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Flexible joints, sometimes called bushing elements or force elements, are found in all structural
and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and
three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection
of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or
on experimental measurements. If the joint undergoes finite deformations, identification difriesstcharac-
teristics is not so simple, specially if the joint is itself a complex system. When finite deformations occur, the
definition of deformation measures becomes a critical issue. This paper proposes a family of tensorial deforma-
tion measures suitable for elastic bodies of finite dimension. These families are generated by two parameters
that can be used to modify the constitutive behavior of the joint, while maintaining the tensorial nature of the
deformation measures. Numerical results demonstrate the objectivity of the deformations measures, a feature
that is not shared by the deformations measures presently used in the literature. The impact of the choice of
the two parameters on the constitutive behavior of the flexible joint is also investigated.

strain. This means that the behavior of materials for mod-
erate deformations can be captured accurately using linear

constitutive laws, provided that the infinitesimal strain mea-

Flexible joints, sometimes called bushing elements or forcey, eq are replaced by finite deformation measures that are
elements, are found in all multibody dynamics codes. In their, jiinear functions of displacement.

simplest form, flexible joints simply consist of sets of three  1,ase nonlinear deformation measures capture the ob-

linear and three torsional springs placed between two nodeggyeq nonlinear behavior associated with the nonlinear kine-
of a multlbody system. For |_nf|n|teS|maI deformatlons, the matics of the problemDegener et al(1988 also reported
selection of the lumped spring constants is an €asy taskgmijar findings for the torsional behavior of beams subjected
which can be based on a numerical simulation of the joint large axial elongation.

or on experimental measurements. Much attention has been devoted to the problem of syn-
_ Ifthe joint undergoes finite deformations, identification of yeqjzing accurate constitutive properties for the modeling of
its stifness characteristics is not so simple, specially if theqeyipie hushings presenting complex, time-dependent rhe-
joint is itself a complex system. When finite deformations ological behaviorLedesma et al(1996; Kadlowec et al.

occur, th? definition of the dpformation measures become%zoos_ It is worth stressing, however, that the literature sel-
a critical issue. Indeed, for finite deformation, the observeddom addresses three-dimensional joint deformations.

nonlinear behavior of materials is partly due to material char-

acteri;tics, and partly due to kinematics. port the modeling of lumped structural elements. While lin-
_Forinstancepnand(1979 1989 has shown thatthe clas- o5 analysis is easily implemented, problems are encoun-
;lcgl ;tram energy funct|on.for |nf|n|Fe5|maI |sotro.p|c elastic- tered when dealing with finite displacements and rotations,
ity s in good agreement with experlment for a W'(_je class _Of as pointed out byvasarati and Morandin2010. Structural
materials for moderately large deformations, provided the iN-analysis codes, either specifically intended for multibody dy-

finitesimal strain measure used in the strain energy function, ;..o analysis, like MSBDAMS, or for nonlinear FEA
is replaced by the Hencky or logarithmic measure of finite ' '

Much like multibody codes, most FE codes also sup-



with multibody capabilities, like AbaqyStandard, allow ar-

AR ; 8 Reference configuration b
bitrarily large absolute displacements and rotations of the Handle ¢ & 3
nodes and correctly describe their rigid-body motion. When Bf Bi
lumped deformable joints are used, relative displacements — ¢ M
and rotations are often required to remain moderate, althouglf Elastic bos ¢ L T
not necessarily infinitesimal. body / =
Such restrictions occur when using the FIELD element By o~ c* C x.
of MSC/ADAMS, a linear element that implements an or- _ B by, /= /M
thotropic torsional spring based on a constant, orthotropic by by
constitutive matrix. Similarly, the JOINTC element imple- G 7K F*
mented in AbaquStandard describes the interaction be- Handlek 777 3"
tween two nodes when the second node can “displace and i f,:‘ B
rotate slightly with respect to the first node”, because its for- I (0) 2
mulation is based on an approximate relative rotation mea- ! Deformed configuration
sure.

The formulations and implementations of flexible joints Configuration of the flexible joint.

available in research and commercial codes do not appear to
allow arbitrarily large relative displacements and rotations.
Moreover, in many cases, the ordering sequence of the node
connected to the joint matters, because the behavior of th
flexible joint is biased towards one of the nodes. This prob- W theIt(?er:ormnzdtﬁonfllgut:atgond tZGft\I;/r% hal\r/:dlei rlnove":?
lem is known to experienced analysts using these codes. TpeW positions a € elastic body detorms. Materials points

the authors’ knowledge, these facts are rarely acknowledge&lc ?Es Ingrehgr?c\;\:ezt :rlztlrr:gwogiz?i(r)\rc]:ts.azgeaﬁgn:gur?stg:tz g
in the literature. It appears that littléfert has been devoted - - . ok Tk ok P .
to the elimination of these shortcomings from the formula- PY tWo distinct frames7™ = [K.8*= (o, bs.b)| and 7" =

tions found in research and commercially available codes[L B = (b[,b[ bf)] respectively. Motion tensoig* andC’

although the predictions of these codes might be unexpectegyring frame7, to framesF* and #*, respectlvely. The dis-

This paper presentS families of finite deformation mea'p|acement vectors from po”B to p0|ntsK andL are de-
sures that can be used to characterize the deformation of ﬂe)hoteduk andu’, respectively, and rotation tenscﬁg andR"

ible joints. These deformation measures are closely related t
the tensorial parameterization motion develope®hychau
and Li (2011); Bauchau(201)). Because they are of a ten-
sorial nature, these deformation measures are intrinsic an
invariant. Numerical examples demonstrate the invariance of . K
the formulation and the ability to tailor the joint's constitu- fpow;tL with reTspect to poinkK is denoteds = u° - u“and
tive behavior in the nonlinear range. Sectdescribes the 5 (5 50)(3(50) is the relative rotation tensor of basi
configuration of the flexible joint. Sectidipresents the pro-  With respect to basis*.

posed deformation measures, which are derived from invari- The motion tensors that bring franfe to frames7™* and

position vector of poinB with respect to poin© andR is
Eﬁe rotation tensor that brings bagigo basisBy.

Brlng basisB, to basesB® andB¢, respectively.

Relative motion tensag brings frameF * to frame# ¢ and
grovides an intrinsic representation of the motion of handle
with respect to handlk. The relative displacement vector

ance considerations. 7, denotecE" andCf respectively can be expressed as
(R"R) (Uo +““)®R)
k_
, |BR) (‘wﬁf)@'”R)
Figure1 shows inertial frameF' =[0,7 = (i1,12,;3)] anda & = 0 @(R) , (1b)

flexible joint in its reference and deformed configurations.

It consists of a three-dimensional elastic body of finite di- respectively. The relative motion tensor then becomes
mension and of two rigid bodies, called hankland handle

¢, that are rigidly connected to the elastic body. In the ref-¢ = cf’ck— (2)
erence configuration, the configuration of the handles is de= — —
fined by framefy = [B,Bo—(bm,boz, boa)],WheFEBo forms The components of relative motion tensor resolved in

an orthonormal basis. The geometric location of pdihend framesF* and¥ ¢ are identical,
L, which are material points of handlksnd¢, respectively,
coincides with that of poinB. The motion tensor that brings kel kbl kel ol
frame#' to frame¥y is denote@O@O,Bo), wherey, is the g C CC C CC C C
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R =(RR)RRR)=(RR)RRR)=[RR)"

where

duk and dff are the diferential displacements of point

o T ‘_
@‘R) are the components of the reIatlve rotation tensorK andL, respectively, and ul = axial(RR") and dv

resolved in bases* or B¢ andu* = @kBO)T(gf uv).

The deformation of the flexible joint stems from the applied dW ={dutT, dy*T} 7¥T7*T

forces and moments depicted in Fig.At point K, the ap-
plied force and moment vectors are denofdand MX, re-
spectively; the corresponding quantities applied at phint
are denotedr’ andM¢, respectively. The loading applied to
the flexible joint is characterized by arrayg and A’ that
correspond to a translation of these loads to pBint

== MY M (W +TOENS
F! F¢
{ _qg-T ) _ L
ﬂ _Z {Mf}_{M(+(UO+UZ)E€}’ (4b)

Where‘Tk and‘]’f are the translation tensors from po@to
pointsK andL, respectively, defined as

(T +T)
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respectively. Because these loads are both applied at@pint
the equilibrium condition resulting from Newton'’s third law
simply states
A+ A =0. (6)
Note the parallel between vecta& and A’ and the sec-
ond Piola-Kirchhd stress tensorMalvern 1969. Indeed,
they represent the true loads applied to harkdénd ¢, re-
spectively, in their deformed configurations, but translated to
reference poinD. Although expressing equilibrium of the
system in its deformed configuration, E@) {s a linear func-

tion of the loads. The joint is assumed to be massless, i.e.,

inertial forces associated with its motion are neglected.

The diferential work done by the applied load will be eval-

axial(dR'R'T) the diferential rotations of handlésand, re-
spectively. Recasting this expression in a matrix form leads

to
Fk
iy
1 [F¢
{ T dd’(T}ZZT(]:%’ T{Qf}
= dUT A + dUT A,
where the last equality follows from Eqg4)( The difer-

ential motions of handlek and ¢ are defined as 1:!"
ﬂmal(d@kck by and du’ = &ZlX|aI(dCfC[‘l) respectively,

leading to
duk
dw
o [duf
dw[ ’

respectively, where operatgixial(-) is defined by Eq.A3).
Finally, introducing Eq. §), the diferential work becomes

duk = (7a)

du’ = (7b)

dw = ﬂﬂ— (dﬂ[ _di{k)'

The term in parenthesis represents thedential relative
motion, did = dU’ - dU¥, where d/ = Axial(dCC™?). As
expected, the dlierential work depends on thefiirential
relative motion of the two handles only. Thefdrential work
can now be written asW = AT dU = AT (-dU), where
the second equality follows from the equilibrium equation,
Eqg. (6). This statement simply implies that thefférential
relative motion of handlé with respect to handlk, denoted
dU is of opposite sign of that of handlewith respect to
handle?, as expected. In summary, thefdrential work is
Owritten
aw = ATdU, (8)
where by conventionfl = A’ and di{ = dU’ - delk the dif-
ferential relative motion of handewith respect to handlk.

Let&E be a set of six generalized coordinates that define the
relative motion tensor uniquely, i.e., a one-to-one mapping is
assumed to exist between these generalized coordinates and

uated in Sect3.1, and the nature of deformation measures isthe relative motion tensor. It follows that a one-to-one map-

further discussed in Se@®.2 Section3.3 then provides in-

ping must exist between the relative motion tensor and incre-

variant deformation measures based on the tensorial paranments of the generalized coordinates

eterization of motion.

The diferential work, &V, done by the forces applied to the
joint is dw = F¥Tdu¥ + M Tdy* + FTdu’ + M dy, where

9)

where tensorH(E) is the Jacobian or tangent tensor of
the coordinate transformation. Thefferential work done
by the forces applied to the joint, Eg8)( now becomes

dU = H(E)de.



dw = ﬂTﬂ@dé = £Td§, where the generalized forces as- C(&). Bauchau and L{2011) andBauchau2011) have stud-

sociated with the generalized coordinates are defined as  ied the parameterization of motion, with special emphasis on
its tensorial nature. They presented a formal proof that mo-

L=H'OA (10)  tion parameters vectors are first-order tensors if and only if
o they are parallel to the eigenvectors of the motion tensor as-

It is assumed that the flexible joint is made of an elasticsociated with its unit eigenvalues. Furthermore, the tangent

material Bauchau and Craj@009, which implies that the  tensor is also a second-order tensor for motion parameters
generalized forces can be derived from a potential, the straifectors.

energy of the joint, denote#, Deformation measures should be “objective” or “frame-
indifferent”, andMalvern (1969 gives a precise definition

L= ﬂ@ (11) of this concept, which implies that deformation measures

- & should be expressed in terms of tensorial quantities and be

invariant under the superposition of a rigid body motion. The
relative motion tensor remains invariant under the superposi-
L OAE) tion of a rigid body motion and hence, deformation measures
dwW =d& 88 d(A), (12) that are functions of the relative motion tensor only will share
- this property. The previous paragraphs have underlined the
and can be expressed as th#fatential of a scalar function, fact that the deformation measures should be of a tensorial
the strain energy. nature. If this latter property is achieved, the resulting defor-
mation measures will be objective.
In summary, the desired invariance and objectivity of the
deformation measure are achieved if and only if this defor-
In the previous section, quantitiéswere defined as “a set mation measure is selected to be the vectorial parameteriza-
of generalized coordinates that uniquely define the relativetion of motion, which further implies that the deformation
motion tensor,” but were otherwise left undefined. This im- measure is parallel to the eigenvector of the motion tensor
plies that these generalized coordinates form a parameterizassociated with its unit eigenvalue.
tion of the relative motion tensor, i.&€,= C(E). Because the
strain energy of the flexible joint can be expressed in terms of
these generalized coordinates they are, in fact, deformation
measures for the flexible joint. Consequently, any parameThe proposed deformation measures are parallel to the eigen-
terization of the relative motion tensor provides deformationvector of the relative motion tensor associated with its unit

The diferential work now becomes

measures for the flexible joint. eigenvalue. Because this eigenvalue has a multiplicity of
The following notation is introduced two (Bauchay2011), two linearly independent eigenvectors
exist, which will be selected as
&
= {5} ) L — [Hu
Ny = {6}’ and N;= o [ (14)
The first three components of this array form gtetch vec- = -

tor, denoted:, and the last three theryness vectqrdenoted

k. Although any parameterization of the relative motion ten- — . -

sor provides adequate deformation measures for the flexibl or (Wienet, 1962 M”enkOV'.C’ 1982 Bauphay 2013 and

joint, these deformation measures should be invariant with= the tanger_1t tenspr for th|§ parametenza_’uon. Th_e seco_nd

respect to the choice of coordinate system. This implies thafi9€nvector is easily recognized as the Wiener-Milenovi

the stretch and wryness vectors should be first-order tensor&§10tion parameter vectoBauchau201]), i.e.,

and hence, the deformation measure should itself be a first-

order tensor. /\_(; —p= {9} (15)
While the parameterization of rotation has received” =~ ~— (P

wide attention Kang 1968 Argyris, 1982 Shuster 1993 ] o

Ibrahimbegowi, 1997 Bauchau and Traine/l2003, much ~ The following notation is introducedp = [|pll = 4tang/4,

less emphasis has been placed on that of mothmgé- ¢ = p' q= ppd, whered = n"uis the intrinsic displacement,

les, 1993 Borri et al, 200Q Merlini and Morandinj 2004 and ()’ denoted a derivative with respect to angléNote the

Pennesirand Stefanelli2007. Bauchau and Cho2003  following limit behaviors: (1) im0 p= ¢, (2) limy_oH™* =

andBauchau and L{2011) have proposed the vectorial pa- | and hence, lif,oq=u, and (3) limy_00 = 0;

rameterization of motion, which consists of a motion pa-~ The most general measure of deformation is a linear com-

rameter vectorg, that parameterizes the motion tensos bination of vectors&} and &; defined by Eg. 14), which

where p is the Wiener-Milenkow rotation parameter vec-



will be written as whereD* are the components of the ftiess matrix of the

ul Al flexible joint resolved in the material frame, which are as-
0 u P =ZAwp, (16)  sumed to be given constants in this frame.

where matrixZ is defined in Eq.A1), andA andyu are ar-

bitrary scalars. The stretch and wryness vectors now become
&=puq+Ap and = up, respectively. Mozzi-Chasles’ theo- The components of relative motion tensor resolved in the ma-

rem implies that a general motion can be defined in termderial frame are given by Eg3Jand its variation becomes
of the direction of axis of the motion and in terms of two _, ,

scalar parameterg, the magnitude of the relative rotation, U =6C'C"™* (5§k_lg +§k_15g)§[_1§k

andd, the intrinsic relative displacement. Equivalently, scalar

_ —k

functions1 andu can be expressed in terms@f p’q and =" 1(5(” —-6U )gk

— T i
P= R B L€ where the virtual motion vectors /¥ ands’, are defined
A=2o,p), wu=puo,p). (17) in Egs. 8 and (7b), respectively. It now follows that

Although functionsi andu are arbitrary, their limit be- SU = Ck— ( sU’ - 6(uk). 1)
havior for o and p— 0 can be obtained based on physical = -
arguments. The wryness vector is writterkasup n; since The virtual motion vector is related to the virtual changes

up must be an odd function af (or p), it implies thatu is i the motion parameter vectdguchay2011) by means of
an even function of the same variable. For small values of he tangent tensofd, asoU* = H(P*)sP". It then follows
(or p), the wryness vector should be equal to the infinites-

— K k k— l € k
imal rotation vector, i.e., ligok = ¢n. Introducing the ex- thatop” —ﬁ ® )@ _: (— )< .(— —0U’), where
limy_oug N'=¢n, which implies The motion tensor féords the following muIUphcative de-
i N 18 composition Bauchay 2011), C*(*) = H(P*YH* ().
im
¢—>0# (18) Equation 8) then |mpl|esc‘?{ Ck?{ and tensofW is de-

Similarly, for small rotation angles, the stretch vector shouldfined as
equal the displacement vector, i.e., }igg € = u. Introducing 1 e
the expression for the stretch vector yields JiguH u+ W =CH) " =CH)" (22)

. - . Y
Aatan{s/4) n) = u. Given the limit behaviors ok andH Virtual changes in the motion parameter vector now become
the stretch vector does indeed converge to the d|splacement

vector. Finally, if the relative motion is planar, the intrinsic gp* = W(_f SUY). (23)
displacement vanishes and the stretch vector should be in the ™

plane normal to unit vectar, T.e., limy_oN' & = 0. Using the
expression for the stretch vector then leads t@lipfup’d +
4tang/4) = 0, which implies

lim1=0. (19) o6& =8P, (24)

Variation in strain energy is expressedsds= &7 D*6&"
and requires evaluation of the virtual strains, expressed as

In summary, Eq. X6) defines the proposed deformation where matrixB* is defined by Eq.C1).
measures for flexible joints. These equations are, in fact, ysing Eqs. 24) and @3), variation of the strain energy
the nonlinear deformation-displacement relationships of thep, the flexible joint becomesA = U - 5(LIKT)(WTBT£
problem. They are not fully determined because two scala
functions,A andu, appear in their definition. These two func-
tions must satisfy the limit behavior discussed earlier butare - — g+, (25)
otherwise arbitrary. Specific choices of these two scalar func—— —
tions result in diferent families of deformation measures.  Tne elastic forces in the joint now become

7:6
r-{ %}, (26)

The strain energy of the flexible joint is assumed to be a
quadratic function of the deformation measugés where

{where the generalized force vectdy,, was defined as

AE) = a*Tz) &, 20) F=W'sTL. (27)



The stifness matrix of the flexible joint stems from the lin-
earization of the elastic forces defined by Exf)( Lineariza-
tion of 7 ° yields

ATS=AWTN' + WIABTL + WTETAL,  (28)

where ﬁ*z@”é*. Using Egs. 24) and @3), the last
term of this expression is obtained a® 87AL =
(B*’W) D (B*W)( U’ — AUY).

The first term of Eq.Z8) is evaluated next. This term is re-
castas\ W' N [ CH) TN +ACH )TN ]/Zto re-
spect the symmetry “of the problem expressed by E8). (
Expanding the variations leads to

AU
}tﬂ%aw

where notation(*) is defined by Eq. A5). Matrix T =
[HTX +HTX°]/2, where matrice& andX" are implicitly
defined by the equationsH A" = XAP* andAH T N* =

e e
_ﬂTZ*ﬂ_ z , (WTT*(W_ Z

A T*:

X*AP*, respectively; explicit expressions of these matncesD* =

are given in Egs.4a) and D4b), respectively.

Finally, the second term of Eq.28 becomes
WABT L ’WTQ (L, P)AP* and Eq. 23 then
leads to

- 5UY). (30)

where the explicit expression of matri@" is given in
Eq. C2). a

The linearized elastic forces can now be written explicitly

as
U~
ar =550, (31)
where the sfiness matrix of the elastic joint is
D+Fe/2 -D+Fe/2
= = = = = (32)
= -F°€/2 —-F°€/2

whereD = W (BTD'B+T" +Q)W.

® Handle k © Handle ¢
Ka L F,
ﬁ‘ 7/
1.2 m Flexible 1.2m ¥
13 F3

joint

Two beams connected with a flexible joint.

axial stifnessS = 43.50 MN; bending stthessH,, = 23.26
and Hsz = 298.7 kN n? about unit vectot, andis, respec-
tively; torsional stifnessHi; = 28.05kN n?; and shearing
stiffnessKy, = 4.0 andK33 = 2.81 MN, along unit vectors,
and:z, respectively.

The first beam is clamped at its root and the second
is loaded at its tip by concentrated forces tip lodeis=
500r/9, Fo = 25n/9, andF3 = 20Qx/9 N, along unit vec-
torsiy, 12, andz, respectively, as shown in Fig. The load
factora € [0,9]. The stifness matrix of flexible joint is given

by

2000 10 10
10 2000 10
10 10 2000
1000 (33)
1000
1000

Two formulations will be contrasted here. In the first, the
deformation measures are selected as

e[ RR)TW -
& _{KT} axial @ RTRR) [

The stretch vectog, corresponds to the components of the
relative displacement vector resolved in basfs The wry-
ness vectok', is the axial part of the relative rotation tensor,
resolved on the same basis; note that the components of the
wryness vector selected here are identical when resolved in
basisB or 8.

Various types of deformation measures have been used to
represent the behavior of flexible joints, but those given by
Eq. (34) are rather typical; in the following sections, they
will be referred to as “typical deformation measures”. In con-
trast, the deformation measures used in this work are defined
by Eq. @6) and will be referred as “proposed deformation
measures”.

The main claim of this paper is that the proposed strain
measures are invariant with respect to the choice of reference
point, i.e., are objective, a characteristic that is not shared by
typical deformation measures. Imagine that pokitandL

(34)

To illustrate the concepts developed in the previous sectionsare interchanged in Fi@. Clearly, this does not modify the
consider the system consisting of two beams, each of lengtiphysical system, and hence, its response under load should be

L =1.2m, connected by a flexible joint, as depicted in 2g.
The two beams have the same sectiondlir&ss properties:

undfected by this interchange. This basic invariance is satis-
fied by the proposed deformation measures, but not by their
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when reference point& andL are selected as shown in
typical counterparts. To illustrate thigfect, the following  Fig.2is shown in solid lines, and the response when pdnts
parameters were selected for the proposed deformation meandL are interchanged in shown in dashed lines. Clearly, the
sures: = 0 andu = (1- p?/16)/(1+ p?/16). This choice is  typical deformation measures do not yield physically mean-
not important as the proposed deformation measures are iringful predictions, becauseftérent responses are obtained

variant for any choice of these parameters. for a given physical system depending on the choice of the
For the typical deformation measures, two simulationslabeling convention for point& andL.
were performed. In the first run, poiritsandL are selected In contrast, the proposed deformation measures yield the

as indicated in Fig2 and in the second simulation, these two same predictions when the roles of poikt&ndL are inter-
points were interchanged. Of course, this interchange is &hanged. Figuresand6 show the components of the stretch
modeling detail, which has no physical meaning. Yet, theseand wryness vector components, respectively, for the pro-
two simulations yield dterent results because the definition posed deformation measures defined by Ef).
of the deformation measures make specific reference to basis Of course, for very small deformations, the predictions
BX, and hence, are inherently “basis sensitive”. based on the typical and proposed deformation measures are
Figures3 and4 show the components of the stretch and identical. This result is expected because both typical and
wryness vector components, respectively, versus the load fagroposed deformation measures converge to the same in-
tor, a € [0.9], for the typical deformation measures defined finitesimal deformation measures and because identi¢al sti
by Eq. 34). For each deformation component, the responseness matrices were used.



Choices of parametersandu for the sixteen cases. 0.35 l
g
Case a b c d 030 (?.4"
N
1 A=0 pu=1 1+p> 1+p* 1+p° 0.25 ot
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0.15 w7  —
e T l ’v'y/ ’ T
0.10 “T’f I
R o T ‘
) GRS PN
0.05 o YT: T S
The proposed deformation measures are not unique. Rather, 1::;5 P T‘TT T T
ili i byt = T Y
they form families dependent on two arbitrary parameters, N > 3 4 s e 7 3
A(p, p) and u(p, p): each choice of these parameters yields LOAD FACTOR, o.

a different deformation measure but for all choices, the ob- Components of the stretch vectar: (solid fine), &;
. .. - . . T ,82
jectivity and tensor_lal nature of the deform.atlon measure IS(dashed line), (dash-dotted line). Case 18], 1b (), 1¢ ().
preserved. Assuming that the simple strain energy expres; 4 8

sion defined by Eq20) is used with a given dtiness matrix, '

the choice of parametersandu will alter the response of

the flexible joint under load in the nonlinear regime. é)
To study the influence of the choice of parame- 0.30 P
ters 4 and p on joint behavior, a very simple exam- L ﬁ7
ple was treated. Handlk of the joint was clamped and 025 L& 57 |
forces and moments were applied to handjethe ap- v);.:’:" ! ’_ZD
plied force vector isF™ = {125 250 375a/9 andM” = - 0-20 ;;,';,«\;v ‘*?V;W
125 250 37a/9, wherex is the load factor. 0.15 o iﬂé O\ AN G

A total of sixteen combinations of parametam@ndu were ,ﬁ,-/ T.e 3.?"
selected for the study. First,= 0 is selected and cases 1a, 0.10 IO .30 l T )‘4;7;:‘?‘}
1b, 1c, and 1d correspondio= 1, u = 1+ p?, u = 1+ p*, and s M l{zv;/*v‘/“’
=1+ pb, respectively, as listed in the first row of Taldle ' B - =T
For case 1, parametgris function ofp only. Next,1 =0 is WL [ T
selected and cases 2a, 2b, 2c, and 2d correspopd=tb, T2 3 AP FACTOR, & 80

u=1+p,u=1+p? andu = 1+p°, respectively, as listed in
the second row of Tablk For case 2, parameteis function Components of the wryness vectat;: (solid line), «5
of p only. Cases 3 and 4 are defined similarly, as listed in the(dashed line)«; (dash-dotted line). Case 1®), 1b (»), 1c (v),
third and fourth row of Tabld, respectively. 1d ().

In all cases, the gthess matrix of flexible joint was se-

lected as L o - .
deformation is no longer infinitesimal and the joint’s nonlin-
1000 100 100 ear response isfl@cted by the choice of parameter This
100 1000 100 effect is particularly pronounced in the wryness response, as
D = 100 100 1000 (35) shown in Fig.8. _ _
= 1000 Of course, parametersandu are arbitrary functions of
1000 both variablesp and p. Case 1, in which parametgaris a

100 function of variablep only, is a special case. In case 2, pa-
rameteru is selected to be a simple polynomial function of
Figures7 and 8 show the components of the stretch and variablep only, as shown in the second row of TalileFig-
wryness vectors, respectively, for cases 1a, 1b, 1c, and 1dires9 and10 show the components of the stretch and wry-
The choice of very simple polynomial expressions fiof ness vectors, respectively, for cases 2a, 2b, 2c, and 2d. The
u(p) is arbitrary, but all satisfy the limit behavior expressed nonlinear response of both stretch and wryness vector com-
by Eqg. (18). Similarly, the constant value of = 0 satisfies  ponents is significantlyfiected by the choice of parameter
the limit behavior expressed by E4.9]. Finally, two additional cases, cases 3 and 4, were treated
For small values of the load factor, the flexible joint defor- where parametet is selected to be a function of variables
mation remains small and identical response is observed fop andp, respectively, while keeping a constant value of pa-
all choices of parameter. As larger loads are applied, the rametery =1, as listed in the last two rows of Table
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respectively. Here again, simple polynomial expressions . .
.. ; The attention has focused thus far on the strain energy
were selected and the limit behaviors expressed by B§g. ( given by Eq. 20), which is a quadratic expression of the

and (9) were satisfied. Figure$l and 12 show the com- T .
ponents of the stretch and wryness vectors, respectively, fogeformatlon measured,= " D"&"/2. This leads to the lin-

cases 3a, 3b, 3c, and 3d. Finally, Fig8.and 14 show the €& relationship between the generalized forces and proposed
components of the stretch and wryness vectors, respectivel{léformation measured” = D°€", see Eq.23). This linear
for cases 4a, 4b, 4c, and 4d. relationship, however, is deceptively simple.

The goal of the simple examples presented in the previ- Indeed, Eq. 27) shows that the relationship between the
ous paragraphs is to show that the nonlinear behavior of th€lastic forces in the joint and the proposed deformation mea-
flexible joint is strongly &ected by the functional depen- sures isF®= W8T L*. Next, the relationship between the
dency of parametersandyu on variableg andp. Of course,  externally applied loads and proposed deformation measures
in general, the two parameters can be selected to be funds obtained with the help of Eg4) as
tions of both variables,e., 1 = A(p, p) andu = u(p, p). Soft-
ening or stifening behavior can be obtained by tailoring the { }

MK

kT T q*T
functional dependency of parametdrandu on variablep rTwso Z(/l WL (362)

andp =1
{— } =TTW' BTD Z(A,u)P", (36b)
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where Eq. {6) was used to express the proposed deformatiori
measures in terms @, the relative motion of the joint’s
two handles. Although the finess matrix®", is constant, ~ This paper has focused on the constitutive behavior of elas-

the relationship between the externally applied loads and th&C bodies of finite dimension, typically called flexible joints
joint's deformation measures is nonlinear because matrice) Structural and multibody dynamics. Physically meaningful
W and8B" are nonlinear functions of the deformations mea- déformation measures were proposed that are objective and
sures, see Eqs22) and C1), respectively, and the relative of a tensorial nature; an explicit expression of these mea-

motion of the two handle®?*, is also a nonlinear function sures was derived. Equipped with these deformation mea-

of the handle’s relative motion. These observations explainsures’ constitutive laws for the flexible joint were derived by

the nonlinear load-deformation behavior exhibited in Fis. assuming the existence of a stra|.n energy function that is a
t0 14, quadratic form of these deformation measures. Because all

the guantities involved in the formulation are objective and
t;Sensorial, the predicted joint behavior presents the required

must be obtained for infinitesimal deformations of the joint mvsnancg Wl'th resptlact to changes Oftbgstﬁ (irc;eferenct:e ?O'trr]]t'
and lead to the identification of the entries of the constant ' Cmerical examples were presented that demonstrate the

stiffness matrixP*. Next, experimental measurements char- Invariance of the predicted behavior with respect to the

o = o . choice of reference point, even in the nonlinear range; in con-
acterizing the joint’'s behavior in the nonlinear range must be

btained. Th timal functional d denci f ¢ trast, typical formulations found in the literature up to date do
obtained. the optimal flunctional dependencies ot parametery appear to present these desirable characteristics. The pro-
A andu on variableso and p can then be determined using

. ; o posed deformation measures are not unique: their definition
sunafble parar_ngter identification dmhe thOd.S ) ble f . depends on the choice of two parameters, which are functions
1 o Coiﬁe’:'t IS not gua:a:)ntefe r: datwsk?iltﬁ W?” l::cgdlrfh of the 'reilative rotat'ion and the intrinsic relatiye displacement

(b, p) andu “(.p’ P, ca | De found, ¢ odetthe ot the joint. Numerical examples presented in the paper show
observed behavior of the joint accurately. In such case, mor

: ) . at the choice of these two parametdfeets the response of
complex strain energy expressions could be selected in a

L . ﬂwejoint in the nonlinear regime significantly. Consequently,
attempt to better capture the observed constitutive behaV|0{he proposed deformation measures form families, and the

o o ot o baana T o e funconldepedency of e paameter can e
. . X selected to tailor the nonlinear response of the joint.
conservative, which will not always be true. This paper has focused on an expression of the strain en-
ergy that depends on the proposed deformation measures in a
guadratic manner, leading to a linear relationship between the
generalized forces and deformations measure. Despite this

linearity, the relationship between externally applied forces
and deformations is nonlinear. More general joint constitu-
tive behavior could be obtained by considering more general
strain energy expressions. Investigating energy dissipation in

In practice, the joint's constitutive laws can be obtained
from a two step procedure. First, experimental measuremen



flexible joint based on the time rate of change of the propose®df u is ou = 0 + 1pdp, where notations-), and (), indi-
deformation measure is another possible extension of the thisate derivatives with respect to varia@leand anglep, re-
work. spectively. Because= p*Tq andp? = P p it follows that

so=pTé6q" +qT6p* andpsp = p*Top, and hence,

6@ p*T g*T
p5 p OT E*T

The variations of parametefsandu now become

5P, (B1)

To simplify the writing of this seemingly complicated ex-

pression, the following notation is introduced. First, tensor (5, T T
Z. afunction of two scalarsy andg, is introduced {5/1} A (A4, [BT B*T]W)’ (B2)
ﬁl al where matrixé1 is defined as
Z(a.p) = Il (A1) B
BL A A/
= = A /l, — © p . 83
R (53

Second, thgeneralized vector product tensisrdefined
o Because parametensandy are even functions of variable
n T} (A2) p, their derivatives with respect to the same variable are odd
Q ny’ functions ofp and hencegd,/p andup/p present no singu-

_ larity whenp — 0.
Notation N does not indicate a %6 skew-symmetric ten- Consider two arbitrary arrays’ = {fT mT} andP’ =
sor, but rather the abovexb tensor formed by three skew-
symmetric sub-tensors. By analogy to notataa axial@),
the following operator is introduced

N =

{qT ET}, and two arbitrary scalarsy = a(o,p) and 8=
Blo, p). MatrlceSZ and Z are defined implicitly by the

following two |dent|t|es 6Z(a BL= Z(L @, B,P)oP and

N = AxalN). (A3) 6Z"(@.pL=2Z(L, .5, P)5P, respectively. It is shown eas-
Consider two vectors defined as ily shown that
m | fox
{2y ooy 4l5)
a N 0 ¢||da
_ 6Z" (a, .z::[— —H } B4b
The well-known property of the vector produ@h= —ba = (@pL ¢ mj|B (B4D)

then generalizes to Introducing Eq. B2) now yields the following explicit ex-

pressions for matrlcez andZ

VP =-PYV, (Ada)
Vip=PYV. (Adb) . m o qr
g(é,a,ﬁ,f)z[a &]é (a,8) OT BT]’ (B5a)
where the following notation was introduced - o ~
: _[0 ¢ P9
— g(é,a,ﬁﬂ_’)—[ﬁ m}é (@.8) QT ET]' (B5h)

0 p
= % (A5)

Finally, the following identity results

PV =PV+V'P. (A6)
The proposed strain measures are defined by Ef) (
and variations of these quantities are expressed&is-

[g(/l,y) +Z(£*,/l,y,£*)] 5P, where matrixZ is defined by
Eq. B54). This implies that&* = B*6P", where matrixB*

is defined as
Scalard andu were introduced in Eq.1(¢) as functions of

o and p. Using the chain rule for derivatives, the variation 8" = Z(1,1) +Z(7’* A1, P). (C1)



The linearization of the elastic forces requires the evalua-

tion of matrix@", implicitly defined bys8"L" = Q"6#". The
previous results yield o -

Q =Z(eN) + Z@ A L)+ Z(L AP

. _p* 9* s E*T g*T‘ (CZ)
Q B* e QT E*TA >
where the following scalar functions were defined
-[5 Sele ot el

= | . N = N C3
{B} [QT pT £y 4o kp/P|\B (C3)
and
S — [a'/lgg +ﬁ/lgp/p a'/lgp/ p +ﬁ(/lpp - ’lp/ p)/p§:| . (C4)
=  |[@Hgo +B,ugp/p a’/«’gp/p"'ﬁ(ﬂpp_ﬂp/ p)/p

The linearization of the elastic forces also requires lin-

Scalars functions associated with the Wiener-Milen&ovi
motion parameterization.

Quantity  Value \ Quantity  Value
v 1/(1+ p?/16) g 1/(1-p?/16)
P 1+p%/16 & 0£%/8
14 Ve ¢! V2/2
4 o¥(1-4)/8 & —0v°/8
og VvV o2 /8
oo —0v?/8 oo —0v3/32
Xo /v x2 1/8
Xo ©/8 x2 0
and finally,
X(L) = Z(Lxoxo.P) - L2+(N+PTL)/8,  (D4a)
XL = Z(LxoxoP)+L/2+(N+P L)/8.  (DAb)

This work was not sponsored by any

earization of the tangent tensor. When using the Wiener2agency as | was transferring from the USA to China and was
Milenkovié motion parameterization, the tangent tensor isPetween the two systems.

expressed as
7:{_1(7_)) = Z(xo.x0) = P2+ g(fz,)(z)ﬁ,
HHP) = Z(o.x0) + P/2+ Z(t2.x2)PP.

(D1a)
(D1b)

The linearization of the tangent tensor is achieved by defining

matricesX and X* implicitly defined by the following ex-
pressionsAH ' £ = X(LAP and H T L = X" (L)AP. Te-
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