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Abstract. This paper provides an overview of implementation examples based on the Reaction Null Space
formalism, developed initially to tackle the problem of satellite-base disturbance of a free-floating space robot,
when the robot arm is activated. The method has been applied throughout the years to other unfixed-base sys-
tems, e.g. flexible-base and macro/mini robot systems, as well as to the balance control problem of humanoid
robots. The paper also includes most recent results about complete dynamical decoupling of the end-link of a
fixed-base robot, wherein the end-link is regarded as the unfixed-base. This interpretation is shown to be useful
with regard to motion/force control scenarios. Respective implementation results are provided.

1 Introduction

In articulated multibody systems (MBS), such as robots or
smart structures, the force imposed on a specific link via re-
actions from the motion of other links may need to be con-
trolled in an appropriate way to ensure desired performance.
We focus here on the field of robotics exclusively, with rep-
resentative examples such as free-floating space robots, ma-
nipulator(s) fixed to a mobile or flexible base, and humanoid
robots. Consider for example a free-floating space robot con-
sisting of one or more manipulators mounted on a satellite
base. In order to avoid loss of communication of the system
with a distantly located control station, it is highly desirable
to maintain the orientation of the satellite base during ma-
nipulator operation. As another example, consider the case
when the manipulators are mounted on a flexible base. Then,
the goal would be avoiding base deflection and/or base vi-
brations during manipulator operation; otherwise manipula-
tor task performance may deteriorate significantly. Yet as an-
other example, consider a biped humanoid robot – a MBS
that also lacks a fixed base. The limbs of such a biped robot
need to be controlled in a way that balance is maintained
during such operations as: walking, “reflexive” motion in re-
sponse to an unexpected external force, motion/force control
tasks whereby the end-links contact the environment etc., in
order to prevent the robot from falling down.

The common way for achieving such seemingly dif-
ferent control objectives, for different robotic systems, is
proper path planning and control of the manipulator/limb
movements, such that the respective spatial reaction forces
(wrenches) imposed on the unfixed base would be minimized
or controlled in some other specific way. In the case of a free-
floating space robot, satellite-base orientation can be main-
tained when the reaction moments at the base are minimized.
In the case of a flexible-base robot, on the other hand, the
spatial reaction forces at the flexible base should be mini-
mized to avoid inducing vibrations. Finally, in the case of
a humanoid robot, the ground reaction force should be con-
trolled appropriately to maintain the balance and/or to gen-
erate appropriate propulsion and other desirable forces. Sig-
nificant research has been carried out to address the above
control objectives. Representative works in the field of free-
floating space robots areMasutani et al.(1989); Papadopou-
los and Dubowsky(1991); Torres and Dubowsky(1992). In-
ertial damping has been exploited to deal with vibration sup-
pression of flexible-base robots (Lee and Book, 1990; Han-
son and Tolson, 1995; Torres et al., 1996) and with so-called
macro-micro manipulator systems (Book and Lee, 1989;
Yoshikawa et al., 1993; Sharf, 1996; Parsa et al., 2005). In
the field of biped humanoid robots, dynamic postural control
in unknown environments has been discussed, see e.g.Gorce
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(1999); Stephens(2007); Hyon et al.(2009) and also, the
problem of compliant control of multicontact was addressed
(Sentis and Khatib, 2010).

The aim of this work is to present the formalism called
“Reaction Null Space”, or RNS for short, summarizing
thereby research results from the past 25 yr and demon-
strating the usefulness of the method when dealing with
a wide range of problems like those outlined above. The
RNS was initially introduced inNenchev et al.(1988) to
tackle the problem of free-floating space robot control (see
alsoNenchev et al., 1992). Later, it was applied to reaction-
less motion generation and vibration control with flexible-
base robots (Nenchev et al., 1996, 1999; Yoshida et al.,
1996) and long-reach manipulators (Gouo et al., 1998). The
potential of the method has also been explored by oth-
ers, e.g. for modeling and control of the biped gait for the
design of interactive orthesis in rehabilitation tasks (Finat
and Gonzalez-Sprinberg, 2002), reactionless satellite cap-
ture (Dimitrov and Yoshida, 2004; Xu et al., 2007; Pier-
sigilli et al., 2010; Cong and Sun, 2010; Nguyen-Huynh
and Sharf, 2011), design of reactionless manipulators (Fat-
tah and Agrawal, 2005), design and control of a dual-stage
feed drive (Elfizy et al., 2005), wire-suspended manipulator
control (Osumi and Saitoh, 2006; Lampariello et al., 2006),
end-point control (Cheng, 2005) and compliance control of
flexible-base robots (Ott et al., 2006), optimal motion plan-
ning and control (Shui et al., 2009), adaptive reaction con-
trol (Abiko and Yoshida, 2010), and reaction torque con-
trol of redundant space robots (Cocuzza et al., 2010), im-
pacts with a humanoid robot (Konno et al., 2011), opti-
mal motion planning for space robots with base disturbance
(Kaigom et al., 2011), shaking force minimization of high-
speed robots (Briot et al., 2012), and so on.

We explain how to implement RNS based methods within
an existing robotic MBS, e.g. the first free-floating space
robot ETS-VII (Oda, 2000), the Japanese Experiment Mod-
ule Remote Manipulator System (JEMRMS) on the Inter-
national Space Station (Sato and Wakabayashi, 2001; Mo-
rimoto et al., 2001), the DLR robot Rollin’ Justin with a hu-
manoid upper body mounted on a mobile base with flexible
suspension (Borst et al., 2009). In addition, we will introduce
our recent result on how the RNS can be applied to a fixed-
base manipulator for ensuring full dynamic decoupling of the
end-link and the usefulness of this property in motion/force
control tasks. As an example, we present an implementation
with a small humanoid robot performing a surface cleaning
task.

The paper is organized as follows. The following section
introduces briefly some of the notation. Details of the Re-
action Null Space derivation are given in Sect. 3, using a
serial-link chain as a representative of a free-floating space
robot. Section 4 discusses the implementation in flexible-
base and macro/mini manipulation systems. Section 5 shows
the usefulness of the RNS formalism within an operational-
space motion/force control framework. Section 6 discusses

the application to humanoid robots, both for balance con-
trol in response to unknown external disturbances and for
motion/force control tasks. Finally, Sect. 7 gives our conclu-
sions.

2 Notation

In this work, we deal with a robotic MBS that comprises
one or more manipulators/limbs attached to an unfixed base
and arranged in a tree-like structure. We assume that the ma-
nipulators/limbs are made of rigid-body links and includen
single-DOF joints. The respective joint coordinates will be
denoted byθ ∈ <n. Hence, the system can be described with
6+n generalized coordinatesq= (X,θ), whereX ∈ S E(3) de-
notes the position/orientation of the unfixed base w.r.t. the
inertial frame. Note that lower-case bold characters denote
vectors, upper-case bold characters are used for matrices,
and spatial quantities like the spatial velocity of and the spa-
tial force acting at a rigid body, will be denoted by calli-
graphic symbols, e.g.VO,FO ∈ <

6, respectively. The con-
vention for spatial vectors composed of 3-D quantities is:

linear part followed by angular, e.g.VO =
[
vT

O ωT
]T

and

FO =
[
f T nT

O

]T
, wherev,ω, f ,n denote 3-D vectors of body

velocity, angular velocity, force and moment, respectively.
Note also that spatial velocities are transformed via the oper-
ator:

kT l =

[
kRl −

kRk
l r×l

0 kRl

]
∈ <6×6, (1)

kRl ∈ <
3×3 denoting the orientation of coordinate frame{l}

w.r.t. {k}, k r×l ∈ <
3×3 standing for the skew-symmetric oper-

ator associated with vectork r l ∈ <
3 expressing the position

of {l} w.r.t. {k}. The transpose of operator (1) transforms spa-
tial forces.

3 The Reaction Null Space of a free-floating
serial-link robot in zero gravity

We will introduce the RNS formalism with a simple example:
a free-floating serial-link chain in zero gravity. This model
will be used to derive the basic notations. The most relevant
application would be a free-floating space robot comprising a
rigid-link manipulator arm mounted on a rigid-body satellite
– the floating base of the system (see Fig.1).

The manipulator joints are assumed actuated while the
base is not. First, we will derive the RNS formalism at ve-
locity level, based on the momentum conservation condition.
Then, the full dynamics will be taken into consideration.

3.1 Momentum-based derivation

Consider first the spatial momentum of the free-floating
robot represented as ancomposite rigid body (CRB)
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Figure 1. Model of a free-floating base serial-link chain.

(Featherstone, 2008), wherein the angular momentum part is
written w.r.t. the CoM of the CRB:

Lc ≡

[
p
lc

]
=M cVc. (2)

Subscript (◦)c denotes quantities defined w.r.t. coordinate
frame{c} fixed at the CRB CoM, which is an inertial (non-
accelerating) frame in the absence of external forces, and
thus under momentum conservation. The linear part of mo-
mentum is p=

∑n
j=0 mj ṙ j =mt ṙc while the angular part is

lc =
∑n

j=0

(
I jω j +mj r j × ṙ j

)
, wheremj , I j , r j , ω j , stand for

link j mass, inertia matrix, CoM position and angular veloc-
ity, respectively, the latter three given in inertial coordinates.
mt denotes the total mass of the CRB system,rc andVc stand
for its CoM position and spatial velocity, respectively. Ma-
trix M c(q) is a 6×6 block-diagonal matrix havingM v ≡mtU
and cMω ≡

∑n
j=0

(
I j +mj

j r×c
cr×j
)

as upper and lower blocks,

respectively, whereU is the 3×3 unit matrix1. Henceforth,
constants will be denoted by an over-bar. Since the above
momentum is a conserved quantity, we then denote it asL̄c.

With the above notations, the momentum conservation
equation has the simplest possible formM cVc = L̄c. Nev-
ertheless, it is desirable to employ inertial properties familiar
from fixed-base manipulator descriptions. For this purpose,
it is necessary to redefine spatial momentum w.r.t. the base
frame{b}:

Lb =

[
p

brc× p+ lc

]
, (3)

The motion of the robot can then be represented at the veloc-
ity level as:

MbVb+Mbmθ̇ =Lb, (4)

whereVb denotes the spatial velocity of the base. Matrix

Mb(q) =

[
M v M vω

MT
vω Mω

]
∈ <6×6

1Note thatj rc
× = (cr×j )

T = −cr×j .

is the inertia matrix of the system regarded as an CRB, matrix

Mbm(q) =
[

MT
vm MT

ωm

]T
∈ <6×n

is a block submatrix of the system inertia matrix, called
henceforthcoupling inertia matrix. The block submatrices in
the above terms are:

M vω ≡ −mt
br×c (5)

M vm ≡mt
bJc (6)

Mω ≡ bI0+

n∑
j=1

(
bI j +mj

j r×b
br×j
)

(7)

Mωm ≡

n∑
j=1

(
bI j

bJω j +mj
br×j

bJv j

)
(8)

where it was assumed that link 0 is the base.Jc,Jv j denote
the CRB CoM and link-j CoM velocity Jacobians, respec-
tively, while Jω j is the link-j angular velocity Jacobian. As
can be inferred from the leading superscript, all these quan-
tities are defined w.r.t. the base frame{b} (see alsoMasutani
et al., 1989). We should note that the coupling inertia subma-
trix M vm, contributing to translational motion of the CRB, is
identical to the system CoM Jacobian, up to a multiplicative
constant (the total mass). For a free-floating system, trans-
lational motion is considered less important than rotational.
But for the other MBS discussed below, e.g. flexible-base and
humanoid robots, the case is just the opposite. We should also
note that usually, it is assumed that initial spatial momentum
is null.

The momentum componentMbVb, appearing on the l.h.s.
of Eq. (4), can be interpreted twofold. First, assuming a
nonzero initial momentum and immobilized manipulator
joints, the component has the meaning of conserved CRB
momentum. This is a trivial case. Usually, and henceforth,
zero initial momentum will be assumed, such that the condi-
tion L̄c = 0=Lb holds. Then, the above component has the
meaning of CRB momentum occurring in reaction to the ma-
nipulator motion (s.t.MbVb = −Mbmθ̇, θ̇ , 0). Therefore, we
will henceforth refer toMbVb as reaction momentum. The
other momentum componentMbmθ̇, on the other hand, has
the meaning of momentumimposed upon the CRB (i.e. in-
cluding the base) via manipulator motion. We will refer to it
as thecoupling momentum (Nenchev et al., 1996) and denote
it as:

Lbm ≡Mbmθ̇. (9)

Equation (4) can be solved for the manipulator joint ve-
locities, needed as input variables for velocity-based system
motion control. Since the equation is linear in the velocities,
its solution type depends upon the number of manipulator
joints n. In the case of a six-DOF manipulator (n= 6), for
example, the unique solution is:

θ̇ = −M−1
bmMbVb. (10)
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More interesting is the case of a kinematically redundant ma-
nipulator (n> 6). We have then an underdetermined system,
with the general solution (Nenchev, 1989):

θ̇ = −M#
bmMbVb+Pbmθ̇a, (11)

where (◦)# denotes a generalized inverse,P(◦) stands for
a null-space projector anḋθa is an arbitrary vector dimen-
sioned as joint velocity.

Apparently, the coupling inertia matrix comprises a non-
trivial kernel. The infinite set of joint velocities from the
kernel can be derived via the second term on the r.h.s.{θ̇rl :
Pbmθ̇a,∀θ̇a}. This is the set ofreactionless joint velocities;
these velocities do not impose any momenta on the base, and
thus, manipulator motion will becompletely dynamically de-
coupled from the motion of the base. Note also that the re-
actionless joint velocities constitute the set of solutions of
homogeneous equation

Mbmθ̇ = 0, (12)

which stands for coupling momentum conservation. Hence,
we can conclude that reactionless motion (and hence, com-
plete dynamical decoupling) can be achieved if and only if
the coupling momentum is conserved (Nenchev et al., 1996).
Further on, note that the set{θ̇rl} has the structure of a man-
ifold in joint space, e.g. similarly to the selfmotion manifold
known from studies on kinematically redundant manipula-
tors (Burdick, 1989). We will call it the reactionless mo-
tion manifold. The manifold depends upon the rank of the
RNS projector: rankPbm = n−6. With a seven-DOF articu-
lated manipulator, for example, the manifold will be just one-
dimensional. Hence, reactionless motions can be derived via
the differential equation:

θ̇ = bnbm, (13)

where b is an arbitrary scalar with dimension of angular
speed.nbm(q) ∈ kerMbm will be called reactionless vector
field. The integral curves, projected onto workspace via the
direct kinematics, will be referred to asreactionless paths.

In general, it is desirable to have a larger set of reaction-
less paths. One possibility to achieve this is increasing the
number of manipulator joints. Another possibility is to rede-
fine the coupling inertia matrix (and thus its kernel) w.r.t. a
suitable subset of base coordinates. For a free-floating space
robot, most important is the orientation of the satellite base.
Hence, we may redefine the above equations to ignore base
translation variables. Then, the rank of the null-space projec-
tor will increase ton−3. Because of its fundamental role, the
kernel has been named as theReaction Null Space (Nenchev
et al., 1999).

Let us focus now on the other joint velocity component
in Eq. (11), i.e. reaction momentum mapped via a gener-
alized inverse of the coupling inertia matrix. Recall first
that velocity-based redundancy resolution schemes, similar

to that in Eq. (11), are known from studies of kinematically
redundant manipulators (Konstantinov et al., 1981) – the
so-called “task-of-priority” type schemes (Nakamura et al.,
1987). Such schemes give the possibility to address dual-
task control scenarios: typically end-link motion control via
the generalized-inverse component, plus an additional con-
trol task (e.g. optimization of a suitable measure, obstacle
avoidance etc), via the null-space component. Note also that
quite often the Moore-Penrose generalized inverse (the pseu-
doinverse) is used in such schemes, since it yields a locally
optimal solution for the joint-velocity norm (Nenchev, 1989).
Also, in this case, the two components of the general so-
lution (11) become orthogonal, yielding joint-space decom-
position into two orthogonal complementary subspaces. In
our case, when the pseudoinverse is used in Eq. (11), the re-
spective joint velocity component yields optimal inertial cou-
pling in terms of minimizing that part of the total kinetic en-
ergy, that is due to the dynamical coupling between the base
and the rest of the links. We will refer to this energy as the
coupling kinetic energy: VT

b Mbmθ̇. Such energy minimiza-
tion is a highly desirable feature. The reason is that typical
motion control scenarios are dual-task ones: e.g. reaction-
less motion control via the null space component (a feedfor-
ward control component), plus error compensation control
for small base attitude errors, via the pseudoinverse compo-
nent (a feedback control component)2. Coupling energy op-
timization will thereby yield better performance with regard
to error dynamics.

In conclusion, via the null space and the pseudoinverse, we
obtain adecomposition formalism that can be quite useful
for motion analysis, planning and control of various unfixed-
base systems, as will be shown henceforth with a few more
examples. This decomposition is the essence of the RNS
method.

3.2 Dynamics-based derivation

To account for the presence of external forces, we consider
the full dynamics of the free-floating robot: Mb Mbm

MT
bm Mm


V̇b

θ̈

+
Cb

cm

 =
Fb

τ

+

bTT

e

JT

Fe, (14)

where quantities, not yet introduced, are:

Mm ∈ <
n×n: manipulator inertia matrix

J ∈ <6×n: manipulator Jacobian matrix
cm ∈ <n : manipulator nonlinear force
Cb ∈ <

6 : CRB nonlinear force
τ ∈ <n : joint torque vector
Fb ∈ <

6 : external force at the base
Fe ∈ <

6 : external force at the end-link

2See e.g. the discussion on possible motion control tasks in
Nenchev et al.(1992).
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Hereby, we assumed that external forces may act upon the
base (Fb) and/or the end-link (Fe). In fact, the base forceFb

term could be assigned a broader role to include base con-
straint and/or actuator forces. This will allow us, in what
follows, to model other types of systems with the same
equation, e.g. a free-flying space robot with attitude con-
trolled base (i.e. using reaction/momentum wheels as actua-
tors) and/or flexible appendages, a flexible-base manipulator,
a humanoid robot, and others.

Let us focus now on the upper part of the equation of mo-
tion. It can be rewritten as:

MbV̇b+Mbmθ̈+Cb = Fext, (15)

whereFext = Fb+
bTT

eFe denotes theexternal forces. This
equation represents the dynamics of the CRB since only ex-
ternal forces are present. The dynamic equilibrium can then
be expressed asFd−Fext = 0, whereFd is thedynamical force
obtained as time derivative of CRB momentum:

Fd ≡
d
dt
Lb =MbV̇b+Mbmθ̈+ ṀbVb+ Ṁbmθ̇. (16)

The last two terms on the r.h.s. denote the CRB nonlinear
forceCb ≡ ṀbVb+Ṁbmθ̇. The two manipulator motion com-
ponents, on the other hand, represent the spatial force:

Fbm ≡
d
dt
Lbm =Mbmθ̈+ Ṁbmθ̇. (17)

We will refer toFbm as theimposed force, in the sense that
the force is imposed upon the CRB via manipulator motion.
It should be apparent then that any motion along a reaction-
less path (i.e. reactionless motion), conserves coupling mo-
mentum (cf. Eq.12), and implies hence a null imposed force
Fbm = 0.

From (15), it is straightforward to derive manipulator joint
acceleration, needed in dynamical control schemes, e.g. re-
solved acceleration control (Luh et al., 1980) or computed
torque control (Craig, 2004). We will skip the trivial nonre-
dundant case and focus on the more interesting kinematically
redundant manipulator case:

θ̈ =M+bm(Fext−MbV̇b−Cb)+Pbmθ̈a, (18)

where θ̈a denotes an arbitraryn-vector with dimension of
joint acceleration. With the help of this vector, reactionless
manipulator motion can be generated in a feedforward man-
ner, since the respective joint acceleration componentPbmθ̈a
yields coupling momentum conservation. In addition, the
pseudoinverse acceleration component will be useful in dual-
task scenarios, e.g. for feedback compensation of small atti-
tude errors, as already explained. Thereby, full dynamic de-
coupling between the two subtasks will be ensured, as al-
ready discussed in the last subsection.

In computed torque controllers, the joint torque is used as
control input. It can be derived by inserting the above joint

Figure 2. Artistic rendering of the ETS-VII space robot mission.
A six-DOF manipulator arm is mounted on the larger satellite thus
constituting a free-floating space robot with serial arm structure.
(Courtesy of JAXA – the Japan Aerospace Exploration Agency,
Oda, 2000).

acceleration into the lower part of Eq. (14):

τ =MT
bmV̇b+Mmθ̈− JTFe+ cm (19)

=
(
MT

bm−MmM+bmMb

)
V̇b

+
(
MmM+bm

bTT
e − JT

)
Fe

+ cm+MmM+bm(Fb−Cb)+MmPbmθ̈a.

3.3 Implementation issues

The RNS method has been experimentally verified via both
simulations and on-orbit experiments with the ETS-VII
space robot system (see Fig.2). The goal was to confirm
the usefulness of reactionless manipulator motion on-orbit.
Since the space robot was freely floating in micro-gravity
environment, the presence of external forces (e.g. solar pres-
sure, air drag, gravity gradient) has been ignored during
the relatively short time interval of the experiment (about
20 min). It was possible then to employ the momentum con-
servation condition to obtain a suitable velocity-based reac-
tionless motion generator, via the null-space solution (13) in
a feedforward manner. The trajectories were generated in ad-
vance off-line and then transferred to the robot arm on-orbit
for execution. The experimental results can be found e.g. in
(Yoshida et al., 2000).

4 Application to flexible-base and macro/mini
manipulator systems

A variety of flexible-base manipulator systems exist. Con-
sider, for example, a serial-link manipulator mounted at the
distant end of a long flexible beam (Lew et al., 1995). Such
a system is useful as a “long-reach manipulator”, e.g. to gain

www.mech-sci.net/4/97/2013/ Mech. Sci., 4, 97–112, 2013



102 D. N. Nenchev: Reaction Null Space of a multibody system with applications in robotics

Figure 3. An example of a flexible-base robot: Rollin’ Justin –
a robot with a humanoid upper body mounted on a wheeled mo-
bile base with flexible suspension (Courtesy of DLR – the German
Aerospace Center,Borst et al., 2009).

access to a dangerous site. Another example is a robot com-
prising a humanoid upper body mounted on a mobile base via
flexible suspension, e.g. the robot Rollin’ Justin designed at
DLR (Borst et al., 2009) (see Fig.3). There are also so-called
macro/mini manipulator systems, consisting of a dexterous
manipulator (the mini part) attached to the end-link of a large
manipulator (the macro part). The latter ensures positioning
capability of the mini part within a large workspace. Due to
its structure, the large arm usually has inherent flexibilities
in the links and/or joints. Hence, the end-link of the large
arm can be thought of as a flexible base for the mini part,
whereby, the flexible base can be characterized as a compos-
ite rigid body. Two such systems exist on the International
Space Station: the large Canadarm 2 with the Special Pur-
pose Dexterous Manipulator “Dextre” (Coleshill et al., 2009)
and the large Japanese Experiment Module Remote Manip-
ulator System (JEMRMS) with the Small Fine Arm (SFA)
(see Fig.4) (Sato and Wakabayashi, 2001).

Such flexible-base robots require a special motion gener-
ation technique and respective control in order to minimize
the reactions at the flexible base. Otherwise, essential high-

Figure 4. An example of a macro/mini manipulator system: model
of the Japanese Experiment Module (JEM) “Kibo” on the Inter-
national Space Station with the large Remote Manipulator System
(JEMRMS) and the Small Fine Arm (SFA) attached.

precision positioning and/or path tracking capabilities of the
dexterous manipulator(s) may degrade significantly. The Re-
action Null Space method with its joint-space decomposition
formalism can be employed in a straightforward manner to
ensure reactionless motion, via the RNS component, in com-
bination with inertial damping control of flexible-base vibra-
tions, via the pseudoinverse component.

4.1 Single-body flexible base

The simplest possible case is a serial rigid-link manipulator
attached to a single-body flexible base (see Fig.5). First, we
will assume that the spatial elastic forces, constraining the
motion of the flexible base, are expressed via the following
Fb appearing in Eq. (14):

Fb = −DbVb−Kb∆Xb. (20)

Db, Kb ∈ <
6×6 denote base spatial viscous damping and stiff-

ness, respectively, and∆Xb stands for base spatial displace-
ment from the equilibrium. With this notation, the CRB dy-
namics (Eq.15) become:

MbV̇b+DbVb+Kb∆Xb = −Mbmθ̈− Ṁbmθ̇ (21)

= −Fbm

where we assume that no external force acts at the end-link
and that the nonlinear terṁMbVb is ignorable. From this
relation, it becomes apparent that by designing a suitable im-
posed forceFbm, additional damping can be injected into the
system, e.g.:

F ref
bm =GbVb, (22)

Gb denoting the additional spatial damping gain. In the case
of a redundant manipulator, the control input is the joint ac-
celeration:

θ̈ =M+bm(GbVb− Ṁbmθ̇)+Pbmθ̈a. (23)
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Figure 5. Model of a single-body flexible base manipulator system.

This equation has the same structure as Eq. (18). Hence,
a dual-task control scenario can be achieved wherein the
two subtasks will be completely dynamically decoupled: the
RNS componentPbmθ̈a ensures reactionless motion, while
the pseudoinverse component is useful for inertial damping
control of any existing vibrations, whereby the coupling en-
ergy will be minimized. In addition, the equation is suitable
for both velocity control and torque control. In the former
case, velocities are obtain via integration; in the latter case,
the joint torques are obtained in a similar way as Eq. (19), i.e.
by substitution of the joint acceleration into the lower part of
the equation of motion.

Further on, it is easy to confirm that the closed-loop dy-
namics are:

MbV̇b+ (Db+Gb)Vb+Kb∆Xb = 0, (24)

i.e. they appear in the form of unforced dynamics of a spa-
tial mass-damper-spring system. Then, proper damping can
be achieved with a suitably chosen damping gainGb (Hara
et al., 2010).

4.2 Composite rigid-body flexible base (macro/mini
system)

The macro part of a macro/mini manipulator system can be
thought of as an composite rigid-body flexible base, under
the assumption that the joints and/or links have inherent
flexibilities. Having in mind the JEMRMS/SFA system, we
will further assume that both macro and mini system parts
comprise a serial-link structure. The generalized coordinates

will be denoted asq=
[
qT

M qT
m

]T
, qM ∈ <

k and qm ∈ <
n

standing for the joint variables of the macro and mini part,
respectively. The structure of the equation of motion resem-
bles that of a single-body base, whereby subscript (◦)M re-
places the base subscript (◦)b to denote quantities associated
with the macro part:[

MM MMm

MT
Mm Mm

] [
q̈M
q̈m

]
+

[
cM

cm

]
=

[
−DM q̇M −KM∆qM

τ

]
. (25)

Note that, usually, it is assumed that the macro part joints
are passive (Morimoto et al., 2001). Hence, their joint torque
does not appear in the equation. Joint damping and stiffness,
however are present; they are expressed via diagonal matri-
cesDM ,KM ∈ <

k×k, respectively. Other quantities associated
with the macro part include joint space inertiaMM ∈ <

k×k

and nonlinear forcecM ∈ <
k.

From the upper part of the equation, the macro/mini dy-
namics are expressed as:

MM q̈M +DM q̇M +KM∆qM = τM , (26)

whereτM ≡ −MMm q̈m−cM plays the role of a torque imposed
upon the joints of the macro part via the motion of the mini
part. We focus again on inertia coupling, represented via ma-
trix MMm ∈ <

k×n. If we assume that the mini part has more
joints than the macro3, then the kernel of this matrix is non-
trivial. Reactionless motion, and hence, complete dynamical
macro/mini decoupling, can then be achieved via joint accel-
erations derived from the kernel – the Reaction Null Space of
the macro/mini system. Using the RNS joint space decompo-
sition property and following the derivations introduced with
the previous example, we can devise a control law for the
mini part, in resemblance to Eq. (23), to ensure a dual-task
control scenario involving reactionless motion in combina-
tion with inertial damping of the macro vibration:

q̈m = −M+Mm(GM q̇M + ṀMm q̇m)+PMm q̈ma, (27)

whereGM ∈ <
k×k is a diagonal gain matrix for additional

damping injection. The second term on the r.h.s. represents
the reactionless joint acceleration component,PMm denoting
the RNS projector and̈qma standing for an arbitrary vector
dimensioned as mini-part joint acceleration.

4.3 Humanoid upper body on flexible base

This example is interesting because the system has a tree-
like structure comprising two arms of seven DOFs each, at-
tached to the upper end of a torso of three DOF. The other
end of the torso is attached to the flexible base that is rep-
resented as a single body with two elastic DOFs (pitch and
roll), see Fig.7. There is an abundant 15 degree of redun-
dancy w.r.t. reactionless motion. From a practical viewpoint,
additional constraints are to be imposed. A simple example,
as discussed in (Wimbock et al., 2009), is specific motion
task assignment for one of the arms, let’s say the right arm,
while using the other arm, or the other arm and the torso,
to compensate for the disturbance imposed on the base. For
these two scenarios, the degree of redundancy reduces to five
or eight, respectively. The equation of motion can be written

3In the JEMRMS/SFA model we used (Hara et al., 2010) k=
3 andn= 9 (in Fig. 4, the respective joint sets are{q1,q2,q3} and
{q4,q5, ...,q12}).
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Figure 6. Model of an composite rigid-body flexible base system
(a macro/mini manipulator).

as:Mb Mbr Mbc

MT
br M r M rc

MT
bc MT

rc M c


V̇b

q̈r
q̈c

+
Cb

cr

cc

+
Gb

gr
gc

 =
−DbVb−Kb∆Xb

τr

τc

 ,
(28)

where newly appearing subscripts (◦)r and (◦)c stand for
“right arm” and “compensating subsystem” (i.e. left arm or
left arm plus torso), respectively. The “g”-terms denote grav-
ity forces. The CRB dynamics are selected from the upper
part:

MbV̇b+DbVb+Kb∆Xb = −Mbrq̈r −Mbcq̈c−N , (29)

whereN collects all nonlinear and gravity terms. Under the
assumption that the right arm accelerationq̈r is known from
the task assignment, the control acceleration for the compen-
sating subsystem can be selected as:

q̈c =M+bc(Gcq̇c−Mbrq̈r −N)+Pbcq̈ca, (30)

whereq̈ca is an arbitrary vector dimensioned as compensat-
ing subsystem joint acceleration. The form of this equation
is the same as in the previous examples, Eqs. (23) and (27).
Additional damping can be injected via gainGc, and also, re-
actionless motion can be achieved via the RNS termPbcq̈ca.
Experimental data can be found inWimbock et al.(2009).

5 Application as an Operational Space Method

So far, we have confirmed that via the RNS decomposition,
complete dynamical decoupling between the unfixed base
and the rest of the links can be achieved. An interesting ques-
tion is whether the same approach can be applied to the ma-
nipulator’s end-effector e.g. of a serial-link chain, instead to
the base. The answer is trivial; the implication is an alter-
native to the Operational Space formulation (OSF) (Khatib,

Pitch

Roll

Right arm

Base

Torso

Left arm

Passive, coupled joint

Figure 7. Model of Rollin’ Justin – humanoid upper body on flexi-
ble base (Wimbock et al., 2009).

1987). This sections gives the details of the derivation and a
qualitative comparison between the two formulations.

5.1 Brief overview of the Operational Space formulation

The importance of the OSF, e.g. in motion/force control
scenarios for fixed-base manipulators, is quite well known.
More recently, the formulation is being also applied to more
sophisticated MBS like humanoid robots (Sentis and Khatib,
2010). A brief overview is included here for completeness.
The underlying equation is:

Me(θ)V̇+Ce(θ, θ̇)+Ge(θ) = F , (31)

whereV denotes end-link spatial velocity,

Me(θ) =
(
(J(θ)M−1

m (θ)JT(θ)
)−1
∈ <6×6, (32)

is the operational space inertia (Khatib, 1987), Mm(θ) and
J(θ) standing for the manipulator inertia matrix and the ma-
nipulator Jacobian, respectively.Ce, Ge andF denote the
Coriolis and centrifugal force, the gravity force and the force
imposed on the end-link, respectively. These forces are ex-
pressed in end-link coordinates and are obtained from the
manipulator joint-space dynamics via the transpose of the
inertia-weighted generalized inverse4 of the Jacobian:

J#
M(θ) =M−1

m (θ)JT(θ)Me(θ)

4Referred to also as the “dynamically consistent” inverse
(Khatib, 1995).
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Composite-rigid body

Figure 8. Model of a unfixed-base serial-link chain. The system
constitutes a single composite rigid body,C denoting its CoM.

as the underlying transform. It should be apparent that the
end-link dynamics formulation (31) will fail when the ma-
nipulator Jacobian becomes rank-deficient, i.e. at akinematic
singularity.

5.2 RNS-based end-link dynamics formulation

We will use the free-floating dynamics notation from
Sect.3.2. To avoid confusion, we rename the two end-links
of the free-floating chain asA and B (see Fig.8). Without
loss of generality, we will pick up end-linkA as the link of
reference. The equation of motion is then: MA MAm

MT
Am Mm


V̇A

θ̈

+
CA

cm

+
GA

gm

 =
FA

τ

+

ATT

B

JT

Fb, (33)

gravity terms inclusively. The upper part is the CRB dynam-
ics; the coordinates are those of end-linkA but the inertial
properties are those of the entire system. The lower part, on
the other hand, contains generalized force components of a
fixed-base manipulator, linkA being the “fixed base”. The
manipulator is composed of all bodies except linkA; because
end-linkA coordinates are used, quantitiesMm, cm andJ are
those of the fixed-base manipulator, linkB being its end-link.

Henceforth we switch the roles of the two end-links: link
A becomes the “real” end-link, while linkB is the (unfixed)
base. The latter will be later on constrained to obtain a fixed-
base system. In this way, results comparable to the fixed-base
OSF dynamics can be obtained. With this preparation, it is
apparent that the CRB dynamics

MAV̇A +CA +GA = FA +
ATT

BFB −MAmθ̈ (34)

represent system dynamics in terms of end-link coordinates,
i.e. similar to Eq. (31) in OSF. Several remarks are due. First,
note that in the above equation, end-link accelerationV̇A

and forceFA are explicitly present. Therefore, there was no
need to invoke a transformation from joint-space dynamics,
i.e. via the inertia-weighted generalized inverse, as it was the

case with the OSF. Second, differently from the OSF end-link
dynamics (Eq.31), the above equation can be applied even
at kinematic singularities. Third, the inverse dynamics prob-
lem for the joint accelerations can be solved directly from
the above dynamical relation in end-link coordinates. This is
due to the term−MAmθ̈ appearing on the r.h.s. of the equa-
tion. This term stands for inertial coupling between the end-
link and the rest of the links; it makes joint motion explicitly
visible as an end-link dynamical force. The respective joint
torque can then be derived from the lower part of Eq. (33).

These properties of the RNS end-link dynamics can be
considered as advantageous, e.g. when compared to the OSF
end-link dynamics. There are also other differences: under
the RNS formulation, end-link forceFA is a “real” external
force; it is not merely a mapping of the joint torque vector as
in the OSF. Similarly, nonlinear forceCA and gravity force
GA are “true” CRB forces, and not merely mappings of the
respective joint-space terms. Also, the presence of forceFB

may be of some advantage, e.g. in situations when reaction
force control will be needed (such as in the case of a hu-
manoid robot).

5.3 Inverse dynamics and controller design

The inverse dynamics problem plays an important role in
model-based control design, i.e. in computed-torque control
methods. The OSF provides the possibility to design con-
trollers that ensure complete dynamical decoupling of the
end-effector. A motion/force controller, proposed in (Khatib,
1987), calculates the end-link reference force as:

F ref = F ref
m +F

ref
κ , (35)

F ref
m =Me(θ)SV̇ref +Ce(θ, θ̇)+Ge(θ)+Me(θ)ṠV,

F ref
κ = S⊥F ref

c ,

whereF ref
m andF ref

κ are two components referring to end-link
motion and contact force, respectively.S is a selection matrix
suitably defined to specify the unconstrained (motion) direc-
tions, whileS⊥ is its complement, specifying the constrained
directions from the reference contact forceFc. In the case
of a redundant manipulator, the respective computed-torque
controller can be written as:

τ = JTF ref +
(
U− JTJ#T

M

)
τref

a , (36)

whereτref
a denotes an arbitrary vector dimensioned as joint

torque. Torque componentJTF ref is the nominal joint torque
obtained from the static force/torque relation. The other com-
ponent is a null-space torque that does not affect the imposed
end-link force since it is constructed from a generalized in-
verse of the transposed Jacobian. As pointed out inKhatib
(1995); Featherstone and Khatib(1997), there is an infinite
number of such inverses, however, only the inertia-weighted
generalized inverse of the Jacobian yields adynamically con-
sistent force/torque relation – i.e. complete dynamical decou-
pling of the two components.
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Figure 9. Equivalent planar five-link four-joint manipulator models used in:(a) RNS and(b) Operational Space formulations. In(a), the
“root” link is end-link A (the end-effector); In(b), the “root” link is end-linkA (the base). The passive joint at the end-link appears since the
end-link orientation is ignored.

Below we will show how similar dynamically-consistent
relations can be derived under the RNS formulation. The
joint acceleration can be obtained from Eq. (34) as:

θ̈ =M#
Am

(
FA −MAV̇A +

A TT
BFb−CA −GA

)
+PAmθ̈a, (37)

where (◦)# denotes a generalized inverse of the coupling in-
ertia matrix. The second term on the r.h.s. is a vector from the
kernel of this matrix,̈θa denoting an arbitrary vector with di-
mension of joint acceleration. Hence, there is an infinite set
of joint accelerations{θ̈rl : θ̈rl = PAmθ̈a,∀θ̈a} that would not
disturb the state of the end-link. Any acceleration from the
above set can therefore be characterized asreactionless joint
acceleration w.r.t. the state of the end link. This implies com-
plete dynamical decoupling of the end link from the rest of
the links. Henceforth, we refer to the kernel as theReaction
Null Space w.r.t. the end-link.

It follows that there is also an infinite set of joint torque
vectors{τrl =Mmθ̈rl ,∀θ̈a} that do not affect the imposed end-
link force and hence, maintain the state of the end-link. The
joint torque is obtained by inserting joint acceleration (37)
into the lower part of (33):

τ = τn+ τrl , (38)

where

τn =
(
MT

Am −MmM#
AmM A

)
V̇A (39)

+MmM#
AmFA +

(
MmM#

Am
ATT

B − JT
)
Fb

+ cm+ gm−MmM#
Am (CA +GA)

is the nominal component of the solution. It includes end-
link A’s acceleration and force that can be used as refer-
ence inputs in a motion/force controller similar to Eq. (36).

RNS

OSF

(a) 0≤ t < 2.5 s (b) 2.5≤ t < 5 s

Figure 10. Snapshots from the simulation with two equivalent pla-
nar 3R redundant manipulators tracking a semi-circular path and ap-
plying a desired force. The blue/red arrows denote the desired mo-
tion/force vectors, respectively. No null-space motion is involved.
In the RNS simulation (upper graphs) no significant arm reconfig-
uration is observed; in the OSF simulation (lower graphs), on the
other hand, significant arm reconfiguration (spurious link motion)
is observed (Hara et al., 2012).

Since the other joint-toque componentτrl is reactionless
w.r.t. the end-effector, it should be apparent that we obtained
a dynamically-consistent relationship in the sense of Khatib.

Note, however, that in our formulation the nominal com-
ponentτn represents a dynamical torque; it doesnot stem
from a static relation, as in Eq. (36). The consequence is
that even when the manipulator/limb performs self motion,
e.g. due to a nonzeroτrl , the complete dynamical decoupling
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Figure 11. Snapshots from the experiment with a HOAP-2 robot responding to an unknown continuous-force disturbance on the back
(sagittal plane). The so-called Hip strategy has been realized under velocity-based reactionless motion with a three-link two-joint model in
the sagittal plane (Nenchev and Nishio, 2008; Kanamiya et al., 2010).

property will not be lost. Actually,τn constitutes an in-
finite number of dynamically-consistent relationships be-
cause there is an infinite set of generalized inverses for
MAm, namely{M#

Am : MAmM#
AmMAm}. Each specific gener-

alized inverse will provide a specific dynamically-consistent
scheme. Such schemes would be usually constructed to sup-
port task-dependent redundancy resolution, quite in a similar
fashion as known from past studies on kinematically redun-
dant manipulators (Nenchev, 1989).

As an example, let us pick up the Moore-Penrose gener-
alized inverse (pseudoinverse). Local optimality can then be
achieved, the minimized quantity being that part of total ki-
netic energy that is due to the dynamical coupling between
end-linkA and the rest of the links:VT

AMAmθ̇. Note that un-
der the Operational Space formulation, the minimized quan-
tity is the total kinetic energy (Khatib, 1987): 1

2V
TMeV. As

apparent from Eq. (32), this is a highly nonlinear function
due to the inverse of a quadratic form of the Jacobian ma-
trix. This means that in the (not necessarily small) vicinity
of kinematic singularities, excessive fluctuation in the joint
velocity can be expected. In contrast, the coupling kinetic
energy, minimized under the RNS formulation, is quite well
behaved, even within a relatively small vicinity of ill-defined
inertial coupling, i.e. where the coupling inertia matrix be-
comes rank deficient. We can summarize then: with the RNS
formulation we can expect better performance in terms of
joint motion than with the OSF, and equal performance in
terms of end-link motion/force control. This has been exam-
ined experimentally, with two simple models (see Fig.9) per-

forming the same motion/force control task, realized with the
respective nominal component (no null-space motion) (Hara
et al., 2012). The significant difference in terms of joint-space
motion can be confirmed from the animation snapshots in
Fig.10. With the RNS motion/force control formulation, link
motion does not deviate much from the initial configuration.
This indicates the lack of large peaks in joint velocity. With
the OSF, on the other hand, spurious link motion is observ-
able, which is due to the highly nonlinear dynamic transform
(the inertia-weighted generalized inverse) used in the formu-
lation and the resulting peak joint velocities in the vicinity of
kinematic singularities.

6 Application to humanoid robots

A humanoid is an underactuated system and its balance con-
trol can be achieved only via the imposed/reaction forces,
when the feet are in contact with the ground. The prevailing
research approach is to make use of the Zero Moment Point5

(Vukobratovíc and Borovac, 2004) that can provide informa-
tion about roll/pitch momenta on the feet. These momenta are
sufficient for balance control on flat ground, when frictional
forces are ignored. A more interesting situation, however, is
balancing/walking on uneven ground, and also, when con-
sidering the presence of friction and other unknown distur-
bances. To deal with such problems, full spatial force control

5In the static case, the ZMP is the projection of the total CoM
on ground. When the robot is in motion and the CoM accelerates,
the ZMP accelerates in accordance with the respective inertia force.
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Fig. 11. Snapshots from the experiment with a HOAP-2 robot responding to an unknown continuous-force

disturbance on the back (sagittal plane). The so-called Hip strategy has been realized under velocity-based re-

actionless motion with a three-link two-joint model in the sagittal plane (Nenchev and Nishio, 2008), (Kanamiya

et al., 2010).

Fig. 12. Snapshots from the experiment with a HOAP-2 robot responding to an unknown continuous-force

disturbance on the shoulder (frontal plane). (a)-(c), (i) and (j): Ankle strategy; (d)-(g): Lift-leg strategy; (h):

Transition between the two strategies. Two different models in the frontal plane are used; Ankle strategy:

three-link two-joint model; Lift-leg strategy: four-link three-joint model (Yoshida et al., 2011).

21

Figure 12. Snapshots from the experiment with a HOAP-2 robot responding to an unknown continuous-force disturbance on the shoulder
(frontal plane). (a–c, i and j ) ankle strategy;(d–g) lift-leg strategy;(h) transition between the two strategies. Two different models in the
frontal plane are used; Ankle strategy: three-link two-joint model; Lift-leg strategy: four-link three-joint model (Yoshida et al., 2011).

at the feet via the imposed/reaction force relation is neces-
sary. This can be achieved with the RNS formulation in a
straightforward manner, as should be apparent from the ap-
plications discussed so far.

6.1 Planar humanoid models and balance strategies

The RNS method has been applied to the balance problem
in terms of both joint velocity, i.e. using momentum balance
(Nenchev and Nishio, 2008; Kanamiya et al., 2010; Yoshida
et al., 2011), and joint torque (Tamegaya et al., 2008). In the
former case, balance strategies in response to an unknown ex-
ternal disturbance (continuous or impact type) have been de-
vised, based on the analysis of human behavior under similar
circumstances. For example, when the disturbance is applied
on the back while standing upright, the so-called hip strat-
egy may be invoked (Shumway-Cook and Horak, 1989), i.e.
bending in the hips and motion in the ankles in the opposite
direction. This strategy can be readily realized with a sim-
ple three-link (foot, leg, upper body), two-joint (ankle, hip)
planar model in the sagittal plane. The unfixed-base motion
dynamics are then represented as: M f M fm

MT
fm Mm


V̇f

θ̈

+
Cf

cm

+
Gf

gm

 =
Ff

τ

+

f TT

e

JT
e

Fe, (40)

where subscripts “f” and “e” stand for “foot” and “external”,
respectively. With this notation, the foot is considered the un-
fixed base,Ff denoting the force at the foot resulting from the
specific ground contact conditions and including three com-
ponents: vertical ground reaction force, horizontal frictional
force and foot moment, the latter being the most important
for balance.

First, we consider the following simplifying assumptions:
the foot is always in contact with the ground (the acceler-
ation of the CoM vertically upward is restricted) and also,

1

2
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4

5

6

7

Figure 13. A small humanoid robot cleaning a vertical surface: spa-
tial seven-DOF model, with active (θ1 throughθ5) and passive (θ6
andθ7) joint coordinates.

the horizontal frictional force is sufficiently large. The con-
ditions are then similar to those when using ZMP-based con-
trol. We can then ignore the two force components at the foot
and rewrite the dynamics to include just the foot moment.
Then, the coupling inertia matrixM fm ∈ <

1×2 will comprise
a nontrivial kernel. The related null-space projector will be
denoted asPfm. Further on, if we assume as initial conditions
static equilibrium and null foot moment, i.e.Vf ,V̇f andFf

all zero, then this state (and thus balance) can be maintained
with reactionless motion. In terms of joint accelerations, re-
actionless motions are derived from the CRB dynamics (i.e.
the upper part of the equation of motion):

θ̈ = −M+fmṀ fmθ̇+Pfmθ̈a. (41)
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Figure 14. Simulation results under RNS-based dynamical motion/force feedback control: the desired motion trajectory in hand coordinates
is a 30 mm straight line downwards (along -z); the hand force (x component) is regulated thereby to 5 Nm.

This is the reactionless joint acceleration set that was used
to generate a compliant response to the disturbance by bend-
ing in the hips, followed up by standing upright configuration
recovery, after the disturbance disappeared (see Fig.11). Fur-
ther on, since reactionless motion implies coupling momen-
tum conservation, as explained in Sect.3.1, reactionless mo-
tion generation in terms of joint velocity is also possible. This
property was used to realize the Hip strategy under velocity
(and thus position) control.

The same approach was adopted with regard to distur-
bances at the shoulder, within the frontal plane (Yoshida
et al., 2011). Snapshots from respective experiments are
shown in Fig.12. Initially, again, a three-link model was
used to ensure compliant upper-body response, with paral-
lel motion of the legs (considered as a single-link motion –
the Ankle strategy: (a)–(c), (i) and (j)). When the disturbance
persisted, the robot responded by shifting the CoM further

over the right foot and lifting the left leg (Lift-leg strategy:
(d)–(g)). Thereby, the model was extended by one more link
and a joint.

It should be noted that in practice, dynamical models and
hence reactionless motions, cannot be perfect. Therefore, a
dual-task control scenario should be envisioned, similar to
those mentioned in the previous examples. The full CRB dy-
namics should then be used to account for foot rotational ac-
celeration due to small errors, in a feedback control loop. We
have designed a computed torque feedback controller and
confirmed its satisfactory performance w.r.t. to a larger va-
riety of external disturbances. Results will be reported else-
where.
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6.2 Spatial humanoid models and motion/force control

As mentioned in Sect.5, the RNS formalism suits espe-
cially operational-space type motion/force control task sce-
narios with humanoid robots. As an example, consider a spa-
tial humanoid model with seven DOFs: six for the arm and
one for the ankle joint (see Fig.13a). The robot’s task is
to clean a vertical surface. Three hand coordinates are in-
volved to complete the task: two tangential coordinates (y
and z) for trajectory tracking within the vertical plane, and
one normal coordinate (x) for force tracking (Sato et al.,
2011). Note that the wrist comprises a passive U-joint; its
joint coordinates (θ6 andθ7) are available via the loop-closure
equation. The remaining five joint coordinates (θ1 through
θ5) are actively controlled. Thus, the system has two redun-
dant DOFs. The equations from Sect.5 can be applied in a
straightforward manner, whereby end-linksA andB denote
the robot hand and the foot, respectively. Below we present
simulation data, wherein the joint acceleration is computed
via Eq. (37). Thereby, the pseudoinverse is used as a gen-
eralized inverse, the feet are assumed stationary and fixed
(i.e. the six-dimensional spatial forceFB is determined via
the Lagrange multiplier method). No use of the null space
acceleration is made (θ̈a = 0). Thus, feedback control only
is applied to track the desired y-z hand (unfixed-base) mo-
tion trajectory (a 30 mm straight line downwards), regulating
thereby the desired force to 5 Nm. The graphs are shown in
Fig. 14. It is seen that the motion/force control task could
be performed in a stable manner, and without excessive joint
velocity and torque. The null-space component, though not
used currently, is available e.g. for balance control (roll/pitch
control) of the feet. This will be confirmed with upcoming
experiments.

7 Conclusions

This study summarizes results based on the application of the
Reaction Null Space approach. The RNS, defined as the ker-
nel of the coupling inertia – a submatrix of the system inertia
matrix – provides a joint space decomposition formalism that
can be quite useful for motion analysis, motion generation
and motion control of various unfixed-base systems, such
as free-floating space robots, flexible-base and macro/mini
robot systems, as well as humanoid robots. Via the null space
and the pseudoinverse mapping of the coupling inertia, the
joint space can be decomposed into two complementary or-
thogonal subspaces. Thus, two orthogonal joint space com-
ponents in terms of joint velocity, joint acceleration and joint
torque can be derived, with the properties of complete dy-
namical decoupling and locally optimal dynamical coupling,
respectively. The former component induces a reactionless
vector field and the respective reactionless-motion manifold
in joint space. The latter component, on the other hand, im-
poses a spatial-force constraint via manipulator motion, that
can be used for locally optimized control of the unfixed base,

e.g. base orientation, base vibration suppression or foot re-
action control of a free-floating space robot, a flexible-base
robot and a humanoid robot, respectively.
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