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Abstract. Flexible joints, sometimes called bushing elements or force elements, are found in all structural
and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and
three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection
of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or
on experimental measurements. If the joint undergoes finite deformations, identification of its stiffness charac-
teristics is not so simple, specially if the joint is itself a complex system. When finite deformations occur, the
definition of deformation measures becomes a critical issue. This paper proposes a family of tensorial deforma-
tion measures suitable for elastic bodies of finite dimension. These families are generated by two parameters
that can be used to modify the constitutive behavior of the joint, while maintaining the tensorial nature of the
deformation measures. Numerical results demonstrate the objectivity of the deformations measures, a feature
that is not shared by the deformations measures presently used in the literature. The impact of the choice of
the two parameters on the constitutive behavior of the flexible joint is also investigated.

1 Introduction

Flexible joints, sometimes called bushing elements or force
elements, are found in all multibody dynamics codes. In their
simplest form, flexible joints simply consist of sets of three
linear and three torsional springs placed between two nodes
of a multibody system. For infinitesimal deformations, the
selection of the lumped spring constants is an easy task,
which can be based on a numerical simulation of the joint
or on experimental measurements.

If the joint undergoes finite deformations, identification of
its stiffness characteristics is not so simple, specially if the
joint is itself a complex system. When finite deformations
occur, the definition of the deformation measures becomes
a critical issue. Indeed, for finite deformation, the observed
nonlinear behavior of materials is partly due to material char-
acteristics, and partly due to kinematics.

For instance,Anand(1979, 1986) has shown that the clas-
sical strain energy function for infinitesimal isotropic elastic-
ity is in good agreement with experiment for a wide class of
materials for moderately large deformations, provided the in-
finitesimal strain measure used in the strain energy function
is replaced by the Hencky or logarithmic measure of finite

strain. This means that the behavior of materials for mod-
erate deformations can be captured accurately using linear
constitutive laws, provided that the infinitesimal strain mea-
sures are replaced by finite deformation measures that are
nonlinear functions of displacement.

These nonlinear deformation measures capture the ob-
served nonlinear behavior associated with the nonlinear kine-
matics of the problem.Degener et al.(1988) also reported
similar findings for the torsional behavior of beams subjected
to large axial elongation.

Much attention has been devoted to the problem of syn-
thesizing accurate constitutive properties for the modeling of
flexible bushings presenting complex, time-dependent rhe-
ological behavior,Ledesma et al.(1996); Kadlowec et al.
(2003). It is worth stressing, however, that the literature sel-
dom addresses three-dimensional joint deformations.

Much like multibody codes, most FE codes also sup-
port the modeling of lumped structural elements. While lin-
ear analysis is easily implemented, problems are encoun-
tered when dealing with finite displacements and rotations,
as pointed out byMasarati and Morandini(2010). Structural
analysis codes, either specifically intended for multibody dy-
namics analysis, like MSC/ADAMS, or for nonlinear FEA
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with multibody capabilities, like Abaqus/Standard, allow ar-
bitrarily large absolute displacements and rotations of the
nodes and correctly describe their rigid-body motion. When
lumped deformable joints are used, relative displacements
and rotations are often required to remain moderate, although
not necessarily infinitesimal.

Such restrictions occur when using the FIELD element
of MSC/ADAMS, a linear element that implements an or-
thotropic torsional spring based on a constant, orthotropic
constitutive matrix. Similarly, the JOINTC element imple-
mented in Abaqus/Standard describes the interaction be-
tween two nodes when the second node can “displace and
rotate slightly with respect to the first node”, because its for-
mulation is based on an approximate relative rotation mea-
sure.

The formulations and implementations of flexible joints
available in research and commercial codes do not appear to
allow arbitrarily large relative displacements and rotations.
Moreover, in many cases, the ordering sequence of the nodes
connected to the joint matters, because the behavior of the
flexible joint is biased towards one of the nodes. This prob-
lem is known to experienced analysts using these codes. To
the authors’ knowledge, these facts are rarely acknowledged
in the literature. It appears that little effort has been devoted
to the elimination of these shortcomings from the formula-
tions found in research and commercially available codes,
although the predictions of these codes might be unexpected.

This paper presents families of finite deformation mea-
sures that can be used to characterize the deformation of flex-
ible joints. These deformation measures are closely related to
the tensorial parameterization motion developed byBauchau
and Li (2011); Bauchau(2011). Because they are of a ten-
sorial nature, these deformation measures are intrinsic and
invariant. Numerical examples demonstrate the invariance of
the formulation and the ability to tailor the joint’s constitu-
tive behavior in the nonlinear range. Section2 describes the
configuration of the flexible joint. Section3 presents the pro-
posed deformation measures, which are derived from invari-
ance considerations.

2 Flexible joint configuration

2.1 Kinematics of the flexible joint

Figure1 shows inertial frameF I = [O,I = (ı̄1, ı̄2, ı̄3)] and a
flexible joint in its reference and deformed configurations.
It consists of a three-dimensional elastic body of finite di-
mension and of two rigid bodies, called handlek and handle
`, that are rigidly connected to the elastic body. In the ref-
erence configuration, the configuration of the handles is de-
fined by frameF0 =

[
B,B0 = (b̄01, b̄02, b̄03)

]
, whereB0 forms

an orthonormal basis. The geometric location of pointsK and
L , which are material points of handlesk and`, respectively,
coincides with that of pointB. The motion tensor that brings
frameF I to frameF0 is denotedC

0
(u0,R0

), whereu0 is the
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Figure 1. Configuration of the flexible joint.

position vector of pointB with respect to pointO andR
0

is

the rotation tensor that brings basisI to basisB0.
In the deformed configuration, the two handles move to

new positions and the elastic body deforms. Materials points
K and L are now at distinct locations. The configurations
of the two handles are now distinct and are represented
by two distinct frames,F k =

[
K ,Bk = (b̄k

1, b̄
k
2, b̄

k
3)
]

andF ` =[
L ,B` = (b̄`1, b̄

`
2, b̄

`
3)
]
, respectively. Motion tensorsCk andC`

bring frameF0 to framesF k andF `, respectively. The dis-
placement vectors from pointB to pointsK andL , are de-
noteduk andu`, respectively, and rotation tensorsRk andR`

bring basisB0 to basesBk andB`, respectively.
Relative motion tensorC brings frameF k to frameF ` and

provides an intrinsic representation of the motion of handle
` with respect to handlek. The relative displacement vector
of point L with respect to pointK is denotedu= u` −uk and
R= (R`R

0
)(RkR

0
)T is the relative rotation tensor of basisB`

with respect to basisBk.
The motion tensors that bring frameF I to framesF k and
F `, denotedCk andC`, respectively can be expressed as

Ck =

(RkR
0
) (̃u0+ ũk)(RkR

0
)

0 (RkR
0
)

 , (1a)

C` =

(R`R
0
) (̃u0+ ũ`)(R`R

0
)

0 (R`R
0
)

 , (1b)

respectively. The relative motion tensor then becomes

C = C`Ck−1. (2)

The components of relative motion tensor resolved in
framesF k andF ` are identical,

C∗ = Ck−1CCk = C`−1CC` = Ck−1C` =

R∗ ũ∗R∗

0 R∗

 , (3)
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where R∗ = (RkR
0
)TR(RkR

0
) = (R`R

0
)TR(R`R

0
) = (RkR

0
)T

(R`R
0
) are the components of the relative rotation tensor

resolved in basesBk orB` andu∗ = (RkR
0
)T(u` −uk).

2.2 Applied loading

The deformation of the flexible joint stems from the applied
forces and moments depicted in Fig.1. At point K , the ap-
plied force and moment vectors are denotedFk andMk, re-
spectively; the corresponding quantities applied at pointL
are denotedF` andM`, respectively. The loading applied to
the flexible joint is characterized by arraysAk andA` that
correspond to a translation of these loads to pointO,

Ak = T k−T

{
Fk

Mk

}
=

{
Fk

Mk+ (̃u0+ ũk)Fk

}
, (4a)

A` = T `−T

{
F`

M`

}
=

{
F`

M` + (̃u0+ ũ`)F`

}
, (4b)

whereT k andT ` are the translation tensors from pointO to
pointsK andL , respectively, defined as

T k =

I (̃u0+ ũk)

0 I

 , (5a)

T ` =

I (̃u0+ ũ`)

0 I

 , (5b)

respectively. Because these loads are both applied at pointO,
the equilibrium condition resulting from Newton’s third law
simply states

Ak+A` = 0. (6)

Note the parallel between vectorsAk andA` and the sec-
ond Piola-Kirchhoff stress tensor (Malvern, 1969). Indeed,
they represent the true loads applied to handlek and`, re-
spectively, in their deformed configurations, but translated to
reference pointO. Although expressing equilibrium of the
system in its deformed configuration, Eq. (6) is a linear func-
tion of the loads. The joint is assumed to be massless, i.e.,
inertial forces associated with its motion are neglected.

3 Deformation measures

The differential work done by the applied load will be eval-
uated in Sect.3.1, and the nature of deformation measures is
further discussed in Sect.3.2. Section3.3 then provides in-
variant deformation measures based on the tensorial param-
eterization of motion.

3.1 Differential work

The differential work, dW, done by the forces applied to the
joint is dW= FkTduk+MkTdψk+ F`Tdu` +M`Tdψ`, where

duk and du` are the differential displacements of point
K and L , respectively, and dψk = axial(dRkRkT) and dψ` =

axial(dR`R`T) the differential rotations of handlesk and`, re-
spectively. Recasting this expression in a matrix form leads
to

dW=
{
dukT,dψkT

}
T kTT k−T

{
Fk

Mk

}
+
{
du`T ,dψ`T

}
T `TT `−T

{
F`

M`

}
= dUkTAk+dU`TA`,

where the last equality follows from Eq. (4). The differ-
ential motions of handlesk and ` are defined as dUk =

Axial(dCkCk−1) and dU` =Axial(dC`C`−1), respectively,
leading to

dUk = T k

{
duk

dψk

}
, (7a)

dU` = T `

{
du`

dψ`

}
, (7b)

respectively, where operatorAxial(·) is defined by Eq. (A3).
Finally, introducing Eq. (6), the differential work becomes

dW=A`T
(
dU` −dUk

)
.

The term in parenthesis represents the differential relative
motion, dU = dU` −dUk, where dU =Axial(dCC−1). As
expected, the differential work depends on the differential
relative motion of the two handles only. The differential work
can now be written as dW=A`TdU =AkT(−dU), where
the second equality follows from the equilibrium equation,
Eq. (6). This statement simply implies that the differential
relative motion of handlè with respect to handlek, denoted
dU is of opposite sign of that of handlek with respect to
handle`, as expected. In summary, the differential work is
written

dW=ATdU, (8)

where by convention,A =A` and dU = dU` −dUk the dif-
ferential relative motion of handlèwith respect to handlek.

LetE be a set of six generalized coordinates that define the
relative motion tensor uniquely, i.e., a one-to-one mapping is
assumed to exist between these generalized coordinates and
the relative motion tensor. It follows that a one-to-one map-
ping must exist between the relative motion tensor and incre-
ments of the generalized coordinates

dU =H(E)dE, (9)

where tensorH(E) is the Jacobian or tangent tensor of
the coordinate transformation. The differential work done
by the forces applied to the joint, Eq. (8), now becomes
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dW=ATH(E)dE =LTdE, where the generalized forces as-
sociated with the generalized coordinates are defined as

L =HT(E)A. (10)

It is assumed that the flexible joint is made of an elastic
material (Bauchau and Craig, 2009), which implies that the
generalized forces can be derived from a potential, the strain
energy of the joint, denotedA,

L =
∂A(E)

∂E
. (11)

The differential work now becomes

dW= dET ∂A(E)

∂E
= d(A), (12)

and can be expressed as the differential of a scalar function,
the strain energy.

3.2 The deformation measures

In the previous section, quantitiesE were defined as “a set
of generalized coordinates that uniquely define the relative
motion tensor,” but were otherwise left undefined. This im-
plies that these generalized coordinates form a parameteriza-
tion of the relative motion tensor, i.e.,C = C(E). Because the
strain energy of the flexible joint can be expressed in terms of
these generalized coordinates they are, in fact, deformation
measures for the flexible joint. Consequently, any parame-
terization of the relative motion tensor provides deformation
measures for the flexible joint.

The following notation is introduced

E =

{
ε
κ

}
. (13)

The first three components of this array form thestretch vec-
tor, denotedε, and the last three thewryness vector, denoted
κ. Although any parameterization of the relative motion ten-
sor provides adequate deformation measures for the flexible
joint, these deformation measures should be invariant with
respect to the choice of coordinate system. This implies that
the stretch and wryness vectors should be first-order tensors,
and hence, the deformation measure should itself be a first-
order tensor.

While the parameterization of rotation has received
wide attention (Kane, 1968; Argyris, 1982; Shuster, 1993;
Ibrahimbegovíc, 1997; Bauchau and Trainelli, 2003), much
less emphasis has been placed on that of motion (Ange-
les, 1993; Borri et al., 2000; Merlini and Morandini, 2004;
Pennestr̀ı and Stefanelli, 2007). Bauchau and Choi(2003)
andBauchau and Li(2011) have proposed the vectorial pa-
rameterization of motion, which consists of a motion pa-
rameter vector,E, that parameterizes the motion tensor,C =

C(E). Bauchau and Li(2011) andBauchau(2011) have stud-
ied the parameterization of motion, with special emphasis on
its tensorial nature. They presented a formal proof that mo-
tion parameters vectors are first-order tensors if and only if
they are parallel to the eigenvectors of the motion tensor as-
sociated with its unit eigenvalues. Furthermore, the tangent
tensor is also a second-order tensor for motion parameters
vectors.

Deformation measures should be “objective” or “frame-
indifferent”, andMalvern (1969) gives a precise definition
of this concept, which implies that deformation measures
should be expressed in terms of tensorial quantities and be
invariant under the superposition of a rigid body motion. The
relative motion tensor remains invariant under the superposi-
tion of a rigid body motion and hence, deformation measures
that are functions of the relative motion tensor only will share
this property. The previous paragraphs have underlined the
fact that the deformation measures should be of a tensorial
nature. If this latter property is achieved, the resulting defor-
mation measures will be objective.

In summary, the desired invariance and objectivity of the
deformation measure are achieved if and only if this defor-
mation measure is selected to be the vectorial parameteriza-
tion of motion, which further implies that the deformation
measure is parallel to the eigenvector of the motion tensor
associated with its unit eigenvalue.

3.3 Explicit expression of the deformation measures

The proposed deformation measures are parallel to the eigen-
vector of the relative motion tensor associated with its unit
eigenvalue. Because this eigenvalue has a multiplicity of
two (Bauchau, 2011), two linearly independent eigenvectors
exist, which will be selected as

N̄
†

1 =

{
p
0

}
, and N̄

†

2 =

H−1u

p

 , (14)

where p is the Wiener-Milenkovíc rotation parameter vec-
tor (Wiener, 1962; Milenković, 1982; Bauchau, 2011) and
H the tangent tensor for this parameterization. The second
eigenvector is easily recognized as the Wiener-Milenković
motion parameter vector (Bauchau, 2011), i.e.,

N̄
†

2 = P =

{
q
p

}
. (15)

The following notation is introduced:p= ‖p‖ = 4tanφ/4,

% = pTq= pp′d, whered = n̄Tu is the intrinsic displacement,
and (·)′ denoted a derivative with respect to angleφ. Note the
following limit behaviors: (1) limφ→0 p= φ, (2) limφ→0 H−1 =

I and hence, limφ→0 q= u, and (3) limd→0% = 0;
The most general measure of deformation is a linear com-

bination of vectorsN̄†1 andN̄†2 defined by Eq. (14), which
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will be written as

E =

µI λI

0 µI

P =Z(λ,µ)P, (16)

where matrixZ is defined in Eq. (A1), andλ andµ are ar-

bitrary scalars. The stretch and wryness vectors now become
ε = µq+ λp and κ = µp, respectively. Mozzi-Chasles’ theo-
rem implies that a general motion can be defined in terms
of the direction of axis of the motion and in terms of two
scalar parameters,φ, the magnitude of the relative rotation,
andd, the intrinsic relative displacement. Equivalently, scalar
functionsλ andµ can be expressed in terms of% = pTq and

p=
√

pT p, i.e.,

λ = λ(%, p), µ = µ(%, p). (17)

Although functionsλ andµ are arbitrary, their limit be-
havior for % and p→ 0 can be obtained based on physical
arguments. The wryness vector is written asκ = µp n̄; since
µp must be an odd function ofφ (or p), it implies thatµ is
an even function of the same variable. For small values ofφ
(or p), the wryness vector should be equal to the infinites-
imal rotation vector, i.e., limp→0κ = φn̄. Introducing the ex-
pression for the wryness vector yields limφ→0 4µ tan(φ/4) n̄=
limφ→0µφ n̄= φn̄, which implies

lim
φ→0

µ = 1. (18)

Similarly, for small rotation angles, the stretch vector should
equal the displacement vector, i.e., limφ→0ε = u. Introducing
the expression for the stretch vector yields limφ→0(µH−1u+

4λ tan(φ/4) n̄) = u. Given the limit behaviors ofµ andH−1,
the stretch vector does indeed converge to the displacement
vector. Finally, if the relative motion is planar, the intrinsic
displacement vanishes and the stretch vector should be in the
plane normal to unit vector ¯n, i.e., limd→0 n̄Tε = 0. Using the
expression for the stretch vector then leads to limd→0(µp′d+
4λ tanφ/4)= 0, which implies

lim
d→0

λ = 0. (19)

In summary, Eq. (16) defines the proposed deformation
measures for flexible joints. These equations are, in fact,
the nonlinear deformation-displacement relationships of the
problem. They are not fully determined because two scalar
functions,λ andµ, appear in their definition. These two func-
tions must satisfy the limit behavior discussed earlier but are
otherwise arbitrary. Specific choices of these two scalar func-
tions result in different families of deformation measures.

4 Formulation of flexible joints

The strain energy of the flexible joint is assumed to be a
quadratic function of the deformation measuresE∗,

A(E∗) =
1
2
E∗TD∗E∗, (20)

whereD∗ are the components of the stiffness matrix of the
flexible joint resolved in the material frame, which are as-
sumed to be given constants in this frame.

4.1 Elastic forces in the flexible joint

The components of relative motion tensor resolved in the ma-
terial frame are given by Eq. (3) and its variation becomes

δ̃U
∗
= δC∗C∗−1 =

(
δCk−1C` +Ck−1δC`

)
C`−1Ck

= Ck−1
(
δ̃U

`
− δ̃U

k
)
Ck,

where the virtual motion vectors,δUk andδU`, are defined
in Eqs. (7a) and (7b), respectively. It now follows that

δU∗ = Ck−1
(
δU` − δUk

)
. (21)

The virtual motion vector is related to the virtual changes
in the motion parameter vector (Bauchau, 2011) by means of
the tangent tensor,H , asδU∗ =H(P∗)δP∗. It then follows

thatδP∗ =H−1(P∗)δU∗ =H−1(Pk)Ck−1(δU`−δUk), where
the second equality was obtained with the help of Eq. (21).
The motion tensor affords the following multiplicative de-
composition (Bauchau, 2011), C∗(P∗) =H(P∗)H∗−1(P∗).

Equation (3) then impliesC`H∗ = CkH , and tensorW is de-
fined as

W = (CkH)−1 = (C`H∗)−1. (22)

Virtual changes in the motion parameter vector now become

δP∗ =W(δU` − δUk). (23)

Variation in strain energy is expressed asδA= E∗TD∗δE∗

and requires evaluation of the virtual strains, expressed as

δE∗ = B∗δP∗, (24)

where matrixB∗ is defined by Eq. (C1).
Using Eqs. (24) and (23), variation of the strain energy

in the flexible joint becomesδA= (δU`T − δUkT)WT
BTL∗,

where the generalized force vector,L∗, was defined as

L∗ =D∗E∗. (25)

The elastic forces in the joint now become

F =

{
−F

e

F
e

}
, (26)

where

F
e =WT

B∗TL∗. (27)
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4.2 Stiffness matrix of the flexible joint

The stiffness matrix of the flexible joint stems from the lin-
earization of the elastic forces defined by Eq. (26). Lineariza-
tion ofF e yields

∆F e = ∆WT
N∗ +WT∆B∗TL∗ +WT

B∗T∆L∗, (28)

where N∗ = B∗TL∗. Using Eqs. (24) and (23), the last

term of this expression is obtained asWT
B∗T∆L∗ =(

B∗W

)T
D∗
(
B∗W

)
(∆U` −∆Uk).

The first term of Eq. (28) is evaluated next. This term is re-

cast as∆WT
N∗ =

[
∆(CkH)−TN∗ +∆(C`H∗)−TN∗

]
/2 to re-

spect the symmetry of the problem expressed by Eq. (22).
Expanding the variations leads to

∆WT
N∗=

−WT
T ∗W−

F̂ e

2
,WT

T ∗W−
F̂ e

2

{∆Uk

∆U`

}
(29)

where notation ˆ(·) is defined by Eq. (A5). Matrix T ∗ =

[HT
X+H∗TX∗]/2, where matricesX andX∗ are implicitly

defined by the equations∆H−T
N∗ = X∆P∗ and∆H∗−T

N∗ =

X∗∆P∗, respectively; explicit expressions of these matrices
are given in Eqs. (D4a) and (D4b), respectively.

Finally, the second term of Eq. (28) becomes
W

T∆B∗TL∗ =WT
Q
∗(L∗,P∗)∆P∗ and Eq. (23) then

leads to

W
T∆B∗TL∗ =WT

Q
∗(L∗,P∗)W(δU` − δUk). (30)

where the explicit expression of matrixQ∗ is given in
Eq. (C2).

The linearized elastic forces can now be written explicitly
as

∆F =K

{
δUk

δU`

}
, (31)

where the stiffness matrix of the elastic joint is

K =

 D+ F̂ e/2 −D+ F̂ e/2

−D− F̂ e/2 D− F̂ e/2

 (32)

whereD =WT(B∗TD∗B+T ∗ +Q∗)W.

5 Numerical results

5.1 Change of reference point

To illustrate the concepts developed in the previous sections,
consider the system consisting of two beams, each of length
L = 1.2 m, connected by a flexible joint, as depicted in Fig.2.
The two beams have the same sectional stiffness properties:

Handle k Handle li1

_

i3

_

i2

_

F3

F2

Figure 2. Two beams connected with a flexible joint.

axial stiffnessS = 43.50 MN; bending stiffnessH22 = 23.26
and H33 = 298.7 kN m2 about unit vector ¯ı2 and ı̄3, respec-
tively; torsional stiffnessH11 = 28.05 kN m2; and shearing
stiffnessK22 = 4.0 andK33 = 2.81 MN, along unit vectors ¯ı2
andı̄3, respectively.

The first beam is clamped at its root and the second
is loaded at its tip by concentrated forces tip loadsF1 =

500α/9, F2 = 250α/9, andF3 = 200α/9 N, along unit vec-
tors ı̄1, ı̄2, and ¯ı3, respectively, as shown in Fig.2. The load
factorα ∈ [0,9]. The stiffness matrix of flexible joint is given
by

D∗ =



2000 10 10
10 2000 10
10 10 2000

1000
1000

1000


. (33)

Two formulations will be contrasted here. In the first, the
deformation measures are selected as

E† =

{
ε†

κ†

}
=

 (RkR
0
)T (u` −uk)

axial(RT

0
RkTR`R

0
)

 . (34)

The stretch vector,ε†, corresponds to the components of the
relative displacement vector resolved in basisBk. The wry-
ness vector,κ†, is the axial part of the relative rotation tensor,
resolved on the same basis; note that the components of the
wryness vector selected here are identical when resolved in
basisBk orB`.

Various types of deformation measures have been used to
represent the behavior of flexible joints, but those given by
Eq. (34) are rather typical; in the following sections, they
will be referred to as “typical deformation measures”. In con-
trast, the deformation measures used in this work are defined
by Eq. (16) and will be referred as “proposed deformation
measures”.

The main claim of this paper is that the proposed strain
measures are invariant with respect to the choice of reference
point, i.e., are objective, a characteristic that is not shared by
typical deformation measures. Imagine that pointsK andL
are interchanged in Fig.2. Clearly, this does not modify the
physical system, and hence, its response under load should be
unaffected by this interchange. This basic invariance is satis-
fied by the proposed deformation measures, but not by their
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Figure 3. Components of the stretch vector:ε∗1 (©), ε∗2 (4), ε∗3 (5).
Typical deformation measures. Reference pointK : solid line, point
L : dashed line.
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Figure 4. Components of the wryness vector:κ∗1 (©), κ∗2 (4), κ∗3 (5).
Typical deformation measures. Reference pointK : solid line, point
L : dashed line.

typical counterparts. To illustrate this effect, the following
parameters were selected for the proposed deformation mea-
sures:λ = 0 andµ = (1− p2/16)/(1+ p2/16)2. This choice is
not important as the proposed deformation measures are in-
variant for any choice of these parameters.

For the typical deformation measures, two simulations
were performed. In the first run, pointsK andL are selected
as indicated in Fig.2 and in the second simulation, these two
points were interchanged. Of course, this interchange is a
modeling detail, which has no physical meaning. Yet, these
two simulations yield different results because the definition
of the deformation measures make specific reference to basis
Bk, and hence, are inherently “basis sensitive”.

Figures3 and4 show the components of the stretch and
wryness vector components, respectively, versus the load fac-
tor, α ∈ [0.9], for the typical deformation measures defined
by Eq. (34). For each deformation component, the response
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Figure 5. Components of the stretch vector:ε∗1 (©), ε∗2 (4), ε∗3 (5).
Proposed deformation measures.
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Figure 6. Components of the wryness vector:κ∗1 (©), κ∗2 (4), κ∗3 (5).
Proposed deformation measures

when reference pointsK and L are selected as shown in
Fig.2 is shown in solid lines, and the response when pointsK
andL are interchanged in shown in dashed lines. Clearly, the
typical deformation measures do not yield physically mean-
ingful predictions, because different responses are obtained
for a given physical system depending on the choice of the
labeling convention for pointsK andL .

In contrast, the proposed deformation measures yield the
same predictions when the roles of pointsK andL are inter-
changed. Figures5 and6 show the components of the stretch
and wryness vector components, respectively, for the pro-
posed deformation measures defined by Eq. (16).

Of course, for very small deformations, the predictions
based on the typical and proposed deformation measures are
identical. This result is expected because both typical and
proposed deformation measures converge to the same in-
finitesimal deformation measures and because identical stiff-
ness matrices were used.
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Table 1. Choices of parametersλ andµ for the sixteen cases.

Case a b c d

1 λ = 0 µ = 1 1+ p2 1+ p4 1+ p6

2 λ = 0 µ = 1 1+ ρ 1+ ρ2 1+ ρ3

3 µ = 1 λ = 0 p2 p4 p6

4 µ = 1 λ = 0 ρ ρ2 ρ3

5.2 Choice of λ and µ

The proposed deformation measures are not unique. Rather,
they form families dependent on two arbitrary parameters,
λ(ρ, p) andµ(ρ, p): each choice of these parameters yields
a different deformation measure but for all choices, the ob-
jectivity and tensorial nature of the deformation measure is
preserved. Assuming that the simple strain energy expres-
sion defined by Eq. (20) is used with a given stiffness matrix,
the choice of parametersλ andµ will alter the response of
the flexible joint under load in the nonlinear regime.

To study the influence of the choice of parame-
ters λ and µ on joint behavior, a very simple exam-
ple was treated. Handlek of the joint was clamped and
forces and moments were applied to handle`; the ap-
plied force vector isFT =

{
125 250 375

}
α/9 andMT ={

125 250 375
}
α/9, whereα is the load factor.

A total of sixteen combinations of parametersλ andµwere
selected for the study. First,λ = 0 is selected and cases 1a,
1b, 1c, and 1d correspond toµ = 1,µ = 1+p2, µ = 1+p4, and
µ = 1+ p6, respectively, as listed in the first row of Table1.
For case 1, parameterµ is function of p only. Next,λ = 0 is
selected and cases 2a, 2b, 2c, and 2d correspond toµ = 1,
µ = 1+ ρ, µ = 1+ ρ2, andµ = 1+ ρ3, respectively, as listed in
the second row of Table1. For case 2, parameterµ is function
of ρ only. Cases 3 and 4 are defined similarly, as listed in the
third and fourth row of Table1, respectively.

In all cases, the stiffness matrix of flexible joint was se-
lected as

D∗ =



1000 100 100
100 1000 100
100 100 1000

1000
1000

1000


(35)

Figures7 and8 show the components of the stretch and
wryness vectors, respectively, for cases 1a, 1b, 1c, and 1d.
The choice of very simple polynomial expressions forµ =
µ(p) is arbitrary, but all satisfy the limit behavior expressed
by Eq. (18). Similarly, the constant value ofλ = 0 satisfies
the limit behavior expressed by Eq. (19).

For small values of the load factor, the flexible joint defor-
mation remains small and identical response is observed for
all choices of parameterµ. As larger loads are applied, the
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Figure 7. Components of the stretch vector:ε∗1 (solid line), ε∗2
(dashed line),ε∗3 (dash-dotted line). Case 1a (©), 1b (4), 1c (5),
1d (∗).
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Figure 8. Components of the wryness vector:κ∗1 (solid line), κ∗2
(dashed line),κ∗3 (dash-dotted line). Case 1a (©), 1b (4), 1c (5),
1d (∗).

deformation is no longer infinitesimal and the joint’s nonlin-
ear response is affected by the choice of parameterµ. This
effect is particularly pronounced in the wryness response, as
shown in Fig.8.

Of course, parametersλ andµ are arbitrary functions of
both variablesρ and p. Case 1, in which parameterµ is a
function of variablep only, is a special case. In case 2, pa-
rameterµ is selected to be a simple polynomial function of
variableρ only, as shown in the second row of Table1. Fig-
ures9 and10 show the components of the stretch and wry-
ness vectors, respectively, for cases 2a, 2b, 2c, and 2d. The
nonlinear response of both stretch and wryness vector com-
ponents is significantly affected by the choice of parameterµ.

Finally, two additional cases, cases 3 and 4, were treated
where parameterλ is selected to be a function of variables
p andρ, respectively, while keeping a constant value of pa-
rameterµ = 1, as listed in the last two rows of Table1,
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Figure 9. Components of the stretch vector:ε∗1 (solid line), ε∗2
(dashed line),ε∗3 (dash-dotted line). Case 2a (©), 2b (4), 2c (5),
2d (∗).
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Figure 10. Components of the wryness vector:κ∗1 (solid line), κ∗2
(dashed line),κ∗3 (dash-dotted line). Case 2a (©), 2b (4), 2c (5), 2d
(∗).

respectively. Here again, simple polynomial expressions
were selected and the limit behaviors expressed by Eqs. (18)
and (19) were satisfied. Figures11 and 12 show the com-
ponents of the stretch and wryness vectors, respectively, for
cases 3a, 3b, 3c, and 3d. Finally, Figs.13 and14 show the
components of the stretch and wryness vectors, respectively,
for cases 4a, 4b, 4c, and 4d.

The goal of the simple examples presented in the previ-
ous paragraphs is to show that the nonlinear behavior of the
flexible joint is strongly affected by the functional depen-
dency of parametersλ andµ on variablesρ andp. Of course,
in general, the two parameters can be selected to be func-
tions of both variables,i.e., λ = λ(ρ, p) andµ = µ(ρ, p). Soft-
ening or stiffening behavior can be obtained by tailoring the
functional dependency of parametersλ andµ on variablesρ
andp.

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 90
LOAD FACTOR, α

ε i 
[m

]
 *

Figure 11. Components of the stretch vector:ε∗1 (solid line), ε∗2
(dashed line),ε∗3 (dash-dotted line). Case 3a (©), 3b (4), 3c (5),
3d (∗).
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Figure 12. Components of the wryness vector:κ∗1 (solid line), κ∗2
(dashed line),κ∗3 (dash-dotted line). Case 3a (©), 3b (4), 3c (5),
3d (∗).

The attention has focused thus far on the strain energy
given by Eq. (20), which is a quadratic expression of the
deformation measures,A= E∗TD∗E∗/2. This leads to the lin-
ear relationship between the generalized forces and proposed
deformation measures,L∗ =D∗E∗, see Eq. (25). This linear
relationship, however, is deceptively simple.

Indeed, Eq. (27) shows that the relationship between the
elastic forces in the joint and the proposed deformation mea-
sures isF e =WT

B∗TL∗. Next, the relationship between the
externally applied loads and proposed deformation measures
is obtained with the help of Eq. (4) as{

Fk

Mk

}
= T kTW

T
B∗TD∗Z(λ,µ)P∗, (36a){

F`

M`

}
= T `TW

T
B∗TD∗Z(λ,µ)P∗, (36b)
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Figure 13. Components of the stretch vector:ε∗1 (solid line), ε∗2
(dashed line),ε∗3 (dash-dotted line). Case 4a (©), 4b (4), 4c (5),
4d (∗).

where Eq. (16) was used to express the proposed deformation
measures in terms ofP∗, the relative motion of the joint’s
two handles. Although the stiffness matrix,D∗, is constant,
the relationship between the externally applied loads and the
joint’s deformation measures is nonlinear because matrices
W andB∗ are nonlinear functions of the deformations mea-
sures, see Eqs. (22) and (C1), respectively, and the relative
motion of the two handles,P∗, is also a nonlinear function
of the handle’s relative motion. These observations explain
the nonlinear load-deformation behavior exhibited in Figs.4
to 14.

In practice, the joint’s constitutive laws can be obtained
from a two step procedure. First, experimental measurements
must be obtained for infinitesimal deformations of the joint
and lead to the identification of the entries of the constant
stiffness matrix,D∗. Next, experimental measurements char-
acterizing the joint’s behavior in the nonlinear range must be
obtained. The optimal functional dependencies of parameters
λ andµ on variablesρ and p can then be determined using
suitable parameter identification methods.

Of course, it is not guaranteed that suitable functions,λ =
λ(ρ, p) andµ = µ(ρ, p), can be found, which will model the
observed behavior of the joint accurately. In such case, more
complex strain energy expressions could be selected in an
attempt to better capture the observed constitutive behavior
of the joint; in general,A= A(E∗). Of course, the existence
of a strain energy function implies that material behavior is
conservative, which will not always be true.
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Figure 14. Components of the wryness vector:κ∗1 (solid line), κ∗2
(dashed line),κ∗3 (dash-dotted line). Case 4a (©), 4b (4), 4c (5),
4d (∗).

6 Conclusions

This paper has focused on the constitutive behavior of elas-
tic bodies of finite dimension, typically called flexible joints
in structural and multibody dynamics. Physically meaningful
deformation measures were proposed that are objective and
of a tensorial nature; an explicit expression of these mea-
sures was derived. Equipped with these deformation mea-
sures, constitutive laws for the flexible joint were derived by
assuming the existence of a strain energy function that is a
quadratic form of these deformation measures. Because all
the quantities involved in the formulation are objective and
tensorial, the predicted joint behavior presents the required
invariance with respect to changes of basis or reference point.

Numerical examples were presented that demonstrate the
invariance of the predicted behavior with respect to the
choice of reference point, even in the nonlinear range; in con-
trast, typical formulations found in the literature up to date do
not appear to present these desirable characteristics. The pro-
posed deformation measures are not unique: their definition
depends on the choice of two parameters, which are functions
of the relative rotation and the intrinsic relative displacement
at the joint. Numerical examples presented in the paper show
that the choice of these two parameters affects the response of
the joint in the nonlinear regime significantly. Consequently,
the proposed deformation measures form families, and the
choice of the functional dependency of the parameter can be
selected to tailor the nonlinear response of the joint.

This paper has focused on an expression of the strain en-
ergy that depends on the proposed deformation measures in a
quadratic manner, leading to a linear relationship between the
generalized forces and deformations measure. Despite this
linearity, the relationship between externally applied forces
and deformations is nonlinear. More general joint constitu-
tive behavior could be obtained by considering more general
strain energy expressions. Investigating energy dissipation in
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flexible joint based on the time rate of change of the proposed
deformation measure is another possible extension of the this
work.

Appendix A

Notational conventions

To simplify the writing of this seemingly complicated ex-
pression, the following notation is introduced. First, tensor
Z, a function of two scalars,α andβ, is introduced

Z(α,β) =

βI αI

0 βI

 . (A1)

Second, thegeneralized vector product tensoris defined

Ñ =

[̃
n m̃
0 ñ

]
. (A2)

Notation Ñ does not indicate a 6×6 skew-symmetric ten-
sor, but rather the above 6×6 tensor formed by three skew-
symmetric sub-tensors. By analogy to notationa= axial(̃a),
the following operator is introduced

N =Axial(Ñ). (A3)

Consider two vectors defined as

V =

{
v
ω

}
, P =

{
p
q

}
.

The well-known property of the vector product,ãb= −b̃a,
then generalizes to

ṼP = −P̃V, (A4a)

ṼTP = P̂V, (A4b)

where the following notation was introduced

P̂ =

[
0 p̃

p̃ q̃

]
. (A5)

Finally, the following identity results

̂̂
PV = P̂Ṽ+ ṼTP̂. (A6)

Appendix B

Linearization of functions λ and µ

Scalarλ andµ were introduced in Eq. (17) as functions of
% and p. Using the chain rule for derivatives, the variation

of µ is δµ = µ%δ%+ µpδp, where notations (·)% and (·)p indi-
cate derivatives with respect to variable% and anglep, re-
spectively. Because% = p∗Tq∗ andp2 = p∗T p∗, it follows that

δ% = p∗Tδq∗ +q∗Tδp∗ andpδp= p∗Tδp∗, and hence,{
δ%
pδp

}
=

[
p∗T q∗T

0T p∗T

]
δP∗. (B1)

The variations of parametersλ andµ now become{
δλ
δµ

}
= Λ

1
(λ,µ)

[
p∗T q∗T

0T p∗T

]
δP∗. (B2)

where matrixΛ
1

is defined as

Λ
1
(λ,µ) =

[
λ% λp/p
µ% µp/p

]
. (B3)

Because parametersλ andµ are even functions of variable
p, their derivatives with respect to the same variable are odd
functions ofp and hence,λp/p andµp/p present no singu-
larity whenp→ 0.

Consider two arbitrary arrays,LT =
{
`T mT

}
andPT ={

qT pT
}
, and two arbitrary scalars,α = α(%, p) and β =

β(%, p). Matrices Ẑ and Ž are defined implicitly by the

following two identities,δZ(α,β)L = Ẑ(L,α,β,P)δP and

δZT(α,β)L = Ž(L,α,β,P)δP, respectively. It is shown eas-

ily shown that

δZ (α,β)L =

[
m `
0 m

]{
δα
δβ

}
, (B4a)

δZT(α,β)L =

[
0 `
` m

]{
δα
δβ

}
. (B4b)

Introducing Eq. (B2) now yields the following explicit ex-
pressions for matriceŝZ andŽ,

Ẑ(L,α,β,P) =

[
m `
0 m

]
Λ

1
(α,β)

[
pT qT

0T pT

]
, (B5a)

Ž(L,α,β,P) =

[
0 `
` m

]
Λ

1
(α,β)

[
pT qT

0T pT

]
. (B5b)

Appendix C

Variations of the strain measures

The proposed strain measures are defined by Eq. (16)
and variations of these quantities are expressed asδE∗ =[
Z(λ,µ)+ Ẑ(P∗,λ,µ,P∗)

]
δP∗, where matrixẐ is defined by

Eq. (B5a). This implies thatδE∗ = B∗δP∗, where matrixB∗

is defined as

B∗ =Z(λ,µ)+ Ẑ(P∗,λ,µ,P∗). (C1)
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The linearization of the elastic forces requires the evalua-
tion of matrixQ∗, implicitly defined byδB∗L∗ = Q∗δP∗. The

previous results yield

Q
∗ =Z(ε,γ)+ Ẑ(P∗,λ,µ,L∗)+ Ẑ(L∗,λ,µ,P∗)

+

[
p∗ q∗

0 p∗

]
S

[
p∗T q∗T

0T p∗T

]
,

(C2)

where the following scalar functions were defined{
α
β

}
=

[
p∗T q∗T

0T p∗T

]
L∗,

{
ε
γ

}
=

[
λ% λp/p
µ% µp/p

]{
α
β

}
, (C3)

and

S =

[
αλ%% + βλ%p/p αλ%p/p+ β(λpp− λp/p)/p2

αµ%% + βµ%p/p αµ%p/p+ β(µpp− µp/p)/p2

]
. (C4)

Appendix D

Linearization of the tangent tensor

The linearization of the elastic forces also requires lin-
earization of the tangent tensor. When using the Wiener-
Milenković motion parameterization, the tangent tensor is
expressed as

H
−1(P) =Z(χ̄0,χ0)− P̃/2+Z(χ̄2,χ2)P̃P̃, (D1a)

H
∗−1(P) =Z(χ̄0,χ0)+ P̃/2+Z(χ̄2,χ2)P̃P̃. (D1b)

The linearization of the tangent tensor is achieved by defining
matricesX andX∗ implicitly defined by the following ex-

pressions,∆H−T
L = X(L)∆P andH∗−T

L = X∗(L)∆P. Te-
dious algebra yields explicit equations of these matrices as

X(L) =Ž(L, χ̄0,χ0,P)+ Ž(N̂P, χ̄2,χ2,P)

− L̂/2+ZT(χ̄2,χ2)(N̂ + P̃TL̂), (D2a)

X∗(L) =Ž(L, χ̄0,χ0,P)+ Ž(N̂P, χ̄2,χ2,P)

+ L̂/2+ZT(χ̄2,χ2)(N̂ + P̃TL̂), (D2b)

whereN = P̃TL = L̂P and matrixŽ is defined by Eq. (B5b).

The Wiener-Milenkovíc rotation parameterization is de-
fined asp= p(φ)n̄, wherep(φ) = 4tanφ/4. TableD1 lists the
expressions for all the scalar functions appearing in the above
expression when the Wiener-Milenković motion parameteri-
zation is used.

MatricesX and X∗ defined in Eqs. (D2a) and (D2b),
respectively, now simplify considerably. Indeed, Eqs. (A1)
and (B5b) imply ZT(χ̄2,χ2) = I/8, Ž(N̂P, χ̄2,χ2,P) = 0,

and

Ž(L, χ̄0,χ0,P) =
1
8

[
0 `
` m

] [
pT qT

0T pT

]
, (D3)

Table D1. Scalars functions associated with the Wiener-Milenković
motion parameterization.

Quantity Value Quantity Value

ν 1/(1+ p2/16) ε 1/(1− p2/16)
p′ 1+ p2/16 ε̄ %ε2/8
ζ1 ν2/ε ζ2 ν2/2
ζ̄1 %ν2(1−4ν)/8 ζ̄2 −%ν3/8
σ0 ν σ2 ν2/8
σ̄0 −%ν2/8 σ̄2 −%ν3/32
χ0 1/ν χ2 1 / 8
χ̄0 %/8 χ̄2 0

and finally,

X(L) = Ž(L, χ̄0,χ0,P)− L̂/2+ (N̂ + P̃TL̂)/8, (D4a)

X∗(L) = Ž(L, χ̄0,χ0,P)+ L̂/2+ (N̂ + P̃TL̂)/8. (D4b)
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