
Mech. Sci., 5, 67–78, 2014

www.mech-sci.net/5/67/2014/

doi:10.5194/ms-5-67-2014

© Author(s) 2014. CC Attribution 3.0 License.

A function for characterizing complete kinetostatic

behaviors of compliant bistable mechanisms

G. Li and G. Chen

School of Mechatronics, Xidian University, Xi’an, Shaanxi 710071, China

Correspondence to: G. Chen (guimin.chen@gmail.com)

Received: 16 July 2014 – Revised: 17 November 2014 – Accepted: 20 November 2014 – Published: 12 December 2014

Abstract. In this paper, a straightforward and accurate numerical modeling (a rational function called “tri-root

bistable function”) are proposed to represent the complete nonlinear bistable force-displacement characteristics.

The rational function has a cubic polynomial numerator and quadratic polynomial denominator. With three dif-

ferent kinds of compliant bistable mechanisms, the tri-root bistable function is proved effective and accurate,

and that it is capable of capturing the key features of a bistable kinetostatic curve accurately with fewer pa-

rameters. Then, for the classic fully-compliant bistable mechanism, six closed-form equations are presented and

used to describe the relationships between the tri-root bistable function parameters and the mechanism’s design

parameters, which are achieved using a multi-variable nonlinear regression. The regression analysis is validated

by nonlinear finite element analysis. Finally, a fully-compliant statically balanced mechanism consisting of three

different classic fully-compliant bistable mechanisms is illustrated to show the capability of the proposed method

in designing compliant multi-stable mechanisms.

1 Introduction

A compliant bistable mechanism is a device that can maintain

two distinct positions without power input (Howell, 2001).

A multitude of different compliant bistable mechanisms has

been proposed and studied (Su and McCarthy, 2007; Jensen

et al., 2001; Hansen et al., 2007; Jensen and Howell, 2004;

Masters and Howell, 2003; Wilcox and Howell, 2005; Sön-

mez and Tutum, 2008; Jensen et al., 1999; Jensen and How-

ell, 2003). These mechanisms have many potential appli-

cations such as switches (Oberhammer et al., 2006; Hoff-

mann et al., 1999), closures, relays (Charlot et al., 2008),

reconfigurable robots (Hafez et al., 2003), and landing gear

mechanisms (PuchetaMMT and Cardona, 2010). Due to their

negative-stiffness behaviors around the unstable equilibrium

positions (a bistable mechanism has two stable equilibrium

positions and an unstable equilibrium position), they have

been used as negative stiffness building blocks for achieving

static balancing in compliant mechanisms (Tolou et al., 2011;

Chen and Zhang, 2011). Bistable mechanisms of different

types have also been used as fundamental building blocks

for synthesis of multistable mechanisms that have more than

two stable positions (Chen et al., 2009b, a; Oh and Kota,

2009; Chen et al., 2011b; Chen and Du, 2013; Halverson et

al., 2010; Pendleton and Jensen, 2007). Andò et al. (2012)

also utilized a bistable mechanism for energy harvesting. The

wide use of bistable mechanisms motivates the development

of an approach for accurately modeling their kinetostatics

(i.e., the load-displacement relationship).

However, the nonlinearity associated with the bistable be-

havior often complicates the modeling. The pseudo-rigid-

body method (PRBM) (Howell, 2001), which approximates

the nonlinear deflection as motion of rigid links, is partic-

ularly useful in the early design phases of bistable mecha-

nisms, but inaccurate for the later design phases. Currently

nonlinear finite element analysis (NFEA) is still an important

tool for obtaining accurate kinetostatic behavior of bistable

mechanisms during the late design phases.

In this paper, we propose a rational function called “tri-

root bistable function” for the purpose of easily and explicitly

representing the complete kinetostatic behaviors of bistable

mechanisms. This function provides bistable mechanism de-

signers an explicit and easy way to represent their design re-

quirements for bistable behaviors. The tri-root bistable func-

tion has a 3rd degree polynomial numerator and a 2nd de-
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68 G. Li and G. Chen: Compliant bistable mechanisms

Figure 1. A classic fully-compliant bistable mechanism.

gree polynomial denominator, and is capable of capturing

the key features of a complete bistable kinetostatic curve

(including the external kinetostatic behaviors, Chen et al.,

2011b) accurately with fewer parameters. If the key points

of a kinetostatic behavior are given as the design require-

ments of a bistable mechanism, the tri-root bistable function

enables the construction of the whole bistable curve. Using

the constructed function as the target bistable curve, an op-

timization process can be employed to search for a desired

bistable mechanism design (Chen and Du, 2013). Moreover,

for a given type of bistable mechanism, a regression analysis

from available NFEA and/or experimental results can iden-

tify the relationships between the tri-root bistable function

parameters and the mechanism’s design parameters (includ-

ing both the geometric and the physical parameters). Once

the relationships are known for a specific type of bistable

mechanisms the design of future mechanisms of this type is

greatly simplified.

The rest of this paper is organized as follows: Sect. 2 re-

views different ways for describing the complete bistable

kinetostatic behaviors and presents this new rational func-

tion. Section 3 illustrates how accurate the rational function

is in representing the complete bistable kinetostatic behav-

iors using three different kinds of compliant bistable mecha-

nisms. Section 4 presents the closed-form equations of the

kinetostatic behavior of a classic fully-compliant bistable

mechanism, which are achieved using a multi-variable non-

linear regression (a mathematical optimization and analysis

software called 1stOpt is used). In Sect. 5, a fully-compliant

statically balanced mechanism consisting of three different

classic fully-compliant bistable mechanisms is illustrated to

validate the accuracy of the six closed-form equations. The

concluding remarks are made in the last section.

2 Mathematical representations of bistable

kinetostatic behaviors

In this section, we will take the fully-compliant bistable

mechanism (Jensen et al., 2001) shown in Fig. 1 as an exam-

ple to demonstrate the representation of bistable behaviors.

Figure 2 plots the kinetostatic behavior curve of a bistable

mechanism whose design parameters are listed in Table 1,

which are achieved using nonlinear finite element analysis

Figure 2. The complete kinetostatic behavior curve of a bistable

mechanism.

(NFEA). The whole curve can be divided into three sec-

tions: the bistable behavior section, the reverse behavior sec-

tion (Sönmez and Tutum, 2008) and the post-bistable behav-

ior (Wilcox and Howell, 2005) section. We denote the whole

force-deflection characteristics as

F = F(x) (1)

where x is the travel distance of the shuttle from its first

stable equilibrium position (i.e., the as-fabricated position)

along the y axis. As illustrated in Fig. 2, the function should

have three roots, i.e., x1, x2 and x3, where x1 and x3 corre-

spond to the two stable equilibrium positions while x2 cor-

responds to the unstable equilibrium potion. Moreover, x4

and x5 correspond to the two switching positions named by

Hansen et al. (2007).

In order to model this highly nonlinear behaviors of this

type of mechanism, Oh and Kota (2009) employed a piece-

wise third-order function to approximate the bistable behav-

iors:

F1(x)=


f1(x) x1 ≤ x < x4

f2(x) x4 ≤ x < x5

f3(x) x5 ≤ x ≤ x3

(2)

satisfying

F1(x1)= F1(x3)= F1(0)= 0 (3)

dF1

dx

∣∣∣∣
x=x4

=
dF1

dx

∣∣∣∣
x=x5

= 0 (4)

f1(x4)= f2(x4),f2(x5)= f3(x5) (5)

It was suggested that subfunctions f1(x) and f2(x) were

second-order polynomials, and f3(x) was a third-order poly-

nomial. As shown in Fig. 3, the function F1(x) can be yielded
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Table 1. Design parameters of a classic fully-compliant bistable mechanism. H is the out-of-plane thickness of the mechanism, E is the

Young’s modulus of polypropylene.

Parameter E H L1 θ1 w1 L2 θ2 w2 L3 θ3 w3

Value 1.4×109 Pa 6 mm 8 mm 0◦ 0.8 mm 20 mm 12◦ 3 mm 8 mm 0◦ 0.8 mm
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Figure 3. The comparision between the third-order polynomial and
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Figure 4. The comparision among the fifth, ninth-order polynomi-

als and NFEA.

as:

F1(x)= f1(x)=−0.8588x2
+ 4.0191x 0≤ x < 2.34

f2(x)= 0.1019x3
− 1.5686x2

+ 5.6666x− 1.2747 2.34≤ x < 7.92

f3(x)= 3.6603x2
− 57.9791x+ 225.446 7.92≤ x ≤ 8.985

(6)

As shown in Fig. 3, Eq. (6) satisfies the key points of the

bistable behavior accurately, but cannot describe the whole

bistable behavior well.

Wang et al. (2009) used a ninth-order polynomial to model

the nonlinear spring stiffness of the mechanism as

F2(x)=

9∑
i=0

kix
i (7)
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Figure 5. The complete bistable kinetostatic behaviors of the clas-

sic fully-compliant bistable mechanism.

Figure 6. Experimental setup.

Third, fifth, seventh, eighth and ninth-order polynomi-

als have been used to model the highly nonlinear force-

displacement curve. However, the curves generated by the

polynomials with order less than nine do not fit the force-

displacement curve well, as shown in Fig. 4, and the expres-

sion can not capture the bistable behaviors directly.

To address these problems, this paper proposes a con-

tinuous rational function called “tri-root bistable function”

to accurately describe the complete kinetostatic behaviors

of the bistable mechanisms with fewer parameters. Consid-

ering that the bistable curve contains three zeros, the tri-
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Figure 7. The structure of a Young bistable mechanism and its bistable kinetostatic behaviors.

Table 2. Design parameters of a Young bistable mechanism. H is the out-of-plane thickness of the mechanism, E is the Young’s modulus of

polypropylene.

Parameter E H l1 θ20 l2 θ40 l4 b2 b4

Value 1.4× 109 Pa 6 mm 128 mm 10◦ 110 mm 40◦ 174 mm 6 mm 3 mm

root bistable function has a cubic polynomial numerator and

quadratic polynomial denominator (we empirically chose the

denominator based on the testing results among different

functions) and is expressed as

F3(x)=
p1(x− x1)(x− x2)(x− x3)

x2+ q1x+ q2

=
p1x

3
+p2x

2
+p3x+p4

x2+ q1x+ q2

(8)

where, (4q2−q
2
1 ) > 0 (i.e., (x2

+q1x+q2) > 0), p1 > 0 and

x1 < x2 < x3 (x1, x2 and x3 correspond to the three zeros

of F3). According to Vieta’s formulas, the relationships be-

tween the three zeros and parameters pi (i = 1,2,3,4) are

given as:

x1+ x2+ x3 =−
p2

p1

x1x2+ x2x3+ x1x3 =
p3

p1

x1x2x3 =−
p4

p1

 (9)

For the five key points shown in Fig. 2, we have

F3(x1)=
p1x

3
1+p2x

2
1+p3x1+p4

x2
1+q1x1+q2

= p1x
3
1 +p2x

2
1 +p3x1+p4 = 0

F3(x2)=
p1x

3
2+p2x

2
2+p3x2+p4

x2
2+q1x2+q2

= p1x
3
2 +p2x

2
2 +p3x2+p4 = 0

F3(x3)=
p1x

3
3+p2x

2
3+p3x3+p4

x2
3+q1x3+q2

= p1x
3
3 +p2x

2
3 +p3x3+p4 = 0

 (10)

Taking the first derivative of F3 with respect to x yields

the stiffness of the compliant bistable mechanism:

F ′3(x)=

(3p1x
2
+ 2p2x+p3)(x

2
+ q1x+ q2)− (2x+ q1)(p1x

3
+p2x

2
+p3x+p4)

(x2 + q1x+ q2)2
(11)

thus we have

F ′3(x4)=

(3p1x
2
4 + 2p2x4 +p3)(x

2
4 + q1x4 + q2)− (2x4 + q1)(p1x

3
4 +p2x

2
4 +p3x4 +p4)

(x2
4 + q1x4 + q2)2

= 0 (12)

F ′3(x5)=

(3p1x
2
5
+ 2p2x5 +p3)(x

2
5
+ q1x5 + q2)− (2x5 + q1)(p1x

3
5
+p2x

2
5
+p3x5 +p4)

(x2
5
+ q1x5 + q2)

2
= 0

(13)

and

F3(x4)=
p1x

3
4+p2x

2
4+p3x4+p4

x2
4+q1x4+q2

= Fmax

F3(x5)=
p1x

3
5+p2x

2
5+p3x5+p4

x2
5+q1x5+q2

= Fmin

 (14)

At the first and second switching positions (x4 and x5), the

stiffnesses of the mechanism are equal to zero.

Furthermore, the total stain energy stored in a deflected

bistable mechanism can be obtained by integrating the tri-

root bistable function:
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Figure 8. The structure of the fully compliant tensural bistable mechanism and its bistable kinetostatic behaviors.

Table 3. Design parameters of the fully compliant tensural bistable mechanism (FTBM). H is the out-of-plane thickness of the mechanism,

E is the Young’s modulus of polypropylene.

Parameter E H lc θ tc ls φ ts

Value 1.4× 109 Pa 6 mm 120 mm 5.5◦ 3.5 mm 25 mm 13◦ 1.5 mm

V (x)=

x∫
x1

F3(x)dx =

x∫
x1

p1x
3
+p2x

2
+p3x+p4

x2+ q1x+ q2

dx

=
2p4 −p3q1 +p2q

2
1
−p1q

3
1
− 2p2q2 + 3p1q1q2√

−q2
1
+ 4q2

arctan(
2x+ q1√
−q2

1
+ 4q2

) (15)

+
1

2
[p1x

2
+ 2p2x− 2p1q1x+ (p3 −p2q1 +p1q

2
1
−p1q2) ln(x

2
+ q1x+ q2)]

At the first and second stable equilibrium positions (x = x1

and x = x3), the total energies are minimum.

For a compliant bistable mechanism, if the five key points

of the kinetostatic behavior curve are given as the design re-

quirements (i.e. the five key points are known), the whole

bistable curve can be plotted by the tri-root bistable function,

which can be achieved easily by solving Eqs. (10), (12), (13)

and (14) simultaneously. Because there are six parameters in

Eq. (8), only six equations are required among these seven

equations. In this paper, we take Eqs. (10), (13) and (14) to

obtain the solutions for the six parameters. In addition, when

the fitting curves passing through the origin (i.e., F(x1)= 0

when x1 = 0), the accuracy of the regression analysis may be

ruined (Eisenhauer, 2003), which can be avoided by translat-

ing the initial position to (−1, 0).

Conversely, for a given compliant bistable mechanism, the

bistable kinetostatic behaviors can be captured easily and ex-

plicitly by the tri-root bistable function instead of the PRBM

and NFEA. This requires us to find the relationships among

the five key points and the design parameters firstly, which

will be discussed in the following part of this paper.

3 Fitting results of different types of bistable

mechanisms

In this section, three different types of compliant bistable

mechanisms are utilized to illustrate the use of the tri-root

bistable function in representing kinetostatic behaviors of the

bistable mechanisms.

3.1 Classic fully-compliant bistable mechanism

The classic fully-compliant bistable mechanism introduced

in Sect. 2 is chose as an illustration, whose configuration is

shown in Fig. 1 and design parameters are listed in Table 1.

Then, we use the tri-root bistable function (Eq. 8) to model its

complete kinetostatic behaviors (including the reverse behav-

ior (Sönmez and Tutum, 2008), the bistable behavior and the

post-bistable behavior (Wilcox and Howell, 2005)), which

are compared with nonlinear finite element analysis (NFEA).

As shown in Fig. 5, the function FL(x) is yielded as:

FL(x)=
−6.8286x3

+ 99.9394x2
− 345.6224x− 14.322

x2− 2.0921x− 77.2396
(16)

Figure 5 and Eq. (16) show that, the tri-root bistable func-

tion (Eq. 8) can capture the complete kinetostatic behaviors

(including reverse behavior and post-bistable behavior) of

the classic fully-compliant bistable mechanism with fewer

parameters. The accuracy of the function can be improved

when the kinetostatic behaviors don’t include the reverse and

post-bistable behaviors. Fitting through the origin may re-

duce the accuracy of the fitting results (Eisenhauer, 2003),

so we chose (−1,0) as the initial positions of the bistable

curves to improve the fitting quality. The fitting results then

were translated along the x axis so that they pass through the

origin for the purpose of comparing them to the NFEA and

experimental results.

www.mech-sci.net/5/67/2014/ Mech. Sci., 5, 67–78, 2014
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Figure 9. The finite element model for the classic fully-compliant bistable mechanism.
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Figure 10. The comparison of the bistable kinetostatic behaviors achieved using NFEA and the tri-root bistable function.
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Figure 11. Structure of a fully-compliant statically-balanced mech-

anism consisting of three classic fully-compliant bistable mecha-

nisms. (a) The compliant tristable mechanism consisting of two

fully bistable mechanisms (i.e., Part A and Part B), and (b) the bal-

ancing bistable mechanism.

To examine the accuracy of the NFEA, a prototype of the

mechanism was fabricated and measured, as shown in Fig. 6.

The measured results are also plotted in Fig. 5. The measured

three equilibrium positions are in good agreement with the

FEA results. The measured two critical forces (the minimum

forces required to transit full compliant bistable mechanism

between its two stable positions) are slightly smaller than the

NFEA predictions, which may be attributed to the machining

errors of the prototype.

3.2 Young bistable mechanisms

With two articulated joints, the Young bistable mecha-

nisms (Jensen et al., 1999) have double links: one of the

links rigid (the ground link) and the other contains two flexi-

ble segments. Figure 7 shows the configuration of a Young

bistable mechanism, which has two compliant links con-

nected to the same coupler and the substrate. The design pa-

rameters are listed in Table 2.

Then, we use the tri-root bistable function (Eq. 8) to model

its bistable kinetostatic behaviors and compare with the PRB

method, as shown in Fig. 7. The function MY (θ) is obtained

as:

MY (θ)=
0.03108θ3

− 2.282θ2
+ 46.25θ − 266

θ2− 16.94θ + 70.93
(17)

where, θ is the PRBM angle of l2.

Figure 7 shows that, the tri-root bistable function (Eq. 8)

is capable of capturing the key features of the kinetostatic
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Table 4. Design parameters of the fully-compliant statically-

balanced mechanism. H is the out-of-plane thickness of the mech-

anism, E is the Young’s modulus of polypropylene.

Part A of Part B of Balancing

Parameter Tristable Tristable Bistable

Mechanism Mechanism Mechanism

E 1.4× 109 Pa 1.4× 109 Pa 1.4× 109 Pa

H 6 mm 6 mm 6 mm

L1 12 mm 8 mm 7.95 mm

θ1 0◦ 0◦ 0◦

w1 0.6 mm 0.8 mm 0.8 mm

L2 24 mm 20 mm 38.6 mm

θ2 12◦ 12◦ 12.2◦

w2 4 mm 4 mm 3 mm

L3 12 mm 8 mm 1.1 mm

θ3 0◦ 0◦ 0◦

w3 0.6 mm 0.8 mm 0.8 mm

behaviors of the Young mechanisms accurately with fewer

parameters.

3.3 Fully compliant tensural bistable mechanisms

(FTBM)

Figure 8 shows the configuration of a fully compliant tensural

bistable mechanism (FTBM) (Wilcox and Howell, 2005),

which consists of at least one primary segment which under-

goes deformation and stores strain energy, and subjected to

tension or bending loads (linear bistable micromechanisms

that undergo tension loads, in addition to the bending loads

present, through their range of motion). The design parame-

ters are listed in Table 3.

Then, we use the tri-root bistable function (Eq. 8) to model

its bistable kinetostatic behaviors and compare with the non-

linear finite element analysis (NFEA), as shown in Fig. 8.

The function FT (x) is

FT (x)=
−0.22x3

+ 6.8124x2
− 52.4386x+ 2.3393

x2− 35.7666x− 203.164
(18)

As shown in Fig. 8, the tri-root bistable function (Eq. 8) is

capable of capturing the key features of the bistable kine-

tostatic behaviors of the fully compliant tensural bistable

mechanisms (FTBM) accurately with fewer parameters.

From Figs. 5–8, it is evident that the tri-root bistable func-

tion (Eq. 8) represents the bistable kinetostatic behaviors eas-

ily and explicitly with fewer parameters for different kinds of

compliant bistable mechanisms.

4 Regression analysis of the classic fully-compliant

bistable mechanism

In this section, with the help of a mathematical optimization

and analysis software called 1stOpt, we make the regression

analysis for the classic fully-compliant bistable mechanism

shown in Fig. 1 (its design relies heavily on NFEA because

there is no appropriate model for this kind of bistable mech-

anism). The regression analysis can obtain expressions that

explicitly express the relationships between the design pa-

rameters and the key performances of bistable designs in the

form of polynomials.

As shown in Fig. 1, the classic fully-compliant bistable

mechanism has six main design parameters (L1, L2, L3, θ1,

θ2 and θ3). Given a group of design parameters, to model

its bistable kinetostatic behaviors with the tri-root bistable

function (Eq. 8), we have to find out the relationships among

the five key points and design parameters. Here, we propose

six closed-form equations to describe the relationships. Here

x2 is expressed as:

x2 = a2L
2
1+ b2L

2
3+ c2θ

3
1 + d2θ

3
3

+

2∑
i=0

1∑
j=0

2∑
k=0

1∑
l=0

1∑
m=0

1∑
n=0

gijklmnθ
i
1θ
j

2 θ
k
3L

l
1L

m
2 L

n
3 (19)

where a2, b2, c2, d2 and gijklmn are the unknown coefficients

of all the terms in Eq. (19), which can be obtained by 1stOpt,

which is introduced in Appendix A.

Similarly, the key points x3, x4, x5, F(x4) and F(x5) can

be given as

x3 = a3L
3
1+ b3L

3
3+ c3θ

2
1 + d3θ

2
3

+

1∑
i=0

1∑
j=0

1∑
k=0

2∑
l=0

1∑
m=0

2∑
n=0

hijklmnθ
i
1θ
j

2 θ
k
3L

l
1L

m
2 L

n
3 (20)

x4 = a4L
4
1+ b4L

4
3+ c4θ

2
1 + d4θ

2
3

+

1∑
i=0

1∑
j=0

1∑
k=0

3∑
l=0

1∑
m=0

3∑
n=0

fijklmnθ
i
1θ
j

2 θ
k
3L

l
1L

m
2 L

n
3 (21)

x5 = a5L
4
1+ b5L

4
3+ c5θ

2
1 + d5θ

2
3

+

1∑
i=0

1∑
j=0

1∑
k=0

3∑
l=0

1∑
m=0

3∑
n=0

pijklmnθ
i
1θ
j

2 θ
k
3L

l
1L

m
2 L

n
3 (22)

F3(x4)= a40L
3
1+ b40L

3
3+ c40θ

2
1 + d40θ

2
3

+

1∑
i=0

1∑
j=0

1∑
k=0

2∑
l=0

1∑
m=0

2∑
n=0

rijklmnθ
i
1θ
j

2 θ
k
3L

l
1L

m
2 L

n
3 (23)

F3(x5)= a50L
3
1+ b50L

3
3+ c50θ

3
1 + d50θ

3
3

+

2∑
i=0

1∑
j=0

2∑
k=0

2∑
l=0

1∑
m=0

2∑
n=0

qijklmnθ
i
1θ
j

2 θ
k
3L

l
1L

m
2 L

n
3 (24)

respectively.

Four hundred fifteen classic fully-compliant bistable

mechanism designs were analyzed by NFEA in order

to achieve the five key points for nonlinear regres-

sion. The scopes of the geometric parameters of the

designs are: 4 mm≤L1≤ 16 mm, 15 mm≤L2≤ 25 mm,

www.mech-sci.net/5/67/2014/ Mech. Sci., 5, 67–78, 2014



74 G. Li and G. Chen: Compliant bistable mechanisms

0 0.005 0.01 0.015 0.02 0.025
−6

−4

−2

0

2

4

6

8

10

12

y(m)

F(
N

)

Tristable Mechanism
Ideal Balancing Bistable Mechanism

y2y1

x2

x5
x3

Balanced Domain

Figure 12. Force-displacement characteristics of the compliant

tristable mechanism and a supposed ideal balancing bistable mech-

anism.
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Figure 13. Force-displacement characteristics of the fully-

compliant statically balanced mechanism.

4 mm≤L3≤ 16 mm, 0≤ θ1 ≤ 12◦, 7◦≤ θ2 ≤ 16◦, and 0≤

θ3 ≤ 12◦. The FEA model of each design was meshed with

SOLID187 elements in ANSYS. A SOLID187 element is de-

fined by ten nodes, each of which has three degrees of free-

dom. The model was meshed automatically by ANSYS. To

ensure the accuracy of the FEA results, the mesh of each

model was refined in the compliant segments so that no less

than four elements were generated across the thinnest part, as

shown in Fig. 9. Each model was fixed on the both ends of the

compliant limb, loaded with a displacement on the shuttle,

and the geometric nonlinearity option was turned on (Com-

mand “NLGEOM, ON”). When the solution was done, the

corresponding force-displacement behaviors were recorded,

which were then used to obtain the five key points.

Equations (19)–(24) were obtained by 1stOpt through fit-

ting the FEA results of 415 designs. These equations explic-

itly express the relationships between the design parameters

and the key performances of bistable designs in the form of

Figure 14. The fitting curve of Eq. (19) (x2).

Figure 15. The fitting curve of Eq. (20) (x3).

polynomials, thus can serve as a mathematical model for this

kind of bistable mechanism. The regression results are pre-

sented in Figs. 14–19 in Appendix B, and greatly simplify the

design of future mechanisms of the classic fully-compliant

bistable mechanism.

Regressing through the origin may ruin the accuracy of the

fitting results (Eisenhauer, 2003). To avoid this problem, we

chose (−1, 0) as the initial positions of the bistable curves

in this paper. Once the kinetostatic behavior curve is deter-

mined, we translate the whole curve to the right of one unit

(i.e. put the initial position of the curve at (0,0)).

Given the design parameters listed in Table 1, then the five

key points of the bistable kinetostatic behavior curve can be

calculated with the six closed-form equations (Eqs. 19–23).

Thus the tri-root bistable function can be determined, which

is plotted in Fig. 10 and expressed as:

F3(x)=

−11.0208x3
+ 129.1472x2

− 276.8704x− 417.0385

x2+ 5.4928x− 134.5362
(25)

where x is the travel displacement of the shuttle from its ini-

tial equilibrium position. The total strain energy stored in the
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Figure 16. The fitting curve of Eq. (21) (x4).

Figure 17. The fitting curve of Eq. (22) (x5).

whole bistable mechanism at any position is given as:

V (x)=

x∫
−1

−11.0208x3
+ 129.1472x2

− 276.8704x− 417.0385

x2+ 5.4928x− 134.5362

dx− 1≤ x ≤ 7.985 (26)

where, x = 7.985 is the second stable equilibrium posi-

tion. The curve of strain energy is plotted compared with

nonlinear finite element analysis (NFEA) in Fig. 10. It

is obvious that the errors are very little and the tri-root

bistable function can mathematically model the classic fully-

compliant bistable mechanism accurately. This may greatly

simplify the modeling of future mechanisms of this type.

5 Design of a fully-compliant statically-balanced

mechanism

In this section, to validate the regression results, we present

a fully-compliant statically-balanced mechanism combining

three different classic fully-compliant bistable mechanisms

that can ideally provide zero stiffness free motion. This

mechanism has been proposed and studied by Chen and

Zhang (2011).

As shown in Fig. 11, the fully-compliant statically-

balanced mechanism is designed with a specific tristable

mechanism (a) and a balancing bistable mechanism (b): the

tristable mechanism consists of two different compliant

Figure 18. The fitting curve of Eq. (23) (F(x4)).

Figure 19. The fitting curve of Eq. (24) (F(x5)).

bistable mechanisms (i.e., Part A and Part B) connected in se-

ries, as shown in Fig. 11(a). Its design parameters are shown

in Fig. 1 and listed in Table 4. The force-displacement char-

acteristics of the tristable mechanism are achieved using non-

linear finite element analysis (NFEA) and plotted in Fig. 12.

To statically balance the whole mechanism, Chen and Zhang

(2011) proposed a method that: first supposes there exit an

ideal balancing bistable mechanism which can counterbal-

ance the given tristable mechanism. Then we can obtain the

force-displacement characteristics of the supposed bistable

mechanism and the approximate statically-balanced domain

(from y1 to y2, shown in Fig. 12). Finally, a group of ideal

design parameters for the balancing bistable mechanism is

found using a particle swarm optimizer (PSO) (Chen et al.,

2011a) integrated with ANSYS. Reference Chen and Zhang

(2011) gives a detailed description for this process.

To avoid the optimization process, we propose a straight-

forward method combining the tri-root bistable function and

regression analysis results introduced above: First we sup-

pose an ideal balancing bistable mechanism and obtain its

force-displacement characteristics as shown in Fig. 12, then

we get the five key points x1 = 0, x2 = 10.93 mm, x3 =

16.87 mm, x5 = 14.5 mm and F(x5)=−4.7. We assume

H = 6 mm, θ1 = θ3 = 0,w1 = w3 = 0.8 mm andw2 = 3 mm

for the balancing bistable mechanism, thus the unknown de-

sign parameters we want are reduced to 4 (L1, L2, L3 and

θ2). By solving the four closed-form equations (Eqs. 19, 20,

22 and 24) simultaneously, the four design parameters can be

determined, which are listed in Table 4.

The force-displacement characteristics of the tristable

mechanism, balancing bistable mechanism and the balanced
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domain of the whole statically-balanced mechanism are plot-

ted in Fig. 13.

Figure 13 shows that the whole mechanism has approxi-

mately balanced behavior during y1 and y2. Compared with

the optimized results obtained by Chen and Zhang (2011),

the statically-balanced behaviors achieved in this paper are

accurate and convenient. It indicates that this method can

substitute the optimization process in some respects. Mean-

time, it also validates the high accuracy of the regression

analysis made above.

6 Conclusions

In this paper, we proposed a rational function called “tri-

root bistable function” to describe the complete bistable

kinetostatic behaviors briefly and accurately with few pa-

rameters. The tri-root bistable function has been shown to

have a high precision by three different kinds of compli-

ant bistable mechanisms. Then, six closed-form equations

capturing the relationships among the five key points and

design parameters were proposed and obtained by a multi-

variable nonlinear regression analysis for the classic fully-

compliant bistable mechanism. This process was achieved by

1stOpt. Finally, a fully-compliant statically-balanced mech-

anism consisting of three different classic fully-compliant

bistable mechanisms was presented and designed with the

proposed method to show the capability of the tri-root

bistable function in design and analysis of bistable mecha-

nisms.

It should be noted that, the tri-root bistable function and

regression analysis can also be employed in other types

compliant bistable mechanisms (such as the Young bistable

mechanism and FTBM illustrated in this paper) for modeling

and design.
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Appendix A

1stOpt (First Optimization) is a set of integrated tools for

mathematical analysis and optimization software package. It

is adept at nonlinear regression, curve fitting and other non-

linear project problems. The nuclear arithmetic is Universal

Global Optimization (UGO). Its specialty is that, the initial

values of all the parameters are offered by 1stOpt randomly

instead of the users, as it is a difficulty for most of the peo-

ple. Even though, the globally-optimal solution can be found

rapidly and precisely.

In this paper, one of the difficulties is how to do the multi-

variable nonlinear regression rapidly and precisely, which

are used to determine the parameters in the six closed-

form equations (Eqs. 19–24). In 1stOpt, there are about

four methods can do this, Liveners-Marquetry (LM), Quasi-

Newton (BFGS), Simplex Method (SM) and Differential

Evolution (DE), they are all associated with UGO to obtain

the globally-optimal solution. As each method has its own

merits and drawbacks, we proposed to do the regression com-

bining all the four methods, which was proved precisely and

efficiently.

Appendix B

The fitting curves of the six closed-form equations (Eqs. 19–

24), which are obtained by 1stOpt and shown as following

(Figs. 14–19).
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