0 the “standard di-

graph” associated to a mechanism. Moreover, this has been

used to actually define directions of joints. Consequently, the

original allocation of joint directions would be changed ac-

cording to the particular (but not unique) directed spanning

tree (see remark 1).

The predecessor of a body can now be defined relative

to the root-directed spanning tree. Body Bβ is the di-

rect predecessor of Bα , if they are connected by an arc,

i.e. (Bβ , Bα)∈
→

G 0. This is denoted as Bβ =Bα − 1 (for short

β =α− 1).

www.mech-sci.net/6/137/2015/ Mech. Sci., 6, 137–146, 2015
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Joint Jj is the direct predecessor of Ji , if the target of Jj

is the source of Ji , i.e. Jj = (·, α)∈
→

G 0 and Jj = (α, ·)∈
→

G 0.

This is denoted as Jj = Ji − 1 (for short j = i− 1). Joint

Jj is a predecessor of Ji , if there is a finite k, such that

Jj = Ji − 1− 1 . . . − 1 (k times). This is expressed as

Jj = Ji − k. Being a predecessor is indicated by Jj <Ji . Be-

cause of the tree topology it is possible that two bodies have

the same predecessor, i.e. α− 1=β − 1, and analogously for

joints.

Denote with J (Bα) the tree-joint that connects Bα with its

predecessor, i.e. J (Bα)= (β, α)∈G, and with Jroot(Bα) the

joint that connects to the root B0 in the path from Bα within

G.

The tree in Fig. 3b, induces the following predecessor re-

lations

J1 = J2− 1 J2 = J3− 1 J3 = J10− 1 J4 = J5− 1
J5 = J6− 1 J7 = J8− 1 J8 = J9− 1
B0 = B1− 1 B0 = B4− 1 B0 = B7− 1 B1 = B2− 1 B2 = B3− 1
B3 = B10− 1 B4 = B5− 1 B5 = B6− 1 B7 = B8− 1 B8 = B9− 1

and the following assignment of tree-joints connecting the

bodies

Jroot (Bα)= J1,α = 1,2,3,10 Jroot (Bα)= J4,α = 4,5,6
Jroot (Bα)= J7,α = 7,8,9 J (Bα)= Ji,α = i.

2.4 Cotrees and fundamental cycles

The edges of 0 that are not in G constitute the cotree, de-

notedH= (B, JH), with JH : = J/JG . The cotree edges (or

cut-edges) are the

textitchords of the spanning tree. The topological graph of

a mechanism, where all restrains are due to kinematic cou-

plings, consists of exactly one connected component. Such

a graph possesses γ =N −M + 1 independent fundamen-

tal cycles (FC), also called fundamental loops. The integer

γ is called the cyclomatic number (or Euler number) of

0. A FC of 0 is a closed path (i.e. a sequence of edges)

without repeated edges or vertices that contains exactly one

cotree-edge. Thus H possesses γ edges. The FCs are de-

noted with 3l , where l is the index of the cotree-edge in

the FC. The FCs are not unique. The manipulator in Fig. 1a

has 12− 11+ 1= 2 FCs, thusH comprises 2 edges. Figure 4

shows the cotree H to the spanning tree in Fig. 3a and the

corresponding two FCs.

3 Recursive determination of mechanism

configurations

3.1 Rigid body configurations

A rigid body is kinematically represented by a body-fixed

reference frame. The configuration of Bα w.r.t. to a global

reference frame can be represented by a homogenous trans-

formation matrix (Murray et al., 1994; Selig, 2005)
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Figure 4. CotreeH to the spanning tree G in fig. 2a). 311 and 312

are two FCs according toH. Here the notation (α,β) is used instead

of (Bα,Bβ ).

Cα =

(
Rα rα
0 1

)
∈ SE(3) (1)

where Rα ∈SO(3) is the rotation matrix transforming coor-

dinates from the body-fixed reference frame to the global

frame, and rα ∈R3 is the position vector to the origin of the

body-fixed reference frame expressed in the world frame.

3.2 Relative joint motions – lower pair joints

The joint motion is interpreted according to the direction of

the joint. Let the tree-joint Ji be connecting body Bα and Bβ .

According to its direction Ji = (β, α)∈
→

0 it determines the

relative configuration of Bα w.r.t. Bβ , which is given as

Di := C−1
β Cα ∈ SE(3). (2)

This relation follows immediately, since Cα and Cβ is the

configuration of body α and β w.r.t. the global frame. That is,

Cα transforms from body-fixed reference frame on Bα to the

global frame, and C−1
β transforms from global frame to the

body-fixed frame on Bβ . Hence, Di transforms from body-

fixed frame on Bα to body-fixed frame on Bβ .

The majority of technical joints can be modeled as combi-

nation of lower kinematic pairs (Uicker et al., 2013). More-

over, their motion can be expressed as combination of 1-DOF

screw motions, with pure rotations and translation as spe-

cial cases, which is a traditional approach in mechanisms

and MBS modeling. The relative configuration of joint Ji
is then (with appropriate choice of reference frames) deter-

mined with the exponential mapping on SE(3) as

Di = exp(qiYi) (3)

where Yi ∈R6 is the screw coordinate vector and qi the joint

variable (Selig, 2005). This is a basic result in space kine-

matics (Angeles, 2003; McCarthy, 1990). Details are omitted

here as this is beyond the scope of this paper.

Mech. Sci., 6, 137–146, 2015 www.mech-sci.net/6/137/2015/
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3.3 Mechanism configuration

Successive combination of the relative configurations of tree-

joints in the spanning tree allows to determine the configura-

tion of all bodies in the mechanism. This requires taking into

account the assigned directions of the tree-joints. To this end,

an indicator function is introduced as

σ (Ji )=

{
1, Bβ is direct predecessor of Bα
−1, Bα is direct predecessor of Bβ

0, Ji is not a tree-joint, for Ji = (β,α)
.

The short hand notation σ (i) is used for simplicity. More

precisely, σ (i)= 1, if (Bβ , Bα)∈
→

G 0 ∧ (Bβ , Bα)∈
→

0 ; it is

σ (i)=−1, if (Bβ , Bα)∈
→

G 0 ∧ (Bα , Bβ )∈
→

0 ; and σ (i)= 0,

if (Bβ , Bα) 6∈G.

For the manipulator example with 0 in Fig. 1b, a joint ori-

entation is chosen according to
→

0 in Fig. 5, which also shows

the indicator function.

The relative configuration of body Bα w.r.t. its predecessor

Bβ =Bα − 1 due to the tree-joint Ji = (β, α) is then D
σ (i)
i ,

and with Eq. (3) this is expressed as D
σ (i)
i = exp (σ (i)qi Yi).

That is, the transformation is reversed, if Ji is directed

(i.e. measured) opposite to the root-directed tree.

The joint variable qi is interpreted according to the joint

direction. For a revolute joint, Eq. (3) is the transformation

matrix (Eq. 1) in terms of the rotation angle qi . The meaning

of the joint direction is apparent. If the joint angle is mea-

sured from body Bα to Bβ , i.e. if it is directed opposite to

the root-directed tree, then σ (i)=−1, so that its meaning is

reversed, and D
σ (i)
i = exp (−qi Yi) . For instance, the rotation

angle of the revolute joint J4 as defined in Fig. 2a is reversed

in order to determine the motion of B4 w.r.t. B1.

With the relative configuration Eq. (2) of the tree-joints,

the configuration of an arbitrary body Bα is given as

Cα =Dσ (r)
r · . . . ·D

σ (i−2)
i−2 ·D

σ (i−1)
i−1 ·D

σ (i)
i ,

r = Jroot(α), i = J (α) (4)

and using the expression Eq. (3) for lower pair joints yields

Cα = exp(σ (r)qrYr ) · . . . · exp(σ (i− 1)qi−1Yi−1)

· exp(σ (i)qiYi) ,with r = Jroot(α), i = J (α). (5)

For example, the configuration of B10 of the mechanism in

Fig. 1, according to the oriented tree in Fig. 3b and the ori-

ented topological graph in Fig. 5, is

C10 = D1 ·D
−1
2 ·D3 ·D

−1
10

= exp(q1Y1) · exp(−q2Y2) · exp(q3Y3) · exp(−q10Y10) .

For the mechanism in Fig. 2a the configuration of B5 is (with

σ (1)= σ (5)= 1, σ (4)=−1)

C5 = D1 ·D
−1
4 ·D5

= exp(q1Y1) · exp(−q4Y4) · exp(q5Y5) .

The interpretation of the recursive relations Eqs. (4) and (5)

is straightforward. The configuration of Bα is the combina-
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Figure 5. (a) Oriented topological graph
→

0 for 0 in Fig. 1b. (b) The

function σ (i) indicates the direction of joint Ji relative to the root-

directed tree
→

G in Fig. 3b.

tion of the joint configurations when traversing the kinematic

chain in
→

G 0 starting from B0 to Bα while noting the joint

directions encoded in
→

0 .

Remark 3 The formulation Eq. (5) is referred to as

the product of exponentials (POE) formula (Brockett,

1984) that gave rise to very compact formulations for the

mechanism kinematics and algorithms for the dynamics of

MBS (Ploen and Park, 1997; Park, 1994) employing the Lie

group SE(3). An important aspect is that it leads to simple

explicit algebraic relations for velocities, accelerations,

and higher-order derivatives of any order (Müller, 2014b,

a). Furthermore, this provides the basis for higher-order

kinematic analysis of mechanisms. This has been pursued

in Rico et al. (1999, 2008) and Müller and Rico (2008)

for single-loop mechanisms. The extension to multi-loop

mechanisms requires a systematic yet simple description of

the mechanism topology. This is the aim of the present paper.

In summary, starting from the basic topological infor-

mation encoded in 0, the determination of the configurations

of the bodies in a mechanism requires introduction of

– the oriented topological graph
→

0 in order to represent

the joint orientations as assigned in the kinematics mod-

eling, and

– the root-directed tree
→

G 0 in order to define an ordering

that determines a unique predecessor for each body.
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Figure 6. The tree-topology mechanism obtained after removing

the cut-joints J11 and J12.

4 Kinematic loop constraints

For each of the γ FCs (and only for these) a system of kine-

matic constraints is introduced. Such loop constraints can be

formulated in two basically different ways: the cut-joint and

the cut-body formulation.

For the cut-body formulation, a body within the loop,

called the “cut-body”, is virtually cut open so to obtain

an open kinematic chain comprising all joints in the loop.

The loop closure constraints require the cut-body to be

(re)connected.

For the cut-joint approach, a joint within the loop, called

the “cut-joint”, is eliminated (cut open) from the kinematic

model leading to an open kinematic chain comprising all

joints in the loop except the cut-joint. The loop closure con-

straints restrict the relative motion of the two bodies con-

nected by the cut-joint according to its mobility.

4.1 Cut-joint approach

This method is used for kinematics modeling in computa-

tional MBS dynamics. Consider the FC 3l with cotree-edge

Jl = (Bβ , Bα). The joint Jl is used as cut-joint, and removed

from the FC. This leaves two open kinematic chains with the

respective terminal bodies Bβ and Bα of the spanning tree.

Their configurations are determined by the tree-joint config-

urations via Eq. (4). A system of cut-joint constraints is then

formulated for Jl of the form

hl
(
Cα,Cβ

)
= 0. (6)

The constraints Eq. (6) restrict the relative displacement and

orientation, i.e. the configuration, of Bβ and Bα according

to the mobility of joint Ji . These are well-known for various

joint types (Uicker et al., 2013; Wittenburg, 2008). Cotree

edges are the chords of the spanning tree, which bears an

Ground

2

1

0

4

5

3

1

2

6

7

5

43

0

6 1

4

3
3

5

7

5 4

12
2b)a)

Figure 7. (a) Linkage with a higher kinematic pair J2 (pin-in-slot

joint). (b) An oriented topological graph
→

0 for this linkage.

obvious kinematic meaning: a cut-joint reconnects the two

terminal vertices of the spanning tree that are linked by a

chord so to close the FC.

Remark 4 The constraints Eq. (6) only involve the joint

variables of the tree-joints since the cut-joint is removed

from the kinematic model. The cut-joint approach is used in

recursive MBS dynamics algorithms. The main reason is that

the dynamic motion equations of the tree topology system

(the mechanism defined by G) can be derived and evaluated,

possibly with low-order algorithms, and the constraints

be imposed. As example, the tree-topology system for the

manipulator in Fig. 1 according to the tree in Fig. 3 is shown

in Fig. 6. The cut-joints J11 and J12 are removed.

Remark 5 The overall system of loop constraints is

possibly redundant due to the particular mechanism ge-

ometry. The computational treatment of such situations

is a topic of ongoing research (Arabyan and Wu, 1998;

Meijaard, 1993; Wojtyra and Fraczek, 2013). It should be

remarked that the POE formulation and its underlying Lie

group concept allows to deduce redundant loop constraints

and eventually to determine a reduced non-redundant set of

constraints (Müller, 2011, 2014c).

The cut-joint formulation is also advantageous for the

kinematic analysis when only one higher kinematic pair is

present in a FC. Then the configuration, velocity, and accel-

eration, etc. of the two open chains with terminal Bβ and

Bα can be expressed by the POE Eq. (5) since all other tree-

joints are lower pairs. For instance, the mechanism in Fig. 7a

comprises a higher kinematic pair: the pin-in-slot joint J2.

An oriented topological graph is shown in Fig. 7b. The span-

ning tree in Fig. 8a is introduced so that J2 is in the cotree.

Figure 8b shows the corresponding FCs.

The higher pair J2= (B2, B1) is the cut-joint in 32. It im-

poses two rotational constraints and two translational con-

straints on the relative motion of body B2 and B1 (Uicker et

al., 2013) that are summarized as h2(C1, C2)= 0. The con-

figurations of B2 and B1 are determined by the lower pairs of

Mech. Sci., 6, 137–146, 2015 www.mech-sci.net/6/137/2015/
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Figure 8. (a) A root-directed spanning tree
→

G 0 for the linkage in

Fig. 5. (b) Oriented FCs 32 and 35.

the tree topology system. With the orientation of tree-joints

defined by
→

0 and
→

G 0, these are

C1 = D−1
1 = exp(−q1Y1)

C2 = D3D6 = exp(q3Y3)exp(q6Y6) .

The loop constraints h5(C4, C5)= 0 for 35 due to the revo-

lute (lower pair) joint J5 are derived with

C4 = D4 = exp(q4Y4)

C5 = D3D7 = exp(q3Y3)exp(q7Y7) .

In summary, the cut-joint formulation requires introduc-

tion of

– the oriented topological graph
→

0 representing the joint

orientations,

– the root-directed tree
→

G 0 in order to determine the con-

figuration of the bodies connected by the cut-joint, and

– the FCs 3l defining the kinematic loops for which clo-

sure constraints are introduced.

4.2 Cut-body approach

This method is used for kinematic analysis of linkages,

i.e. closed kinematic chains comprising only lower pairs. In-

stead of eliminating the cotree-joint Jl = (Bβ , Bα) , it is re-

garded as part of the closed kinematic chain defined by the

FC 3l . This requires taking into account the orientation of

the joints within the FC. To this end, an orientation of the FC

3l is introduced such that it is aligned with the cotree-edge

Jl . The orientations of edges relative to 3l are indicated by

the cycle incidence function

σl (Ji )=


1,

(
Bβ ,Bα

)
∈
→

0 is aligned with 3l

−1,
(
Bβ ,Bα

)
∈
→

0 is directed opposite to 3l
0,

(
Bβ ,Bα

)
6∈3l , for Ji = (β,α).

Notice that σl(l)= 1. These numbers are commonly arranged

in the cycle incidence matrix of the oriented graph.

10

10
11 12

L11 L12

3

2

1

3

2

1

0

6

5

6

5

4

4

9

8

7

7

9

8

Figure 9. Two oriented FC for the oriented topological graph
→

0 in

Fig. 4). The cycle incidence function σl(Ji ) indicates whether joint

Ji is oriented along or oposite to the FC 3l .

The orientation of 3l induces an order relation in the FC.

Jj is considered as predecessor of Ji in3l , if it is met after Ji
when traversing the FC 3l starting from Jl . This is denoted

with Jj<l Ji . Clearly Ji<l Jl for all i 6= l. Joint Jl and the last

joint in the FC connect to the same body Bα , i.e. Ji = (·, Bα)

and Jl = (Bα , ·).

In the manipulator example, the two FCs in Fig. 4 can

be oriented as in Fig. 9 that also shows the cycle incidence

function. The ordering in 311, for instance, is such that

10<113<112<111<114<115<116<1111.

Successive combination of the relative configurations of

all joints in the FC leads to the closure condition for 3l

fl = I (7)

with

fl :=D
σl (i)
i ·D

σl (j )
j · . . . ·D

σl (k)
k ·Dl,

for i<lj<l . . .k<l l, and Ji,Jj , . . ., Jl ∈3l (8)

where I is the 4× 4 identity matrix. If all joints are 1-DOF

lower pairs, this can be written as

fl : = exp(σl(i)qiYi) · exp
(
σl(j )qjYj

)
· . . . · exp(σl(k)qkYk) · exp(qlYl) . (9)

The expression Eqs. (8) and (9) can be interpreted as the con-

figuration of the terminal body of a kinematic chain compris-

ing the joints i<l . . . <l l. The closure condition then requires

this terminal body to remain fixed. For this reason this ap-

proach is also known as the cut-body method (Samin and

Fisette, 2003). The body connecting joints Ji and Jl (the cut-

body) is virtually cut, and one half serves as terminal body

of the chain. Merging the two halves then leads to the above

constraints.
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Consider the manipulator example in Fig. 1a with oriented

topological graph and FCs in Fig. 9. The system of loop con-

straints for the FC 311 and 312 is respectively f11= I and

f12= I with

f11 := D10 ·D3 ·D
−1
2 ·D1 ·D4 ·D5 ·D

−1
6 ·D11

f12 := D10 ·D3 ·D
−1
2 ·D1 ·D7 ·D8 ·D

−1
9 ·D12.

In summary, the cut-body formulation requires introduc-

tion of

– the oriented topological graph 0 representing the joint

orientations,

– the spanning tree G defining the FCs 3l , i.e. the kine-

matic loops for which closure constraints are intro-

duced, and

– an orientation of the FCs.

Remark 6 The cut-body formulation involves the config-

urations, thus the joint variables, of all joints in the FC.

The expression Eq. (9) has a major importance for the

kinematic analysis of linkages with lower pair joints. Firstly

because it is determined solely in terms of the joint screw

coordinate vectors Y j , but secondly and most importantly,

because its derivatives of any order can be determined by

simple algebraic operation, namely the screw products (Lie

brackets) of the instantaneous joint screws (Rico et al.,

1999; Selig, 2005; Müller, 2014a). This is the basis for any

higher-order kinematic analysis of mechanisms.

Remark 7 The constraints Eq. (9) define the variety of

admissible configurations of the kinematic loop 3l as

Vl : = {q∈Vn|fl(q)= I}, and thus the configuration space

of the linkage as

V :=
⋂
l∈H

Vl . (10)

This configuration space variety is the chief subject in the

mobility analysis of mechanisms. Clearly, a systematic

method for multi-loop mechanisms shall rest on the iden-

tification of topologically independent FCs. This has been

introduced by Davis (1981, 2015) adopting the principles

of Kirchoff’s circuit law for electric networks. It is not yet

been used widely, however. This frequently leads to the

introduction of redundant constraints when topologically

redundant loops are considered.

Remark 8 The kinematic topology is inextricably con-

nected to the (generic) structural mobility, i.e. the mobility

that a generic realization of a mechanism with a given

number of bodies and joints possesses. Structural mobility

criteria hence estimate a lower bound on the mobility of a

particular mechanism. They only require structural informa-

tion but no information about the topology. It is instructive

though, to note how topological information enters these

criteria. The best-known mobility criterion is the Chebyshev-

Kutzbach-Grübler formula δgen= g(M − 1)−
∑
Ji∈0

(g− δi)

where δi is the DOF of joint Ji , and g characterizes the

“motion type” of the mechanism. For instance, g= 3 for

planar and spherical, and g= 6 for spatial mechanisms

(Angeles, 2003). The number g can be specified without

investigating the particular geometry if the motion of the

loops form a motion subgroup of SE(3). Then the generic

mobility, i.e. for generic geometries, is determined with

g= 1, 2, 3, 4, 6. Now with
∑
Ji∈0

g=Ng this reads

δgen =

∑
i∈J

δi − gγ. (11)

In other words for each FC a system of g constraints is im-

posed. Hence, the generic DOF is determined once the num-

ber FCs is known. It was shown in Müller (2009) that this is

in fact the correct mobility for generic realizations.

5 Conclusions

The kinematic analysis of a mechanism requires evaluation

of the motion of its members, and formulation of a system

of generically independent loop closure constraints. Any re-

cursive evaluation of the motion of a mechanism rests on an

ordering of bodies and joints. The configuration of a body is

given in terms of the configurations of its predecessors that

form a kinematic chain to the ground (reference body). For a

multi-loop mechanism this chain is no unique. The spanning

tree of the topological graph gives rise to a unique predeces-

sor relation. This is introduced in this paper making use of a

root-directed spanning tree (a tree such that there is an ori-

ented path from any body to the ground). If the mechanism

comprises lower pair joints only, the configuration is then re-

cursively expressible by the product of exponentials (POE)

in terms of joint screw coordinates.

The recursive formulation of loop closure constraints also

requires an ordering, now within the loop. Here it is im-

portant that constraints are formulated for fundamental cy-

cles (FC), i.e. for topologically independent kinematic loops.

To this end, fundamental cycles are introduced on the topo-

logical graph together with an orientation. Two different con-

straint formulations are considered: cut-joint and cut-body

formulation. The cut-joint formulation allows for a higher

kinematic pair in a FC, whereas the cut-body formulation is

tailored to linkages with lower pairs.

The basic difference of the proposed topology descrip-

tion compared to the various graph representations is that it

does not involve matrix representations. Moreover, the pre-

sented notation provides the basis for a systematic higher-

order analysis of the mechanism kinematics. This will be re-

ported in forthcoming paper.
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Appendix A

Table A1. Nomenclature.

N number of joints in a mechanism

M number of bodies in a mechanism

0, G, H topological graph, spanning tree, and cotree in 0

Bα vertex representing body α= 0, . . . , M − 1

Ji = (Bβ , Bα) edge representing joint i= 1, . . . , N between bodies Bβ and Bα
→

0 oriented topological graph indicating assigned direction of joint transformations
→

G 0 root-oriented spanning tree, so that there is a unique directed path from the root B0 to any Bα
σ (i) function indicating the direction of joint i relative to the root-oriented tree

γ number fundamental cycles of 0

3l fundamental cycle of 0 assigned to co-tree edge l ∈H
qi joint variable of 1-DOF lower pair joint i

q∈VN vector comprising all joint variables

Yi screw coordinate vector of joint i in the zero reference configuration q= 0

SE(3) matrix representation of the Lie group of rigid body motions

δi DOF of joint i

δgen generic DOF of a mechanism
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