
Mech. Sci., 4, 49–64, 2013
www.mech-sci.net/4/49/2013/
doi:10.5194/ms-4-49-2013
© Author(s) 2013. CC Attribution 3.0 License.

Mechanical
Sciences

Open Access

Chrono: a parallel multi-physics library for rigid-body,
flexible-body, and fluid dynamics

H. Mazhar1, T. Heyn1, A. Pazouki1, D. Melanz1, A. Seidl1, A. Bartholomew1, A. Tasora2, and D. Negrut1

1Simulation Based Engineering Lab, Department of Mechanical Engineering, University of Wisconsin,
Madison, WI, 53706, USA

2Department of Industrial Engineering, University of Parma, V.G.Usberti 181/A, 43100, Parma, Italy

Correspondence to:D. Negrut (negrut@engr.wisc.edu)

Received: 16 November 2012 – Accepted: 26 January 2013 – Published: 12 February 2013

Abstract. The last decade witnessed a manifest shift in the microprocessor industry towards chip designs that
promote parallel computing. Until recently the privilege of a select group of large research centers, Teraflop
computing is becoming a commodity owing to inexpensive GPU cards and multi to many-core x86 processors.
This paradigm shift towards large scale parallel computing has been leveraged inChrono, a freely available
C++ multi-physics simulation package.Chrono is made up of a collection of loosely coupled components
that facilitate different aspects of multi-physics modeling, simulation, and visualization. This contribution pro-
vides an overview ofChrono::Engine,Chrono::Flex,Chrono::Fluid, andChrono::Render, which are modules
that can capitalize on the processing power of hundreds of parallel processors. Problems that can be tackled
in Chrono include but are not limited to granular material dynamics, tangled large flexible structures with
self contact, particulate flows, and tracked vehicle mobility. The paper presents an overview of each of these
modules and illustrates through several examples the potential of this multi-physics library.

1 Introduction

Over the last decade there has been a manifest trend in the
hardware industry to increase flop rates by increasing the
number of cores available on a processor. To a very large
extent, the tide that propelled sequential computing for sev-
eral decades is subsiding. The frequency at which cores are
operated today has at best plateaued; in many cases, it went
down in an attempt to tame power dissipation and overheat-
ing. Instruction level parallelism advances that ensured re-
spectable gains through pipelining and out of order execu-
tion have largely fulfilled their potential. The bright spot in
this evolving hardware landscape has been the growing im-
petus behind parallel computing hardware. If anything has
held steady over the last four decades, it has been the pace at
which transistors are packed per unit area in computer chips.
This trend allows today chip designs that draw on 22 nm fea-
ture length. Intel’s road map calls for 14 nm technology in
2014, 10 nm in 2016, 7 nm in 2018, and 5 nm in 2020. In
other words, the number of transistors per unit area will con-

tinue to double every two years for the current decade. This
will translate into immediate access to commodity chips that
host multiple compute cores. Given the stagnation in proces-
sor operating frequency, an ever growing gap between CPU
speed and memory speed, and the waning of instruction level
parallelism gains, it becomes apparent that the only way we
can continue to enjoy reduced simulation times or ability to
rely on refined models is to fall back on parallel comput-
ing. There are two major directions in which parallel com-
puting has evolved. The x86 architecture has defined a so-
lution that evolved as a steady and predictable process in
which the number of cores on a chip increased over time:
AMD produces today 16 core chips, while Intel has 12 core
processors. Leveraging these chips requires a low entry point
that calls for programming against relatively mature libraries
such as OpenMP, MPI, pthreads, cilk, TBB, etc. At mem-
ory bandwidths of 75 GB s−1 and flop rates of 0.3 TFlop s−1,
this has traditionally represented the conservative choice for
entering the parallel computing arena. With the release of
CUDA 1.0 in 2006, NVIDIA offered a second alternative

Published by Copernicus Publications.

50 H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics

to leveraging parallel computing by programming the ubiq-
uitous video cards available on millions of desktops world-
wide. This path to parallel computing is less conventional as
it requires one to get familiar with the hardware layout and
memory hierarchy associated with GPUs. Today, an Nvidia
GPU has close to seven billion transistors. Priced at about
$6000, an Nvidia Kepler K20x delivers a memory bandwidth
of 250 GB s−1 and 1.3 TFlop s−1 by virtue of using more than
2800 Scalar Processors. It is used side by side with a regular
CPU processor, which means that heterogeneous computing,
on the CPU and GPU, can lead to substantial speed gains. In
this framework, the GPU plays the role of an accelerator by
boosting the floating point performance of the CPU. A sim-
ilar setup is offered now by Intel; i.e., CPU plus accelerator,
owing to its recent release of the Knights Corner architec-
ture. A Knights Corner chip has about 60 cores, can deliver
up to 320 GB s−1 and 1 TFlop s−1, and uses the x86 instruc-
tion set architecture, which translates into an easier adoption
path provided one is familiar with OpenMP or MPI.

It becomes apparent that in the immediate future, any in-
crease in simulation speed or model complexity in Compu-
tational Science will be fueled by parallel computing. This
paper outlines an ongoing effort in the area of computational
mutlibody dynamics that is motivated by this belief. It starts
with a description of a core simulation engine that aims at
simulation of many-body dynamics problems with friction
and contact.Chrono::Engine handles both rigid and flexible
bodies and draws on MPI and/or GPU computing. It then
discussesChrono::Fluid, a GPU parallel simulation tool that
aims at fluid-solid interaction problems, which is singled out
as an application area that has been largely ignored until re-
cently due to an excessive computational burden incurred by
the simulation of systems of practical relevance. Finally, the
papers outlines a rendering pipeline that is used for postpro-
cessing of big data.Chrono::Render is capable of using 320
cores and is built around Pixar’s RenderMan. All these com-
ponents combine to produceChrono, a multi-physics simu-
lation environment that is designed to take advantage of com-
modity parallel computing made available by many-core and
GPU architectures.

2 Chrono::Engine

TheChrono::Engine software is a general-purpose simulator
for three dimensional multi-body problems (Tasora and An-
itescu, 2011). Specifically, the code is designed to support the
simulation of very large systems such as those encountered in
granular dynamics, where the number of interacting elements
can be in the millions. Target applications include tracked
vehicles operating on granular terrain (Heyn, 2009) or the
Mars Rover operating on discrete granular soil. In these ap-
plications, it is desirable to model the granular terrain as a
collection of many thousands or millions of discrete bodies
interacting through contact, impact, and friction. Note that

such systems also include mechanisms composed of rigid
bodies and mechanical joints. These challenges require an ef-
ficient and robust simulation tool, which has been developed
in theChrono simulation package.Chrono::Engine was ini-
tially developed leveraging the Differential Variational In-
equality (DVI) formulation as an efficient method to deal
with problems that encompass many frictional contacts – a
typical bottleneck for other types of formulations (Anitescu
and Tasora, 2010; Tasora and Anitescu, 2010). This approach
enforces non-penetration between rigid bodies through con-
straints, leading to a cone-constrained quadratic optimiza-
tion problem which must be solved at each time step (Ne-
grut et al., 2012). Chrono::Engine has since been extended
to support the Discrete Element Method (DEM) formula-
tion for handling the frictional contacts present in granu-
lar dynamics problems (Cundall, 1971; Cundall and Strack,
1979). This formulation computes contact forces by penaliz-
ing small interpenetrations of colliding rigid bodies. Various
contact force models can be used depending on the applica-
tion (Mindlin and Deresiewicz, 1953; Kruggel-Emden et al.,
2007).

The remainder of this section describes the features of
Chrono::Engine, starting with the structure of the code. Next,
several sub-sections describe the use of GPU computing in
the collision detection task, the use of MPI for distributed so-
lution of large systems, and validation work which has been
done to assess the accuracy of the simulation tool.

2.1 Code structure of Chrono::Engine

The core ofChrono::Engine is built around the concept of
middleware, namely a layer of classes and functions that can
be used by third-party developers to create complex mechan-
ical simulation software with little effort (Tasora et al., 2007).
Because of this, graphical user interfaces and end-user tools
are not the main focus of theChrono::Engine core project; it
is assumed that programs with graphical interfaces are built
on top of such middleware, or should be considered as addi-
tional, or optional, modules.

Given the complexity of the project, approaching half
a million lines of code, the software is organized in
classes and namespaces as recommended by the Object
Oriented Programming paradigm, targeting modularity, en-
capsulation, reusability and polymorphism. The libraries of
Chrono::Engine are thread safe, fully re-entrant, and include
more than six hundred C++ classes. Objects from these
classes can be instantiated and used to define models and
simulations that run in third party software, for instance ve-
hicle simulators, CAD tools, virtual reality applications, or
robot simulators.

Chrono::Engine is completely platform-independent,
hence libraries are available for Windows, Linux and Mac
OSx, for both 32 bit and 64 bit versions. Moreover, we fol-
lowed a modular approach, splitting the libraries in mod-
ules that can be dynamically loaded only if necessary, thus

Mech. Sci., 4, 49–64, 2013 www.mech-sci.net/4/49/2013/

H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics 51

minimizing issues of dependency from other libraries and
reducing memory footprint. For instance, we developed li-
braries for MATLAB interoperability, for real-time visualiza-
tion through OpenGL, for interfacing with post-processing
tools, etc. (see Fig.1).

Classes and objects have been tested and profiled for
fast execution, in order to achieve real-time performance
when possible. Modern programming techniques have been
adopted, like metaprogramming, class templating, class fac-
tories, memory leak trackers and persistent-transient data
mapping. C++ operator overloading has been used to provide
a compact algebra to manage quaternions, static and moving
coordinate systems, and OS-agnostic classes are used for log-
ging, streaming/checkpointing and exception handling.

We embraced an intense object-oriented approach, there-
fore most C++ objects that define parts of the multi-
body model are inherited from a base class called
ChPhysicsItem, which defines the essential interfaces for
all items that have some degrees of freedom. For example,
specialized classes that inherit theChPhysicsItem are the
ChBody class, which is used for 3-D rigid bodies as shown
in Fig. 2, ChShaft, which is used for 1-D concentrated pa-
rameter models of power trains,ChLinkLockRevolute that
is a joint between rigid bodies, and so on. A set of more than
thirty mechanical constraints are part of this class hierarchy.
Furthermore, the architecture is open to further definition of
new specialized classes for user-customized parts and joints.
An object ofChSystem class stores a list of all moving parts
and performs the simulation.

EachChPhysicsItem-inheriting class can encapsulate a
variable number ofChLcpVariable objects and/or a vari-
able number ofChLcpConstraint objects, that are fed to
the solver for Cone Complementarity Problems (CCP) at
each time step of the DVI integration; this helps the devel-
opment of black-box CCP solvers that are independent from
the data structures of the physical layer. Also, these data
structures represent the sparse data for the model descrip-
tion, which is completely matrix- and vector-free for the sake
of a small memory footprint and fast linear algebra. Specifi-
cally, tthe system matrices for mass, Jacobians, etc. are never
explicitly assembled. The objects of most of the above men-
tioned classes are managed by smart (shared) pointers with
automatic deletion.

This relieves the programmer from the burden of taking
care of object’s lifetime, given that the relationships between
objects can be quite complex as illustrated in Fig.3. A large
portion of the C++ classes are available also as Python mod-
ules; this enables the use of most simulation features in a
scripted environment. Since novice users are more comfort-
able with Python than with C++, the Python interface proved
to be optimal for teaching purposes. The Python interface
was produced using the SWIG utility, a process that auto-
matically generates the code for the Python wrapper.

The software architecture has been designed to accommo-
date an expandable system for handling assets (meshes, tex-

tures, CAD models), with multiple paths from pre-processing
to post-processing. To this end, we also provide a C# add-in
for a parametric 3-D CAD package (SolidWorks) that can
be used to export models intoChrono::Engine without pro-
gramming efforts (see Fig.4).

2.2 Collision detection in Chrono::Engine

This section describes the collision detection algorithm de-
signed and implemented for theChrono::Engine package.
Recall that problems of interest are focused on granular dy-
namics, such as sand flowing inside an hourglass, a rover
running over sandy terrain, an excavator/frontloader dig-
ging/loading granular material, etc. In this context, the col-
lision detection task is performed on a rather small collec-
tion of rigid and/or deformable bodies of complex geome-
try (hourglass wall, wheel, track shoe, excavator blade, dip-
per), and a very large number of bodies (millions to billions)
that make up the granular material. On this scale, the colli-
sion detection task, particularly when dealing with the gran-
ular material, fits perfectly the Single Instruction Multiple
Data (SIMD) computation paradigm. Specifically, the same
sequence of instructions needs to be applied to every indi-
vidual body and/or contact in the granular material. There-
fore, a collision detection algorithm capable of leveraging
the SIMD computational power of commodity Graphics Pro-
cessing Units (GPUs) was developed and implemented to re-
move collision detection as the bottleneck in large granular
dynamics simulations.

The parallel collision detection algorithm is separated into
two phases, broadphase, and narrowphase. The broadphase
algorithm quickly determines a list of potential contact pairs
while the narrowphase algorithm determines actual contact
information. A brief outline of the parallel collision detection
algorithm is presented below, for more details see (Mazhar
et al., 2011; Pazouki et al., 2012, 2010).

2.2.1 Broad-Phase algorithm

The Broad-Phase algorithm is used to compute whether two
bodies might be in contact at a given time. The purpose of
the broad-phase algorithm is not to find actual contact infor-
mation, but rather to determine if a contact could potentially
occur based on the Axis Aligned Bounding Boxes of the bod-
ies involved.

An Axis Aligned Bounding Box (AABB) is a special case
of a bounding box that is always aligned to the global refer-
ence frame, simplifying collision detection as the bounding
box cannot rotate. Because of this, the volume enclosed by
the bounding box will always be equal to or greater than the
volume of the shape it encloses. AABB generation is simple
and can be easily paralellized on a per object basis. See Fig.5
for an example of AABB computation for a cylinder in 3-D
space.

www.mech-sci.net/4/49/2013/ Mech. Sci., 4, 49–64, 2013

52 H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics

Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics 3

OpenGL

unit_IRRLICHT
Chrono Engine

unit_POSTPROCESSunit_MATLAB

MATLAB

Operating System

Irrlicht

unit_OPENGLunit_CASCADE unit_PYTHON

Python v3

OpenCASCADE

unit_MPI unit_GPU

CUDA

MPICH2

Chrono libraries

Example C++ program 'A' Example Python programExample C++ program 'B'Examples of use

External

dependencies

Figure 1: UML graph of dependencies between module libraries.

tion through OpenGL, for interfacing with post-processing
tools, etc. (see Figure 1).

Classes and objects have been tested and profiled for fast ex-
ecution, in order to achieve real-time performance when pos-
sible. Modern programming techniques have been adopted,
like metaprogramming, class templating, class factories,
memory leak trackers and persistent-transient data mapping.
C++ operator overloading has been used to provide a com-
pact algebra to manage quaternions, static and moving coor-
dinate systems, and OS-agnostic classes are used for logging,
streaming/checkpointing and exception handling.

We embraced an intense object-oriented approach, therefore
most C++ objects that define parts of the multi-body model
are inherited from a base class called ChPhysicsItem,
which defines the essential interfaces for all items that have
some degrees of freedom. For example, specialized classes
that inherit the ChPhysicsItem are the ChBody class, which
is used for 3D rigid bodies as shown in Fig.2, ChShaft,
which is used for 1D concentrated parameter models of
power trains, ChLinkLockRevolute that is a joint between
rigid bodies, and so on. A set of more than thirty mechani-
cal constraints are part of this class hierarchy. Furthermore,
the architecture is open to further definition of new special-
ized classes for user-customized parts and joints. An object
of ChSystem class stores a list of all moving parts and per-
forms the simulation.

Each ChPhysicsItem-inheriting class can encapsulate a
variable number of ChLcpVariable objects and/or a vari-
able number of ChLcpConstraint objects, that are fed to
the solver for Cone Complementarity Problems (CCP) at
each time step of the DVI integration; this helps the devel-
opment of black-box CCP solvers that are independent from
the data structures of the physical layer. Also, these data
structures represent the sparse data for the model description,
which is completely matrix- and vector-free for the sake of a
small memory footprint and fast linear algebra. Specifically,

Figure 2: Class ineritance diagram for objects of ChBody type.

tthe system matrices for mass, Jacobians, etc. are never ex-
plicitly assembled. The objects of most of the above men-
tioned classes are managed by smart (shared) pointers with
automatic deletion.

This relieves the programmer from the burden of taking care
of object’s lifetime, given that the relationships between ob-
jects can be quite complex as illustrated in Fig.3. A large por-
tion of the C++ classes are available also as Python modules;
this enables the use of most simulation features in a scripted
environment. Since novice users are more comfortable with
Python than with C++, the Python interface proved to be op-
timal for teaching purposes. The Python interface was pro-
duced using the SWIG utility, a process that automatically
generates the code for the Python wrapper.

The software architecture has been designed to accommodate
an expandable system for handling assets (meshes, textures,
CAD models), with multiple paths from pre-processing to
post-processing. To this end, we also provide a C# add-in for
a parametric 3D CAD package (SolidWorks) that can be used
to export models into Chrono::Engine without programming
efforts (see Fig.4).

2.2 Collision Detection in Chrono::Engine

This section describes the collision detection algorithm de-
signed and implemented for the Chrono::Engine package.
Recall that problems of interest are focused on granular dy-
namics, such as sand flowing inside an hourglass, a rover
running over sandy terrain, an excavator/frontloader dig-
ging/loading granular material, etc. In this context, the col-
lision detection task is performed on a rather small collec-
tion of rigid and/or deformable bodies of complex geome-
try (hourglass wall, wheel, track shoe, excavator blade, dip-
per), and a very large number of bodies (millions to billions)
that make up the granular material. On this scale, the colli-
sion detection task, particularly when dealing with the gran-

www.mech-sci.net Mech. Sci.

Figure 1. UML graph of dependencies between module libraries.

Figure 2. Class ineritance diagram for objects ofChBody type.

2.2.2 Spatial Subdivision algorithm

A high-level overview of the GPU-based collision detection
is as follows. The collision detection process starts by identi-
fying the intersections between AABBs and bins (see Fig.6
for a visual representation of a bin). The AABB-bin pairs are
subsequently sorted by bin id. Next, each bin’s starting in-
dex is determined so that the bins’ AABBs can be traversed
sequentially. All AABBs touching a bin are subsequently
checked against each other for collisions.

2.2.3 Narrow-Phase algorithm

Once potential contacts have been determined from the
broad-phase collision detection stage, the Narrow-Phase al-
gorithm needs to process each possible contact and determine
if it actually occurs. To this end an algorithm capable of de-
termining contacts between convex geometries was imple-
mented on the GPU. This algorithm, called “XenoCollide”
(Snethen, 2007), is based upon Minkowski Portal Refinement
(MPR) (Snethen, 2008).

Mech. Sci., 4, 49–64, 2013 www.mech-sci.net/4/49/2013/

H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics 534 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

Figure 3: Collaboration graph between classes: example for ChBody and ChSystem.

ular material, fits perfectly the Single Instruction Multiple
Data (SIMD) computation paradigm. Specifically, the same
sequence of instructions needs to be applied to every indi-
vidual body and/or contact in the granular material. There-
fore, a collision detection algorithm capable of leveraging
the SIMD computational power of commodity Graphics Pro-
cessing Units (GPUs) was developed and implemented to re-
move collision detection as the bottleneck in large granular
dynamics simulations.

The parallel collision detection algorithm is separated into
two phases, broadphase, and narrowphase. The broadphase
algorithm quickly determines a list of potential contact pairs
while the narrowphase algorithm determines actual contact
information. A brief outline of the parallel collision detection
algorithm is presented below, for more details see (Mazhar
et al., 2011; Pazouki et al., 2012, 2010).

2.2.1 Broad-Phase Algorithm

The Broad-Phase algorithm is used to compute whether two
bodies might be in contact at a given time. The purpose of
the broad-phase algorithm is not to find actual contact infor-
mation, but rather to determine if a contact could potentially
occur based on the Axis Aligned Bounding Boxes of the bod-
ies involved.

An Axis Aligned Bounding Box (AABB) is a special case
of a bounding box that is always aligned to the global refer-
ence frame, simplifying collision detection as the bounding
box cannot rotate. Because of this, the volume enclosed by
the bounding box will always be equal to or greater than the

Chrono::Engine
core library

UNIT_PyParser

UNIT_PostProcessing UNIT_Irrlicht

C++ program

or

Python program

.py

scene file

.obj

meshes

.pov
PovRay 3D

rendering

scripts

.bmp
animation

frames

.dat
raw output

Octave, NumPy, ..

Chrono::Engine add-in

plots

SPICE, etc. ..

Co-simulation

TCP socket

Mesh refinement,
UV texturing, etc.

Realtime 3D

view

Photoshop, Paint, ..

.bmp

textures

Figure 4: Network of asset workflows.

volume of the shape it encloses. AABB generation is sim-
ple and can be easily paralellized on a per object basis. See
Fig. 5 for an example of AABB computation for a cylinder
in 3D space.

Mech. Sci. www.mech-sci.net

Figure 3. Collaboration graph between classes: example forChBody andChSystem.

2.3 Using MPI for distributed Chrono

Chrono has been further extended to allow the use of CPU
parallelism for certain problems. To efficiently simulate large
systems, a domain decomposition approach has been devel-
oped to allow the use of many-core compute clusters. In this
approach, we divide the simulation domain into a number of
sub-domains in a lattice structure. Each sub-domain manages
the simulation of all bodies contained therein. Note that bod-
ies may span the boundary between adjacent sub-domains.
In this case, the body is considered shared and its dynamics
may be influenced by the participating sub-domains. The im-
plementation leverages the MPI standard (Gropp et al., 1999)
to implement the necessary communication and synchroniza-
tion between sub-domains.

This approach enables the simulation of large systems in
two ways. First, it relies on the power of parallel comput-
ing since one computer core can be assigned to each MPI
process (and therefore to each sub-domain). These processes
can execute in parallel, constrained only by the required com-
munication and synchronization. Second, it allows access to
the larger memory pool available on distributed memory ar-
chitectures. Whereas a single node or GPU card may have
about 6 GB of memory, a distributed memory cluster may
have on the order of 1 TB of memory, enabling the simula-
tion of vastly larger problems.

Note that the domain decomposition approach currently
uses the discrete element method to resolve friction and con-
tact forces between elements in the system. The approach
also supports constraints between bodies in the simulation
by considering an assembly of constrained rigid bodies as a

unit which must always be kept together. Therefore, if any
body in a chain of constrained bodies is contained in a given
sub-domain, all bodies in the chain are considered by that
sub-domain and used to correctly solve the constraint equa-
tions.

2.3.1 Sub-division and set-up

A pre-processing step is used to discretize the simulation
domain into a specified number of sub-domains, set up the
communication conduits between processes, and initialize
the sub-domains as appropriate. The sub-division is based
on a cubic lattice with support for arbitrary sized divisions.
The sub-domain boundaries are aligned with the global carte-
sian coordinate system, and their locations are user-specified.
Separate MPI processes are mapped to each sub-domain.
Note that at this time, the sub-division is static and does not
change during the simulation. Therefore, the user should be
careful to set up the discretization to maintain the best possi-
ble load balancing.

In terms of communication, each sub-domain in the grid
can communicate with all other sub-domains. These commu-
nication pathways are set up and initialized during the pre-
processing step and persist throughout the simulation.

Note that this implementation relies heavily on inheri-
tance and the class-based structure ofChrono. For exam-
ple, ChSystem is extended toChSystemMPI by including
the code to perform communication and synchronize the sub-
domains.

www.mech-sci.net/4/49/2013/ Mech. Sci., 4, 49–64, 2013

54 H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics

4 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

Figure 3: Collaboration graph between classes: example for ChBody and ChSystem.

ular material, fits perfectly the Single Instruction Multiple
Data (SIMD) computation paradigm. Specifically, the same
sequence of instructions needs to be applied to every indi-
vidual body and/or contact in the granular material. There-
fore, a collision detection algorithm capable of leveraging
the SIMD computational power of commodity Graphics Pro-
cessing Units (GPUs) was developed and implemented to re-
move collision detection as the bottleneck in large granular
dynamics simulations.

The parallel collision detection algorithm is separated into
two phases, broadphase, and narrowphase. The broadphase
algorithm quickly determines a list of potential contact pairs
while the narrowphase algorithm determines actual contact
information. A brief outline of the parallel collision detection
algorithm is presented below, for more details see (Mazhar
et al., 2011; Pazouki et al., 2012, 2010).

2.2.1 Broad-Phase Algorithm

The Broad-Phase algorithm is used to compute whether two
bodies might be in contact at a given time. The purpose of
the broad-phase algorithm is not to find actual contact infor-
mation, but rather to determine if a contact could potentially
occur based on the Axis Aligned Bounding Boxes of the bod-
ies involved.

An Axis Aligned Bounding Box (AABB) is a special case
of a bounding box that is always aligned to the global refer-
ence frame, simplifying collision detection as the bounding
box cannot rotate. Because of this, the volume enclosed by
the bounding box will always be equal to or greater than the

Chrono::Engine
core library

UNIT_PyParser

UNIT_PostProcessing UNIT_Irrlicht

C++ program

or

Python program

.py

scene file

.obj

meshes

.pov
PovRay 3D

rendering

scripts

.bmp
animation

frames

.dat
raw output

Octave, NumPy, ..

Chrono::Engine add-in

plots

SPICE, etc. ..

Co-simulation

TCP socket

Mesh refinement,
UV texturing, etc.

Realtime 3D

view

Photoshop, Paint, ..

.bmp

textures

Figure 4: Network of asset workflows.

volume of the shape it encloses. AABB generation is sim-
ple and can be easily paralellized on a per object basis. See
Fig. 5 for an example of AABB computation for a cylinder
in 3D space.

Mech. Sci. www.mech-sci.net

Figure 4. Network of asset workflows.

Figure 5. Example of AABB generation for 3-D cylinder.

2.3.2 Simulation and communication

Each sub-domain is now represented by aChSystemMPI ob-
ject and an associated MPI process. For example, assume a
simulation is discretized into a setS of m sub-domains. In
this case, letS = {A,B,C,D} and m= 4, and map an MPI

Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics 5

Minimum Point

Maximum Point

Figure 5: Example of AABB generation for 3D cylinder.

3-Dimensional Grid

Bin

Figure 6: Example of 3D space divided into bins.

2.2.2 Spatial Subdivision Algorithm

A high-level overview of the GPU-based collision detection
is as follows. The collision detection process starts by identi-
fying the intersections between AABBs and bins (see Fig. 6
for a visual representation of a bin). The AABB-bin pairs are
subsequently sorted by bin id. Next, each bin’s starting in-
dex is determined so that the bins’ AABBs can be traversed
sequentially. All AABBs touching a bin are subsequently
checked against each other for collisions.

2.2.3 Narrow-Phase Algorithm

Once potential contacts have been determined from the
broad-phase collision detection stage, the Narrow-Phase al-
gorithm needs to process each possible contact and deter-
mine if it actually occurs. To this end an algorithm capa-
ble of determining contacts between convex geometries was
implemented on the GPU. This algorithm, called “XenoCol-
lide” (Snethen, 2007), is based upon Minkowski Portal Re-
finement (MPR) (Snethen, 2008).

2.3 Using MPI for distributed Chrono

Chrono has been further extended to allow the use of CPU
parallelism for certain problems. To efficiently simulate large
systems, a domain decomposition approach has been devel-
oped to allow the use of many-core compute clusters. In this
approach, we divide the simulation domain into a number of

sub-domains in a lattice structure. Each sub-domain manages
the simulation of all bodies contained therein. Note that bod-
ies may span the boundary between adjacent sub-domains.
In this case, the body is considered shared and its dynamics
may be influenced by the participating sub-domains. The im-
plementation leverages the MPI standard (Gropp et al., 1999)
to implement the necessary communication and synchroniza-
tion between sub-domains.

This approach enables the simulation of large systems in two
ways. First, it relies on the power of parallel computing since
one computer core can be assigned to each MPI process (and
therefore to each sub-domain). These processes can execute
in parallel, constrained only by the required communication
and synchronization. Second, it allows access to the larger
memory pool available on distributed memory architectures.
Whereas a single node or GPU card may have about 6 GB of
memory, a distributed memory cluster may have on the order
of 1TB of memory, enabling the simulation of vastly larger
problems.

Note that the domain decomposition approach currently uses
the discrete element method to resolve friction and contact
forces between elements in the system. The approach also
supports constraints between bodies in the simulation by
considering an assembly of constrained rigid bodies as a unit
which must always be kept together. Therefore, if any body
in a chain of constrained bodies is contained in a given sub-
domain, all bodies in the chain are considered by that sub-
domain and used to correctly solve the constraint equations.

2.3.1 Sub-division and Set-up

A pre-processing step is used to discretize the simulation
domain into a specified number of sub-domains, set up the
communication conduits between processes, and initialize
the sub-domains as appropriate. The sub-division is based
on a cubic lattice with support for arbitrary sized divisions.
The sub-domain boundaries are aligned with the global carte-
sian coordinate system, and their locations are user-specified.
Separate MPI processes are mapped to each sub-domain.
Note that at this time, the sub-division is static and does not
change during the simulation. Therefore, the user should be
careful to set up the discretization to maintain the best possi-
ble load balancing.

In terms of communication, each sub-domain in the grid can
communicate with all other sub-domains. These commu-
nication pathways are set up and initialized during the pre-
processing step and persist throughout the simulation.

Note that this implementation relies heavily on inheritance
and the class-based structure of Chrono. For example,
ChSystem is extended to ChSystemMPI by including the
code to perform communication and synchronize the sub-
domains.

www.mech-sci.net Mech. Sci.

Figure 6. Example of 3-D space divided into bins.

rank to each sub-domain so thatA is mapped to MPI rank
0, B→ 1, C→ 2, andD→ 3. Each sub-domain maintains
at all timesm+1 lists of objects. The first list contains all
objects which are even partially contained in the associated
sub-domain. These are the objects which must be considered

Mech. Sci., 4, 49–64, 2013 www.mech-sci.net/4/49/2013/

H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics 55

6 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

2.3.2 Simulation and Communication

Each sub-domain is now represented by a ChSystemMPI ob-
ject and an associated MPI process. For example, assume
a simulation is discretized into a set S of m sub-domains.
In this case, let S = {A,B,C,D} and m = 4, and map an MPI
rank to each sub-domain so that A is mapped to MPI rank
0, B→ 1, C→ 2, and D→ 3. Each sub-domain maintains
at all times m + 1 lists of objects. The first list contains all
objects which are even partially contained in the associated
sub-domain. These are the objects which must be considered
when computing contact forces, for example. The next m
lists contain bodies which are shared with other sub-domains.

In our example, sub-domain B maintains the lists BO, BA, BB,
BC , and BD. BO is the list of all objects that intersect (touch)
sub-domain B, while BA is the list of objects which are in
sub-domain A and B. Note that sub-domain A has a list AB

which should contain the same objects as BA. Further, list
BB is not used but is created for the sake of generality. All
lists are maintained in order sorted by object ID number (see
Fig.7).

Figure 7: (TOP) Sample 2D simulation domain with four sub-
domains and seven objects. (BOTTOM) Corresponding object lists
for each sub-domain.

The sub-domains are now ready for time-stepping. Each sub-
domain X performs collision detection among all objects in
list XO and computes the associated collision forces based on
the DEM force model. Then, sub-domain X computes the

net force on each object in list XO, taking into account the
contact forces, gravitational forces, and applied forces.

Next, mid-step communication occurs. Sub-domain X
should send to each sub-domain Y the net force on each body
in list XY . Similarly, X should receive from each Y the net
force on each body in list XY . Finally, X should compute the
total force on each body in list XO. Note that X may receive
force contributions for a given body from any or all of the
other sub-domains in the system.

At this point, each sub-domain X has the true net force on
each body in its list XO. Each sub-domain can advance the
state of its bodies in time by one time step by computing the
new accelerations, velocities, and positions of all objects in
the sub-domain given their mass/inertia properties and the set
of applied forces. We perform an end-of-step communication
to synchronize object states among sub-domains. All sub-
domains which share a given body should compute its new
state identically, but due to the potential for round-off error
we synchronize the state from the master sub-domain (where
the center-of-mass is located) to all others. The final stage
is to process the m + 1 lists in each sub-domain, as objects
may enter or leave a given sub-domain or be shared between
a different set of sub-domains, necessitating updates of the
contents of the lists.

2.3.3 Example Simulation

In this example we simulate a Mars Rover type wheeled ve-
hicle operating on granular terrain. The vehicle is composed
of a chassis and six wheels connected via revolute joints.
The wheels are driven with a constant angular velocity of
π rad/sec. The granular terrain is composed of 2,016,000
spherical particles. The simulation is divided into 64 sub-
domains and uses a time step of 10−5 sec. This small time
step is necessary due to the use of the DEM approach to com-
pute contact forces - a stiff force model is used to achieve
small normal interpenetration, requiring a small step size to
maintain stability. A snapshot from the simulation can be
seen in Fig.8. In the figure, note that the wheels of the rover
are checkered blue and white. This signifies that the master
copy of the rover assembly is in the blue sub-domain and the
rover spans into adjacent sub-domains. In Fig. 8, the rover
has settled into the granular terrain and is starting to move
forward. The rear wheels displace more granular material
than the front wheels because the center of mass of the rover
is closer to the rear of the vehicle.

2.4 Validation and Demonstration of Technology

This section describes a validation effort in which experi-
mental results were compared to simulation results obtained
from Chrono::Engine. To this end, a test rig was designed

Mech. Sci. www.mech-sci.net

Figure 7. (Top) Sample 2-D simulation domain with four sub-
domains and seven objects. (Bottom) Corresponding object lists for
each sub-domain.

when computing contact forces, for example. The nextm lists
contain bodies which are shared with other sub-domains.

In our example, sub-domainB maintains the listsBO, BA,
BB, BC, and BD. BO is the list of all objects that intersect
(touch) sub-domainB, while BA is the list of objects which
are in sub-domainA andB. Note that sub-domainA has a list
AB which should contain the same objects asBA. Further, list
BB is not used but is created for the sake of generality. All
lists are maintained in order sorted by object ID number (see
Fig. 7).

The sub-domains are now ready for time-stepping. Each
sub-domainX performs collision detection among all objects
in list XO and computes the associated collision forces based
on the DEM force model. Then, sub-domainX computes the
net force on each object in listXO, taking into account the
contact forces, gravitational forces, and applied forces.

Next, mid-step communication occurs. Sub-domainX
should send to each sub-domainY the net force on each body
in list XY. Similarly, X should receive from eachY the net
force on each body in listXY. Finally, X should compute the
total force on each body in listXO. Note thatX may receive
force contributions for a given body from any or all of the
other sub-domains in the system.

At this point, each sub-domainX has the true net force
on each body in its listXO. Each sub-domain can advance
the state of its bodies in time by one time step by computing
the new accelerations, velocities, and positions of all objects
in the sub-domain given their mass/inertia properties and the
set of applied forces. We perform an end-of-step communi-
cation to synchronize object states among sub-domains. All
sub-domains which share a given body should compute its
new state identically, but due to the potential for round-off
error we synchronize the state from the master sub-domain
(where the center-of-mass is located) to all others. The fi-
nal stage is to process them+1 lists in each sub-domain, as
objects may enter or leave a given sub-domain or be shared
between a different set of sub-domains, necessitating updates
of the contents of the lists.

2.3.3 Example simulation

In this example we simulate a Mars Rover type wheeled
vehicle operating on granular terrain. The vehicle is com-
posed of a chassis and six wheels connected via revolute
joints. The wheels are driven with a constant angular velocity
of π rad s−1. The granular terrain is composed of 2 016 000
spherical particles. The simulation is divided into 64 sub-
domains and uses a time step of 10−5 s. This small time step
is necessary due to the use of the DEM approach to compute
contact forces – a stiff force model is used to achieve small
normal interpenetration, requiring a small step size to main-
tain stability. A snapshot from the simulation can be seen in
Fig. 8. In the figure, note that the wheels of the rover are
checkered blue and white. This signifies that the master copy
of the rover assembly is in the blue sub-domain and the rover
spans into adjacent sub-domains. In Fig.8, the rover has set-
tled into the granular terrain and is starting to move forward.
The rear wheels displace more granular material than the
front wheels because the center of mass of the rover is closer
to the rear of the vehicle.

2.4 Validation and demonstration of technology

This section describes a validation effort in which experi-
mental results were compared to simulation results obtained
from Chrono::Engine. To this end, a test rig was designed
and fabricated to measure the rate at which granular material
flowed out of a slit due to gravity.Chrono::Engine was used
to set up a corresponding simulation to match the experimen-
tal results. For more detail, seeMelanz et al.(2010).

2.4.1 Experimental model

The experimental set-up consisted of a fixed base, a mov-
able wall (angled at 45◦), a translational stage, a linear ac-
tuator, and a scale (see schematic in Fig.9). The linear ac-
tuator was capable of quickly opening a precise gap, out of
which the granular material would flow due to gravity. The

www.mech-sci.net/4/49/2013/ Mech. Sci., 4, 49–64, 2013

56 H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics

Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics 7

Figure 8: Snapshot of Mars Rover simulation with 2,016,000 ter-
rain particles using 64 sub-domains. Bodies are colored by sub-
domain, with shared bodies (those which span sub-domain bound-
aries) colored white.

and fabricated to measure the rate at which granular material
flowed out of a slit due to gravity. Chrono::Engine was used
to set up a corresponding simulation to match the experimen-
tal results. For more detail, see (Melanz et al., 2010).

2.4.1 Experimental Model

The experimental set-up consisted of a fixed base, a movable
wall (angled at 45◦), a translational stage, a linear actuator,
and a scale (see schematic in Fig. 9). The linear actuator
was capable of quickly opening a precise gap, out of which
the granular material would flow due to gravity. The scale
recorded the mass of collected granular material as a function
of time. The granular material consisted of approximately
40,000 uniform glass disruptor beads with diameter of 500
microns. Experiments were performed for gap sizes of 1.5
mm, 2 mm, 2.5 mm, and 3 mm. At least 5 experiments were
performed for each gap size.

2.4.2 Simulation Model

Chrono::Engine was used to build a model representing the
experimental set up described above. In the model, the
trough was represented by four rectangular boxes of finite
dimensions. The motion of the box representing the angled
side was captured from the data sheet of the translational
stage. The granular material was modeled as perfect, identi-
cal spheres with the same mass and coefficient of friction.

The load cell measured the outflow through the gap. In the
simulation, the scale was modeled by counting the number
of spheres below a certain height. The number of spheres

Figure 9: Schematic of validation experiment. A linear actuator
and translational stage moved the left angled side a fixed amount,
opening a precise gap from which the particles flowed. The mass
flow rate was measured by the scale. Schematic not to scale.

multiplied by the mass and gravity yielded the weight which
was compared with experimental results. A plane was used
to contain the spheres after they had been counted.

In order to save computational time, the simulation was split
into two parts: one representing the process of filling the
trough and the other the opening and measuring process.
In this way, the trough was filled with randomly positioned
spheres which were allowed to settle. Once the kinetic en-
ergy of the system was below 0.001 Joules and had reached
a relatively constant value, the x-, y- , and z-position of each
sphere was saved to a file.

The same initial conditions from the settling simulation were
used to perform all of the necessary simulations. At the be-
ginning of each simulation the position data set of the spheres
was loaded into the model and the spheres were created at the
same positions they appeared in the filling process. The mo-
tion was applied to the translating side to achieve the desired
gap size, and the material began to flow.

The simulations setup consisted of 39,000 rigid body spheres
with a radius of 2.5×10−4 m and a mass of 1.631×10−7 kg.
The following parameters were set for this simulation. A
time step of 10−4 [s] with 500 CCP iterations, and a tolerance
of 10−7 for the maximum velocity correction. Simulations
were generally run for 8 seconds. SI units were used for all
parameters.

2.4.3 Procedure Used to Select the Friction Coefficient

The friction coefficient of a certain material is not a constant
value. It can depend on various environmental influences
such as humidity, surface quality, temperature etc. The fric-

www.mech-sci.net Mech. Sci.

Figure 8. Snapshot of Mars Rover simulation with 2 016 000 terrain
particles using 64 sub-domains. Bodies are colored by sub-domain,
with shared bodies (those which span sub-domain boundaries) col-
ored white.Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics 7

Figure 8: Snapshot of Mars Rover simulation with 2,016,000 ter-
rain particles using 64 sub-domains. Bodies are colored by sub-
domain, with shared bodies (those which span sub-domain bound-
aries) colored white.

and fabricated to measure the rate at which granular material
flowed out of a slit due to gravity. Chrono::Engine was used
to set up a corresponding simulation to match the experimen-
tal results. For more detail, see (Melanz et al., 2010).

2.4.1 Experimental Model

The experimental set-up consisted of a fixed base, a movable
wall (angled at 45◦), a translational stage, a linear actuator,
and a scale (see schematic in Fig. 9). The linear actuator
was capable of quickly opening a precise gap, out of which
the granular material would flow due to gravity. The scale
recorded the mass of collected granular material as a function
of time. The granular material consisted of approximately
40,000 uniform glass disruptor beads with diameter of 500
microns. Experiments were performed for gap sizes of 1.5
mm, 2 mm, 2.5 mm, and 3 mm. At least 5 experiments were
performed for each gap size.

2.4.2 Simulation Model

Chrono::Engine was used to build a model representing the
experimental set up described above. In the model, the
trough was represented by four rectangular boxes of finite
dimensions. The motion of the box representing the angled
side was captured from the data sheet of the translational
stage. The granular material was modeled as perfect, identi-
cal spheres with the same mass and coefficient of friction.

The load cell measured the outflow through the gap. In the
simulation, the scale was modeled by counting the number
of spheres below a certain height. The number of spheres

Figure 9: Schematic of validation experiment. A linear actuator
and translational stage moved the left angled side a fixed amount,
opening a precise gap from which the particles flowed. The mass
flow rate was measured by the scale. Schematic not to scale.

multiplied by the mass and gravity yielded the weight which
was compared with experimental results. A plane was used
to contain the spheres after they had been counted.

In order to save computational time, the simulation was split
into two parts: one representing the process of filling the
trough and the other the opening and measuring process.
In this way, the trough was filled with randomly positioned
spheres which were allowed to settle. Once the kinetic en-
ergy of the system was below 0.001 Joules and had reached
a relatively constant value, the x-, y- , and z-position of each
sphere was saved to a file.

The same initial conditions from the settling simulation were
used to perform all of the necessary simulations. At the be-
ginning of each simulation the position data set of the spheres
was loaded into the model and the spheres were created at the
same positions they appeared in the filling process. The mo-
tion was applied to the translating side to achieve the desired
gap size, and the material began to flow.

The simulations setup consisted of 39,000 rigid body spheres
with a radius of 2.5×10−4 m and a mass of 1.631×10−7 kg.
The following parameters were set for this simulation. A
time step of 10−4 [s] with 500 CCP iterations, and a tolerance
of 10−7 for the maximum velocity correction. Simulations
were generally run for 8 seconds. SI units were used for all
parameters.

2.4.3 Procedure Used to Select the Friction Coefficient

The friction coefficient of a certain material is not a constant
value. It can depend on various environmental influences
such as humidity, surface quality, temperature etc. The fric-

www.mech-sci.net Mech. Sci.

Figure 9. Schematic of validation experiment. A linear actuator and
translational stage moved the left angled side a fixed amount, open-
ing a precise gap from which the particles flowed. The mass flow
rate was measured by the scale. Schematic not to scale.

scale recorded the mass of collected granular material as a
function of time. The granular material consisted of approx-
imately 40 000 uniform glass disruptor beads with diameter
of 500 microns. Experiments were performed for gap sizes
of 1.5 mm, 2 mm, 2.5 mm, and 3 mm. At least 5 experiments
were performed for each gap size.

2.4.2 Simulation model

Chrono::Engine was used to build a model representing the
experimental set up described above. In the model, the trough
was represented by four rectangular boxes of finite dimen-
sions. The motion of the box representing the angled side was
captured from the data sheet of the translational stage. The
granular material was modeled as perfect, identical spheres
with the same mass and coefficient of friction.

The load cell measured the outflow through the gap. In the
simulation, the scale was modeled by counting the number
of spheres below a certain height. The number of spheres
multiplied by the mass and gravity yielded the weight which
was compared with experimental results. A plane was used
to contain the spheres after they had been counted.

In order to save computational time, the simulation was
split into two parts: one representing the process of filling
the trough and the other the opening and measuring process.
In this way, the trough was filled with randomly positioned
spheres which were allowed to settle. Once the kinetic en-
ergy of the system was below 0.001 Joules and had reached
a relatively constant value, the x-, y- , and z-position of each
sphere was saved to a file.

The same initial conditions from the settling simulation
were used to perform all of the necessary simulations. At
the beginning of each simulation the position data set of the
spheres was loaded into the model and the spheres were cre-
ated at the same positions they appeared in the filling process.
The motion was applied to the translating side to achieve the
desired gap size, and the material began to flow.

The simulations setup consisted of 39 000 rigid body
spheres with a radius of 2.5×10−4 m and a mass of 1.631×
10−7 kg. The following parameters were set for this simula-
tion. A time step of 10−4 s with 500 CCP iterations, and a
tolerance of 10−7 for the maximum velocity correction. Sim-
ulations were generally run for 8 s. SI units were used for all
parameters.

2.4.3 Procedure used to select the friction coefficient

The friction coefficient of a certain material is not a con-
stant value. It can depend on various environmental influ-
ences such as humidity, surface quality, temperature etc. The
friction coefficient of glass was an unknown in the validation
process and needed to be determined before further obser-
vations could be done. To achieve this, one experiment at a
gap size of 1.5 mm was performed and multiple simulations
with the same setup and different friction coefficients were
performed. The simulation results were compared to the ex-
perimental test results to determine which friction coefficient
resulted in the best match, see Fig.10. It was determined that
µ = 0.15 most closely matched the experimental results. This
value was used for all subsequent simulations.

Mech. Sci., 4, 49–64, 2013 www.mech-sci.net/4/49/2013/

H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics 578 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

Figure 10: Selection of µ

Figure 11: Weight vs time for a gap size of 3 mm.

tion coefficient of glass was an unknown in the validation
process and needed to be determined before further obser-
vations could be done. To achieve this, one experiment at a
gap size of 1.5 mm was performed and multiple simulations
with the same setup and different friction coefficients were
performed. The simulation results were compared to the ex-
perimental test results to determine which friction coefficient
resulted in the best match, see Fig. 10. It was determined that
µ= 0.15 most closely matched the experimental results. This
value was used for all subsequent simulations.

2.4.4 Results

The weight of the collected granular material is plotted ver-
sus time for various gap sizes in Fig. 11 through Fig. 14 using
the friction coefficient determined in Fig. 10. For each ex-
periment, the result from the simulation in Chrono::Engine,
shown by the solid line, is overlaid on top of the standard de-
viation of the experimental runs, shown by the dashed line.
Note that the simulated result lies within a single standard
deviation of the experimental data.

Figure 12: Weight vs time for a gap size of 2.5 mm.

Figure 13: Weight vs time for a gap size of 2 mm.

3 Chrono::Flex

The Chrono::Flex software is a general-purpose simulator
for three dimensional flexible multi-body problems and pro-
vides a suite of flexible body support. The features included
in this module are multiple element types, the ability to con-
nect these elements with a variety of bilateral constraints,
multiple solvers, and contact with friction. Additionally,
Chrono::Flex leverages the GPU to accelerate solution of
large problems.

3.1 Element Types

Chrono::Flex includes two element types implemented us-
ing the Absolute Nodal Coordinate Formulation (ANCF)
Berzeri et al. (2001); von Dombrowski (2002). The gradient-
deficient beam element and the gradient-deficient plate ele-
ment are described below.

3.1.1 Gradient-Deficient Beam Elements

This implementation uses gradient deficient ANCF beam ele-
ments to model slender beams, examples of which are shown
in Figure 15. These are two node elements with one position
vector and only one gradient vector used as nodal coordi-
nates. Each node thus has 6 coordinates: three components

Mech. Sci. www.mech-sci.net

Figure 10. Selection ofµ.

8 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

Figure 10: Selection of µ

Figure 11: Weight vs time for a gap size of 3 mm.

tion coefficient of glass was an unknown in the validation
process and needed to be determined before further obser-
vations could be done. To achieve this, one experiment at a
gap size of 1.5 mm was performed and multiple simulations
with the same setup and different friction coefficients were
performed. The simulation results were compared to the ex-
perimental test results to determine which friction coefficient
resulted in the best match, see Fig. 10. It was determined that
µ= 0.15 most closely matched the experimental results. This
value was used for all subsequent simulations.

2.4.4 Results

The weight of the collected granular material is plotted ver-
sus time for various gap sizes in Fig. 11 through Fig. 14 using
the friction coefficient determined in Fig. 10. For each ex-
periment, the result from the simulation in Chrono::Engine,
shown by the solid line, is overlaid on top of the standard de-
viation of the experimental runs, shown by the dashed line.
Note that the simulated result lies within a single standard
deviation of the experimental data.

Figure 12: Weight vs time for a gap size of 2.5 mm.

Figure 13: Weight vs time for a gap size of 2 mm.

3 Chrono::Flex

The Chrono::Flex software is a general-purpose simulator
for three dimensional flexible multi-body problems and pro-
vides a suite of flexible body support. The features included
in this module are multiple element types, the ability to con-
nect these elements with a variety of bilateral constraints,
multiple solvers, and contact with friction. Additionally,
Chrono::Flex leverages the GPU to accelerate solution of
large problems.

3.1 Element Types

Chrono::Flex includes two element types implemented us-
ing the Absolute Nodal Coordinate Formulation (ANCF)
Berzeri et al. (2001); von Dombrowski (2002). The gradient-
deficient beam element and the gradient-deficient plate ele-
ment are described below.

3.1.1 Gradient-Deficient Beam Elements

This implementation uses gradient deficient ANCF beam ele-
ments to model slender beams, examples of which are shown
in Figure 15. These are two node elements with one position
vector and only one gradient vector used as nodal coordi-
nates. Each node thus has 6 coordinates: three components

Mech. Sci. www.mech-sci.net

Figure 11. Weight vs. time for a gap size of 3 mm.

2.4.4 Results

The weight of the collected granular material is plotted ver-
sus time for various gap sizes in Fig.11through Fig.14using
the friction coefficient determined in Fig.10. For each ex-
periment, the result from the simulation inChrono::Engine,
shown by the solid line, is overlaid on top of the standard de-
viation of the experimental runs, shown by the dashed line.
Note that the simulated result lies within a single standard
deviation of the experimental data.

3 Chrono::Flex

The Chrono::Flex software is a general-purpose simula-
tor for three dimensional flexible multi-body problems and
provides a suite of flexible body support. The features in-
cluded in this module are multiple element types, the abil-
ity to connect these elements with a variety of bilateral con-
straints, multiple solvers, and contact with friction. Addition-

8 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

Figure 10: Selection of µ

Figure 11: Weight vs time for a gap size of 3 mm.

tion coefficient of glass was an unknown in the validation
process and needed to be determined before further obser-
vations could be done. To achieve this, one experiment at a
gap size of 1.5 mm was performed and multiple simulations
with the same setup and different friction coefficients were
performed. The simulation results were compared to the ex-
perimental test results to determine which friction coefficient
resulted in the best match, see Fig. 10. It was determined that
µ= 0.15 most closely matched the experimental results. This
value was used for all subsequent simulations.

2.4.4 Results

The weight of the collected granular material is plotted ver-
sus time for various gap sizes in Fig. 11 through Fig. 14 using
the friction coefficient determined in Fig. 10. For each ex-
periment, the result from the simulation in Chrono::Engine,
shown by the solid line, is overlaid on top of the standard de-
viation of the experimental runs, shown by the dashed line.
Note that the simulated result lies within a single standard
deviation of the experimental data.

Figure 12: Weight vs time for a gap size of 2.5 mm.

Figure 13: Weight vs time for a gap size of 2 mm.

3 Chrono::Flex

The Chrono::Flex software is a general-purpose simulator
for three dimensional flexible multi-body problems and pro-
vides a suite of flexible body support. The features included
in this module are multiple element types, the ability to con-
nect these elements with a variety of bilateral constraints,
multiple solvers, and contact with friction. Additionally,
Chrono::Flex leverages the GPU to accelerate solution of
large problems.

3.1 Element Types

Chrono::Flex includes two element types implemented us-
ing the Absolute Nodal Coordinate Formulation (ANCF)
Berzeri et al. (2001); von Dombrowski (2002). The gradient-
deficient beam element and the gradient-deficient plate ele-
ment are described below.

3.1.1 Gradient-Deficient Beam Elements

This implementation uses gradient deficient ANCF beam ele-
ments to model slender beams, examples of which are shown
in Figure 15. These are two node elements with one position
vector and only one gradient vector used as nodal coordi-
nates. Each node thus has 6 coordinates: three components

Mech. Sci. www.mech-sci.net

Figure 12. Weight vs. time for a gap size of 2.5 mm.

8 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

Figure 10: Selection of µ

Figure 11: Weight vs time for a gap size of 3 mm.

tion coefficient of glass was an unknown in the validation
process and needed to be determined before further obser-
vations could be done. To achieve this, one experiment at a
gap size of 1.5 mm was performed and multiple simulations
with the same setup and different friction coefficients were
performed. The simulation results were compared to the ex-
perimental test results to determine which friction coefficient
resulted in the best match, see Fig. 10. It was determined that
µ= 0.15 most closely matched the experimental results. This
value was used for all subsequent simulations.

2.4.4 Results

The weight of the collected granular material is plotted ver-
sus time for various gap sizes in Fig. 11 through Fig. 14 using
the friction coefficient determined in Fig. 10. For each ex-
periment, the result from the simulation in Chrono::Engine,
shown by the solid line, is overlaid on top of the standard de-
viation of the experimental runs, shown by the dashed line.
Note that the simulated result lies within a single standard
deviation of the experimental data.

Figure 12: Weight vs time for a gap size of 2.5 mm.

Figure 13: Weight vs time for a gap size of 2 mm.

3 Chrono::Flex

The Chrono::Flex software is a general-purpose simulator
for three dimensional flexible multi-body problems and pro-
vides a suite of flexible body support. The features included
in this module are multiple element types, the ability to con-
nect these elements with a variety of bilateral constraints,
multiple solvers, and contact with friction. Additionally,
Chrono::Flex leverages the GPU to accelerate solution of
large problems.

3.1 Element Types

Chrono::Flex includes two element types implemented us-
ing the Absolute Nodal Coordinate Formulation (ANCF)
Berzeri et al. (2001); von Dombrowski (2002). The gradient-
deficient beam element and the gradient-deficient plate ele-
ment are described below.

3.1.1 Gradient-Deficient Beam Elements

This implementation uses gradient deficient ANCF beam ele-
ments to model slender beams, examples of which are shown
in Figure 15. These are two node elements with one position
vector and only one gradient vector used as nodal coordi-
nates. Each node thus has 6 coordinates: three components

Mech. Sci. www.mech-sci.net

Figure 13. Weight vs. time for a gap size of 2 mm.

ally, Chrono::Flex leverages the GPU to accelerate solution
of large problems.

3.1 Element types

Chrono::Flex includes two element types implemented us-
ing the Absolute Nodal Coordinate Formulation (ANCF)
(Berzeri et al., 2001; von Dombrowski, 2002). The gradient-
deficient beam element and the gradient-deficient plate ele-
ment are described below.

3.1.1 Gradient-deficient beam elements

This implementation uses gradient deficient ANCF beam ele-
ments to model slender beams, examples of which are shown
in Fig. 15. These are two node elements with one position
vector and only one gradient vector used as nodal coordi-
nates. Each node thus has 6 coordinates: three components
of the global position vector of the node and three compo-
nents of the position vector gradient at the node. This formu-
lation displays no shear locking problems for thin and stiff

beams and is computationally more efficient compared to the
original ANCF due to the reduced number of nodal coordi-
nates (Gerstmayr and Shabana, 2006). The gradient deficient

www.mech-sci.net/4/49/2013/ Mech. Sci., 4, 49–64, 2013

58 H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics

Figure 14. Weight vs. time for a gap size of 1.5 mm. This was the
test case that was used for calibration.

Figure 15. Two models with friction and contact using
Chrono::Flex beam elements: a ball sitting on grass-like beams and
a ball hitting a net.

ANCF beam element does not describe a rotation of the beam
about its own axis so the torsional effects cannot be modeled.

3.1.2 Gradient-deficient plate elements

Much like beams, numerical difficulties are encountered in
the fully parameterized plate element when the system has
very thin and stiff components (Dufva and Shabana, 2005).
The high frequencies that are induced along the thin direction
of the element require an extremely small time step, resulting
in longer simulation times. In the case where the aspect ratio
(length divided by thickness) of the element is high, plane
stress assumptions can be made that allow a reduced-order
element to be accurate. Specifically, Kirchhoff’s plate theory,
which does not account for shear deformation, is used and
results in an element with 36 degrees of freedom, or nodal
coordinates, are shown in Fig.16.

3.2 Kinematic constraints

Several types of mechanical joints are modeled in
Chrono::Flex. A spherical joint (Shabana, 2005) between
two nodes of any two bodies will require the position vec-
tor of each node to be identical. A revolute joint will have
two additional constraints to the spherical joint constraints.
In this case, the gradient vectors of the two nodes will remain

Figure 16. Two models with friction and contact using
Chrono::Flex plate elements: a cloth hanging on a sphere and a
closed contour shaped like a tire.

Figure 17. The equations of motion forChrono::Flex.

in a plane perpendicular to the axis of revolute joint. There
are also additional constraints due to the element connectiv-
ity in each beam. The element connectivity can be modeled
as a fixed joint between the nodes. Here the common node
between two elements is treated as two different nodes at-
tached to each other through the fixed joint. This fixed joint
requires all the nodal coordinates of the two nodes be identi-
cal. The generalized coordinates of the system change in time
under the effect of applied forces such that these constraint
equations are satisfied at all times. The time evolution of the
system is governed by the Lagrange multiplier form of the
constrained equations of motion.

3.3 Solvers

The equations shown in Fig.17form a system of index-3 Dif-
ferential Algebraic Equations (DAEs). Although several low
order numerical integration schemes have been effectively
used to solve index-3 DAEs,Chrono::Flex utilizes the New-
mark integration scheme (Hussein et al., 2008). Originally
used in the structural dynamics community for the numeri-
cal integration of a linear set of second order ODEs, it was
adapted for the discretization of DAEs. This implicit solver
was proved to have convergence of order 1 or 2, depending
on the choice of parametersγ andβ.

At each time step, the numerical solution commences by
solving the nonlinear set of equations shown in Fig.18. The
numerical solution of the nonlinear algebraic system falls
back on a Newton-type iterative algorithm that requires the
computation of its sensitivity matrix. Advancing the numer-
ical solution in time draws on three loops: the outer-most
loop marches forward in time, while at each time step the
second loop solves the algebraic discretization problem in
Fig. 18. Each iteration in this second loop launches a third

Mech. Sci., 4, 49–64, 2013 www.mech-sci.net/4/49/2013/

H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics 59

10 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

At each time step, the numerical solution commences by
solving the nonlinear set of equations shown in Figure 18.
The numerical solution of the nonlinear algebraic system
falls back on a Newton-type iterative algorithm that requires
the computation of its sensitivity matrix. Advancing the nu-
merical solution in time draws on three loops: the outer-most
loop marches forward in time, while at each time step the
second loop solves the algebraic discretization problem in
Figure 18. Each iteration in this second loop launches a
third loop whose role is that of producing a vector of cor-
rections for the acceleration and Lagrange multipliers. The
corrections are computed using the BiCGStab iterative solver
(Yang and Brent, 2002), which also provides for a matrix-
free solution. A serial solver was implemented using the
Armadillo Matrix Algebra Library (Sanderson, 2010) and
a GPU parallel solver was implemented using CUSP (Bell
and Garland, 2012), a linear algebra library built on top of
CUDA. Chrono::Flex was validated in Khude et al. (2011)
as well as in (Melanz, 2012) against the commercial code
ADAMS (MSC.Software, 2012), and the nonlinear finite el-
ement analysis code ABAQUS (ABAQUS, 2004).

Figure 18: The discretized equations of motion for Chrono::Flex
(fully implicit).

4 Chrono::Fluid

The Chrono::Fluid component aims at leveraging GPU
computing to efficiently simulate fluid dynamics and
fluid-solid interaction problems. Fluid-Solid Interaction
(FSI) covers a wide range of applications, from blood and
polymer flow to tanker trucks and ships. Simulation of the
FSI problem requires two components: Fluid and Solid
simulations. Simulation of the Solid phase, either rigid
or flexible, in an HPC fashion, is described in previous
sections. To leverage the existing solid phase simulation,
the fluid flow simulation should satisfy some conditions,
introduced by the aforementioned target problems. First, the
fluid flow may experience large domain deformation due
to the motion of the solid phase. Second, the two phases
should be coupled via an accurate algorithm. Third, target
problems may experience free surface as well as internal
flow. Finally, the whole simulation should be capable of an
HPC implementation to maintain the scalability of the code.

Fluid flow can be simulated in either an Eulerian or a
Lagrangian framework. Provided that the interfacial forces
are captured thoroughly, the Lagrangian framework is ca-
pable of tracking the domain deformation introduced by the
motion of the solid phase at almost no extra cost. Smoothed
Particle Hydrodynamics (SPH) (Lucy, 1977; Gingold and
Monaghan, 1977; Monaghan, 2005), its modifications (Mon-
aghan, 1989; Dilts, 1999), and variations (Koshizuka et al.,
1998) have been widely used for the simulation of the fluid
domain in a Lagrangian framework. The main evolution
equations of the fluid flow using SPH are expressed as

dρa

dt
= ρa

∑
b

mb

ρb
(va−vb).∇aWab (1)

dva

dt
=−
∑

b

mb

(pb

ρa
2 +

pa

ρb
2)∇aWab−

(µa +µb)rab.∇aWab

ρ̄2
ab(r2

ab +εh̄2
ab)

vab

+ fa

(2)

which are solved in conjunction with

dx/dt = v (3)

to update the fluid properties. In Eqs. (1) to (3), ρ, v, and p
are local fluid density, velocity, and pressure, respectively, m
is the representative fluid mass assigned to the SPH marker,
W is a kernel function which smooths out the local fluid
properties within a resolution length l = κh, and rab is the
distance between two fluid markers denoted by a and b.
Fluid flow evolution equations, defined by Eqs. (1) to (3),
are solved explicitly, where pressure is related to density via
an appropriate state equation to maintain the compressibility
below 1%. To increase the accuracy and stability of the
simulation, an XSPH modification (Monaghan, 1989) and
Shephard filtering (Dalrymple and Rogers, 2006) were
applied.

4.1 FSI with Smoothed Particle Hydrodynamics: A Quick
Overview

A proper choice of fluid-solid coupling should satisfy the
no-slip and impenetrability conditions on the surface of the
solid obstacles. By attaching Boundary Condition Enforc-
ing (BCE) markers on the surface of the solid objects, the
local relative velocity, i.e. at the markers location, of the two
phases will be zero (Fig. 19). The position and velocity of the
BCE markers are updated according the motion of the solid
phase, which results in the propagation of the solid motion
to the fluid domain. On the other hand, the interaction forces
on the BCE markers are used to calculate the total force and
torque exerted by the fluid on the solid object.

Mech. Sci. www.mech-sci.net

Figure 18. The discretized equations of motion forChrono::Flex
(fully implicit).

loop whose role is that of producing a vector of correc-
tions for the acceleration and Lagrange multipliers. The cor-
rections are computed using the BiCGStab iterative solver
(Yang and Brent, 2002), which also provides for a matrix-
free solution. A serial solver was implemented using the
Armadillo Matrix Algebra Library (Sanderson, 2010) and
a GPU parallel solver was implemented using CUSP (Bell
and Garland, 2012), a linear algebra library built on top of
CUDA. Chrono::Flex was validated inKhude et al.(2011)
as well as inMelanz (2012) against the commercial code
ADAMS (MSC.Software, 2012), and the nonlinear finite el-
ement analysis code ABAQUS (ABAQUS, 2004).

4 Chrono::Fluid

TheChrono::Fluid component aims at leveraging GPU com-
puting to efficiently simulate fluid dynamics and fluid-solid
interaction problems. Fluid-Solid Interaction (FSI) covers a
wide range of applications, from blood and polymer flow to
tanker trucks and ships. Simulation of the FSI problem re-
quires two components: Fluid and Solid simulations. Simu-
lation of the Solid phase, either rigid or flexible, in an HPC
fashion, is described in previous sections. To leverage the ex-
isting solid phase simulation, the fluid flow simulation should
satisfy some conditions, introduced by the aforementioned
target problems. First, the fluid flow may experience large
domain deformation due to the motion of the solid phase.
Second, the two phases should be coupled via an accurate al-
gorithm. Third, target problems may experience free surface
as well as internal flow. Finally, the whole simulation should
be capable of an HPC implementation to maintain the scala-
bility of the code.

Fluid flow can be simulated in either an Eulerian or a La-
grangian framework. Provided that the interfacial forces are
captured thoroughly, the Lagrangian framework is capable of
tracking the domain deformation introduced by the motion
of the solid phase at almost no extra cost. Smoothed Particle
Hydrodynamics (SPH) (Lucy, 1977; Gingold and Monaghan,
1977; Monaghan, 2005), its modifications (Monaghan, 1989;
Dilts, 1999), and variations (Koshizuka et al., 1998) have
been widely used for the simulation of the fluid domain in
a Lagrangian framework. The main evolution equations of

the fluid flow using SPH are expressed as

dρa

dt
= ρa

∑
b

mb

ρb
(va− vb) .∇aWab (1)

dva

dt
=

−
∑

b

mb

(pb

ρa
2
+

pa

ρb
2
)∇aWab−

(µa+µb)rab.∇aWab

ρ̄ab
2(r2

ab+εh̄
2
ab)

vab

+ fa (2)

which are solved in conjunction with

dx/dt = v (3)

to update the fluid properties. In Eqs. (1) to (3), ρ, v, andp are
local fluid density, velocity, and pressure, respectively,m is
the representative fluid mass assigned to the SPH marker,W
is a kernel function which smooths out the local fluid proper-
ties within a resolution lengthl = κh, andrab is the distance
between two fluid markers denoted bya andb. Fluid flow
evolution equations, defined by Eqs. (1) to (3), are solved
explicitly, where pressure is related to density via an appro-
priate state equation to maintain the compressibility below
1 %. To increase the accuracy and stability of the simulation,
an XSPH modification (Monaghan, 1989) and Shephard fil-
tering (Dalrymple and Rogers, 2006) were applied.

4.1 FSI with Smoothed Particle Hydrodynamics:
a quick overview

A proper choice of fluid-solid coupling should satisfy the
no-slip and impenetrability conditions on the surface of the
solid obstacles. By attaching Boundary Condition Enforcing
(BCE) markers on the surface of the solid objects, the lo-
cal relative velocity, i.e., at the markers location, of the two
phases will be zero (see Fig.19). The position and veloc-
ity of the BCE markers are updated according the motion of
the solid phase, which results in the propagation of the solid
motion to the fluid domain. On the other hand, the interac-
tion forces on the BCE markers are used to calculate the total
force and torque exerted by the fluid on the solid object.

4.1.1 FSI with Smoothed Particle Hydrodynamics:
proximity computation

The overall simulation of the FSI framework is performed in
parallel, where each thread handles the force calculation of
a fluid or BCE marker first, and a rigid body later. Next, the
parallel threads perform the kinematics update of the fluid
markers, rigid bodies, and BCE markers, respectively. An
essential part of the force calculation stage is the proximity
computation, which will be explained briefly herein.

Proximity computation used in our work leverages the
algorithm provided in CUDA SDK (NVIDIA Corporation,
2012), where the computation domain is divided into bins

www.mech-sci.net/4/49/2013/ Mech. Sci., 4, 49–64, 2013

60 H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics

Figure 19. Coupling of the fluid and solid phases. BCE and fluid
markers are represented by black and white circles, respectively.

Figure 20. Simulation of rigid bodies inside a fluid flow: rigid el-
lipsoids with their BCE markers are shown in the left image while
the fluid’s velocity contours and rigid ellipsoids at the mid-section
of the channel are shown in the right image.

whose sizes are the same as the resolution length of the SPH
kernel function. A hash value is assigned to each marker
based on its location with respect to the bins. Markers are
sorted based on their hash value. The sorted properties are
stored in independent arrays to improve the memory access
and cache coherency. To compute the forces on a marker, the
lists of the possible interacting markers inside its bin and all
26 neighbor bins are called. The hash values of the bins are
used to access the relevant segments of the sorted data.

4.2 Validation and demonstration of technology

The aforementioned FSI simulation engine was used to val-
idate the lateral migration of cylindrical particles in plane
Poiseuille flow, spherical particles in pipe flow, and parti-
cle distribution in Poiseuille flow of suspension (Pazouki and
Negrut, 2012,?). Due to the scalability ofChrono::Fluid in
both fluid and solid phases, increasing the number of rigid
bodies, which translates into decreasing the number of fluid

Figure 21. Chrono::Render architecture.

12 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

5.1 On the Choice of RenderMan

Using RenderMan for rendering is motivated by the scope of
arbitrary data sets and the potentially immense scene com-
plexity that results from big data; REYES, the underlying
architecture for RenderMan is ideally suited for this task.
REYES works by dividing each surface in the scene into a
grid of micropolygons and shades at the grid vertices (Cook
et al., 1987) (see Figure 22).

Figure 22: An overview of the REYES Pipeline.

This results in tractable rendering for complex scenes be-
cause: (a) only a small portion of the scene needs to be in
memory at any given time; (b) grid-based computation leads
to optimal memory access patterns; (c) non-visible objects
need not be loaded into memory; (d) fully-rendered objects
can be removed from memory; and (e) objects are tessellated
according to size on the screen; less complex geometry is
dynamically loaded whenever possible.

REYES is perfectly suited for parallel processing since it
scales linearly with the number of cores. Considering that
REYES needs only a handful of relevant scene elements at
a time, this data can be parsed into low-memory buckets
and distributed amongst cores for parallel rendering; thus
REYES’ low memory-footprint and efficient concurrent re-
source usage for the complex scenes makes it a great renderer
for a distributed-computing platform.

5.2 Accessibility of High-Quality Graphics

Although REYES can manage the issue of scene complexity,
leveraging this power is difficult without computer graph-
ics expertise. The guiding principle of Chrono::Render
is to make high-quality rendering available to researchers,
most of whom don’t have the background or bandwidth to
spend time learning how to use complex graphics applica-
tions or make sense of REYES’ intricacies. Consequently,
Chrono::Render encapsulates into the XML specification
the complicated steps needed to make interesting visual ef-
fects, such as multipass rendering. The user must only in-
stance the correct XML components to achieve high-quality

renders. The program flow of Chrono::Render is shown in
Figure 23.

Figure 23: Chrono::Render execution workflow.

The XML specification allows for the concise expression of
salient features and scene objects. For example, the snippet
in Figure 24 illustrates the XML file that translates a single
line from a comma-separated value (CSV) data file into a
RenderMan sphere using two shaders.

Figure 24: Simple XML for a sphere with a Surface and Displace-
ment shader.

Although simple, the render is visually rich. This description
is often enough to visualize most generic data, but it can-
not handle all arbitrary visualizations, so in order to maintain
generality we make use of Python scripts and wrappers to en-
able simplified procedural RenderMan Interface Bytestream
generation. Any XML element can be scripted such that at
runtime, the script output will be piped into the same ren-
dering context. This makes it possible to perform process-
ing for specialized data as well as modularize the render-
ing of specific effects. Obviously this adds more complexity
for defining the scene, but Chrono::Render provides Python
modules with methods and classes intended to ease this pro-
gramming as much as possible. Additionally, most of the
Chrono::Render Python modules wrap C++ functions and
classes with the purpose of exploiting speed while still mak-
ing use of the syntactical/type-free simplicity of Python. Fig-
ure 25 gives an example of combining XML with Python
scripts to achieve a more complicated render.

Mech. Sci. www.mech-sci.net

Figure 22. An overview of the REYES Pipeline.

particles, does not affect the simulation time. Therefore, the
simulation of a highly dense suspension is possible. Figure
20 shows the result of the simulation of the flow of suspen-
sion including 1500 particles through a channel. A similar
scenario with 13 000 particles in suspension was simulated
in Chrono::Fluid.

5 Chrono::Render

Chrono::Render is a software package that enables simple,
streamlined, and fast visualization of arbitrary data using
Pixar’s RenderMan (Pixar, 1988, 1989, 2000, 2005). Specif-
ically, Chrono::Render contains a hybrid of processing bina-
ries and Python scripting modules that seek to abstract away
the complexities of rendering with RenderMan. Additionally,
Chrono::Render is targeted for providing rendering as an au-
tomated post-processing step in a remote simulation pipeline,
hence it is controlled via a succinct XML specification for
“gluing” together rendering with arbitrary processes. As seen
in Fig. 21, Chrono::Render combines simulation data, XML
describing how to use the data, and optional user-defined
Python scripts into a complex, visually-rich scene to be ren-
dered by RenderMan.

Mech. Sci., 4, 49–64, 2013 www.mech-sci.net/4/49/2013/

H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics 61

12 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

5.1 On the Choice of RenderMan

Using RenderMan for rendering is motivated by the scope of
arbitrary data sets and the potentially immense scene com-
plexity that results from big data; REYES, the underlying
architecture for RenderMan is ideally suited for this task.
REYES works by dividing each surface in the scene into a
grid of micropolygons and shades at the grid vertices (Cook
et al., 1987) (see Figure 22).

Figure 22: An overview of the REYES Pipeline.

This results in tractable rendering for complex scenes be-
cause: (a) only a small portion of the scene needs to be in
memory at any given time; (b) grid-based computation leads
to optimal memory access patterns; (c) non-visible objects
need not be loaded into memory; (d) fully-rendered objects
can be removed from memory; and (e) objects are tessellated
according to size on the screen; less complex geometry is
dynamically loaded whenever possible.

REYES is perfectly suited for parallel processing since it
scales linearly with the number of cores. Considering that
REYES needs only a handful of relevant scene elements at
a time, this data can be parsed into low-memory buckets
and distributed amongst cores for parallel rendering; thus
REYES’ low memory-footprint and efficient concurrent re-
source usage for the complex scenes makes it a great renderer
for a distributed-computing platform.

5.2 Accessibility of High-Quality Graphics

Although REYES can manage the issue of scene complexity,
leveraging this power is difficult without computer graph-
ics expertise. The guiding principle of Chrono::Render
is to make high-quality rendering available to researchers,
most of whom don’t have the background or bandwidth to
spend time learning how to use complex graphics applica-
tions or make sense of REYES’ intricacies. Consequently,
Chrono::Render encapsulates into the XML specification
the complicated steps needed to make interesting visual ef-
fects, such as multipass rendering. The user must only in-
stance the correct XML components to achieve high-quality

renders. The program flow of Chrono::Render is shown in
Figure 23.

Figure 23: Chrono::Render execution workflow.

The XML specification allows for the concise expression of
salient features and scene objects. For example, the snippet
in Figure 24 illustrates the XML file that translates a single
line from a comma-separated value (CSV) data file into a
RenderMan sphere using two shaders.

Figure 24: Simple XML for a sphere with a Surface and Displace-
ment shader.

Although simple, the render is visually rich. This description
is often enough to visualize most generic data, but it can-
not handle all arbitrary visualizations, so in order to maintain
generality we make use of Python scripts and wrappers to en-
able simplified procedural RenderMan Interface Bytestream
generation. Any XML element can be scripted such that at
runtime, the script output will be piped into the same ren-
dering context. This makes it possible to perform process-
ing for specialized data as well as modularize the render-
ing of specific effects. Obviously this adds more complexity
for defining the scene, but Chrono::Render provides Python
modules with methods and classes intended to ease this pro-
gramming as much as possible. Additionally, most of the
Chrono::Render Python modules wrap C++ functions and
classes with the purpose of exploiting speed while still mak-
ing use of the syntactical/type-free simplicity of Python. Fig-
ure 25 gives an example of combining XML with Python
scripts to achieve a more complicated render.

Mech. Sci. www.mech-sci.net

Figure 23. Chrono::Render execution workflow.

12 Mazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics

5.1 On the Choice of RenderMan

Using RenderMan for rendering is motivated by the scope of
arbitrary data sets and the potentially immense scene com-
plexity that results from big data; REYES, the underlying
architecture for RenderMan is ideally suited for this task.
REYES works by dividing each surface in the scene into a
grid of micropolygons and shades at the grid vertices (Cook
et al., 1987) (see Figure 22).

Figure 22: An overview of the REYES Pipeline.

This results in tractable rendering for complex scenes be-
cause: (a) only a small portion of the scene needs to be in
memory at any given time; (b) grid-based computation leads
to optimal memory access patterns; (c) non-visible objects
need not be loaded into memory; (d) fully-rendered objects
can be removed from memory; and (e) objects are tessellated
according to size on the screen; less complex geometry is
dynamically loaded whenever possible.

REYES is perfectly suited for parallel processing since it
scales linearly with the number of cores. Considering that
REYES needs only a handful of relevant scene elements at
a time, this data can be parsed into low-memory buckets
and distributed amongst cores for parallel rendering; thus
REYES’ low memory-footprint and efficient concurrent re-
source usage for the complex scenes makes it a great renderer
for a distributed-computing platform.

5.2 Accessibility of High-Quality Graphics

Although REYES can manage the issue of scene complexity,
leveraging this power is difficult without computer graph-
ics expertise. The guiding principle of Chrono::Render
is to make high-quality rendering available to researchers,
most of whom don’t have the background or bandwidth to
spend time learning how to use complex graphics applica-
tions or make sense of REYES’ intricacies. Consequently,
Chrono::Render encapsulates into the XML specification
the complicated steps needed to make interesting visual ef-
fects, such as multipass rendering. The user must only in-
stance the correct XML components to achieve high-quality

renders. The program flow of Chrono::Render is shown in
Figure 23.

Figure 23: Chrono::Render execution workflow.

The XML specification allows for the concise expression of
salient features and scene objects. For example, the snippet
in Figure 24 illustrates the XML file that translates a single
line from a comma-separated value (CSV) data file into a
RenderMan sphere using two shaders.

Figure 24: Simple XML for a sphere with a Surface and Displace-
ment shader.

Although simple, the render is visually rich. This description
is often enough to visualize most generic data, but it can-
not handle all arbitrary visualizations, so in order to maintain
generality we make use of Python scripts and wrappers to en-
able simplified procedural RenderMan Interface Bytestream
generation. Any XML element can be scripted such that at
runtime, the script output will be piped into the same ren-
dering context. This makes it possible to perform process-
ing for specialized data as well as modularize the render-
ing of specific effects. Obviously this adds more complexity
for defining the scene, but Chrono::Render provides Python
modules with methods and classes intended to ease this pro-
gramming as much as possible. Additionally, most of the
Chrono::Render Python modules wrap C++ functions and
classes with the purpose of exploiting speed while still mak-
ing use of the syntactical/type-free simplicity of Python. Fig-
ure 25 gives an example of combining XML with Python
scripts to achieve a more complicated render.

Mech. Sci. www.mech-sci.net

Figure 24. Simple XML for a sphere with a Surface and Displace-
ment shader.

5.1 On the choice of RenderMan

Using RenderMan for rendering is motivated by the scope of
arbitrary data sets and the potentially immense scene com-
plexity that results from big data; REYES, the underlying
architecture for RenderMan is ideally suited for this task.
REYES works by dividing each surface in the scene into a
grid of micropolygons and shades at the grid vertices (Cook
et al., 1987) (see Fig.22).

This results in tractable rendering for complex scenes be-
cause: (a) only a small portion of the scene needs to be in
memory at any given time; (b) grid-based computation leads
to optimal memory access patterns; (c) non-visible objects
need not be loaded into memory; (d) fully-rendered objects
can be removed from memory; and (e) objects are tessellated
according to size on the screen; less complex geometry is
dynamically loaded whenever possible.

REYES is perfectly suited for parallel processing since it
scales linearly with the number of cores. Considering that
REYES needs only a handful of relevant scene elements at
a time, this data can be parsed into low-memory buckets
and distributed amongst cores for parallel rendering; thus
REYES’ low memory-footprint and efficient concurrent re-

source usage for the complex scenes makes it a great renderer
for a distributed-computing platform.

5.2 Accessibility of high-quality graphics

Although REYES can manage the issue of scene complex-
ity, leveraging this power is difficult without computer graph-
ics expertise. The guiding principle ofChrono::Render is to
make high-quality rendering available to researchers, most
of whom do not have the background or bandwidth to
spend time learning how to use complex graphics applica-
tions or make sense of REYES’ intricacies. Consequently,
Chrono::Render encapsulates into the XML specification the
complicated steps needed to make interesting visual effects,
such as multipass rendering. The user must only instance the
correct XML components to achieve high-quality renders.
The program flow ofChrono::Render is shown in Fig.23.

The XML specification allows for the concise expression
of salient features and scene objects. For example, the snip-
pet in Fig.24 illustrates the XML file that translates a single
line from a comma-separated value (CSV) data file into a
RenderMan sphere using two shaders.

Although simple, the render is visually rich. This descrip-
tion is often enough to visualize most generic data, but it can-
not handle all arbitrary visualizations, so in order to maintain
generality we make use of Python scripts and wrappers to en-
able simplified procedural RenderMan Interface Bytestream
generation. Any XML element can be scripted such that at
runtime, the script output will be piped into the same ren-
dering context. This makes it possible to perform process-
ing for specialized data as well as modularize the render-
ing of specific effects. Obviously this adds more complexity
for defining the scene, butChrono::Render provides Python
modules with methods and classes intended to ease this pro-
gramming as much as possible. Additionally, most of the
Chrono::Render Python modules wrap C++ functions and
classes with the purpose of exploiting speed while still mak-
ing use of the syntactical/type-free simplicity of Python. Fig-
ure 25 gives an example of combining XML with Python
scripts to achieve a more complicated render.

www.mech-sci.net/4/49/2013/ Mech. Sci., 4, 49–64, 2013

62 H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamicsMazhar et al.: Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics 13

Figure 25: General purpose rendering with Chrono::Render. The
Rover body contains multiple shape descriptions of which are gen-
erated from a Python script. Data is tagged with a name which can
be later be accessed using some of Chrono::Render’s Python func-
tionality.

5.3 Other Capabilities

Beyond interpreting parameters and data into RenderMan
calls, Chrono::Render provides tools for bootstrapping ren-
dering projects. Chrono::Render can: (a) construct direc-
tory structures for localizing and managing scene resources;
(b) automate distribution of rendering across a multi-node
network; (c) convert common graphics file formats into Ren-
derMan file formats such as Wavefront Objs and Mtls to Ren-
derMan RIBs and Shaders; (d) generate XML for automati-
cally adding parameters to the scene description for describ-
ing advanced visual effects such as subsurface scattering, am-
bient occlusion, reflections, etc.; (e) mesh point-clouds, par-
ticularly useful for particle-based fluid simulations; and (f)
dump the generated RenderMan calls to disk for reuse.

Chrono:Render is currently available for free download as
a pre-built binary for Linux. Members of the Wiscon-
sin Applied Computing Center can use this capability re-
motely as a service by leveraging 320 AMD cores on which
Chrono::Render is currently deployed.

6 Conclusions and Future Work

The Chrono simulation package is composed of a col-
lection of components designed to perform multi-physics
simulations leveraging emerging high-performance comput-
ing hardware. Chrono::Engine provides support for rigid
body dynamics, focusing on large granular dynamics prob-
lems, Chrono::Flex enables simulation of flexible beam
and plate elements interacting through contact and bilat-
eral constraints, while Chrono:Fluid allows the simulation
of fluid flows and fluid-solid interaction problems. Fi-
nally, Chrono::Render provides high-quality visualization

of arbitrary simulation data from the other Chrono com-
ponents. These components have been designed to lever-
age high-performance computing hardware whenever pos-
sible. Chrono::Engine supports CPU parallelism through
a domain-decomposition approach, while Chrono::Engine,
Chrono::Flex, and Chrono::Fluid all support GPU paral-
lelism to further improve simulation performance.

While these components provide useful simulation capabili-
ties on their own, ongoing work seeks to further integrate the
various Chrono components.

6.1 Chrono Availability

Major releases of the Chrono::Engine software are available
from the Chrono::Engine website at http://chronoengine.
info. Chrono in its entirety can be downloaded from http://
sbel.wisc.edu/chrono. The latter site also displays the nightly
build status for various platforms and unit testing results.

Acknowledgments

Financial support for the Wisconsin authors was provided in part
by the National Science Foundation Award 0840442 and Army Re-
search Office W911NF-12-1-0395. Financial support for A.Tasora
was provided in part by the Italian Ministry of Education under the
PRIN grant 2007Z7K4ZB. We thank NVIDIA and AMD for spon-
soring our research programs in the area of high-performance com-
puting.

References

ABAQUS: User Manual - Version 6.5, Hibbitt, Karlsson and
Sorensen, Inc., Pawtucket, RI, 2004.

Anitescu, M. and Tasora, A.: An iterative approach for cone
complementarity problems for nonsmooth dynamics, Computa-
tional Optimization and Applications, 47, 207–235, doi:10.1007/

s10589-008-9223-4, 2010.
Bell, N. and Garland, M.: CUSP: Generic Parallel Algorithms

for Sparse Matrix and Graph Computations, http://cusp-library.
googlecode.com, version 0.3.0, 2012.

Berzeri, M., Campanelli, M., and Shabana, A. A.: Definition of the
Elastic Forces in the Finite-Element Absolute Nodal Coordinate
Formulation and the Floating Frame of Reference Formulation,
Multibody System Dynamics, 5, 21–54, 2001.

Cook, R. L., Carpenter, L., and Catmull, E.: The Reyes Image Ren-
dering Architecture, SIGGRAPH 1987 Proceedings, pp. 95–102,
1987.

Cundall, P.: A computer model for simulating progressive large-
scale movements in block rock mechanics, in: Proceedings of the
International Symposium on Rock Mechanics. Nancy, France,
1971.

Cundall, P. and Strack, O.: A discrete element model for granular
assemblies, Geotechnique, 29, 47–65, 1979.

www.mech-sci.net Mech. Sci.

Figure 25. General purpose rendering withChrono::Render. The Rover body contains multiple shape descriptions of which are generated
from a Python script. Data is tagged with a name which can be later be accessed using some ofChrono::Render’s Python functionality.

5.3 Other capabilities

Beyond interpreting parameters and data into RenderMan
calls,Chrono::Render provides tools for bootstrapping ren-
dering projects.Chrono::Render can: (a) construct direc-
tory structures for localizing and managing scene resources;
(b) automate distribution of rendering across a multi-node
network; (c) convert common graphics file formats into Ren-
derMan file formats such as Wavefront Objs and Mtls to Ren-
derMan RIBs and Shaders; (d) generate XML for automati-
cally adding parameters to the scene description for describ-
ing advanced visual effects such as subsurface scattering,
ambient occlusion, reflections, etc.; (e) mesh point-clouds,
particularly useful for particle-based fluid simulations; and
(f) dump the generated RenderMan calls to disk for reuse.

Chrono:Render is currently available for free download
as a pre-built binary for Linux. Members of the Wiscon-
sin Applied Computing Center can use this capability re-
motely as a service by leveraging 320 AMD cores on which
Chrono::Render is currently deployed.

6 Conclusions and future work

The Chrono simulation package is composed of a col-
lection of components designed to perform multi-physics
simulations leveraging emerging high-performance comput-
ing hardware.Chrono::Engine provides support for rigid
body dynamics, focusing on large granular dynamics prob-
lems, Chrono::Flex enables simulation of flexible beam
and plate elements interacting through contact and bilat-
eral constraints, whileChrono:Fluid allows the simula-
tion of fluid flows and fluid-solid interaction problems. Fi-

nally, Chrono::Render provides high-quality visualization
of arbitrary simulation data from the otherChrono com-
ponents. These components have been designed to lever-
age high-performance computing hardware whenever pos-
sible. Chrono::Engine supports CPU parallelism through
a domain-decomposition approach, whileChrono::Engine,
Chrono::Flex, andChrono::Fluid all support GPU paral-
lelism to further improve simulation performance.

While these components provide useful simulation capa-
bilities on their own, ongoing work seeks to further integrate
the variousChrono components.

Chrono availability

Major releases of theChrono::Engine software are available
from the Chrono::Engine website athttp://chronoengine.
info. Chrono in its entirety can be downloaded fromhttp://
sbel.wisc.edu/chrono. The latter site also displays the nightly
build status for various platforms and unit testing results.

Acknowledgements. Financial support for the Wisconsin
authors was provided in part by the National Science Foundation
Award 0840442 and Army Research Office W911NF-12-1-0395.
Financial support for A.Tasora was provided in part by the Italian
Ministry of Education under the PRIN grant 2007Z7K4ZB. We
thank NVIDIA and AMD for sponsoring our research programs in
the area of high-performance computing.

Edited by: A. Müller
Reviewed by: two anonymous referees

Mech. Sci., 4, 49–64, 2013 www.mech-sci.net/4/49/2013/

http://chronoengine.info
http://chronoengine.info
http://sbel.wisc.edu/chrono
http://sbel.wisc.edu/chrono

H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics 63

References

ABAQUS: User Manual – Version 6.5, Hibbitt, Karlsson and
Sorensen, Inc., Pawtucket, RI, 2004.

Anitescu, M. and Tasora, A.: An iterative approach for cone com-
plementarity problems for nonsmooth dynamics, Comput. Op-
tim. Appl., 47, 207–235,doi:10.1007/s10589-008-9223-4, 2010.

Bell, N. and Garland, M.: CUSP: Generic Parallel Algorithms
for Sparse Matrix and Graph Computations,http://cusp-library.
googlecode.com, version 0.3.0, 2012.

Berzeri, M., Campanelli, M., and Shabana, A. A.: Definition of the
Elastic Forces in the Finite-Element Absolute Nodal Coordinate
Formulation and the Floating Frame of Reference Formulation,
Multibody Syst. Dyn., 5, 21–54, 2001.

Cook, R. L., Carpenter, L., and Catmull, E.: The Reyes Image
Rendering Architecture, SIGGRAPH 1987 Proceedings, 95–102,
1987.

Cundall, P.: A computer model for simulating progressive large-
scale movements in block rock mechanics, in: Proceedings of the
International Symposium on Rock Mechanics, Nancy, France,
1971.

Cundall, P. and Strack, O.: A discrete element model for granular
assemblies, Geotechnique, 29, 47–65, 1979.

Dalrymple, R. and Rogers, B.: Numerical modeling of water waves
with the SPH method, Coast. Eng., 53, 141–147, 2006.

Dilts, G.: Moving-least-squares-particle hydrodynamics I. Consis-
tency and stability, Int. J. Numer. Meth. Eng., 44, 1115–1155,
1999.

Dufva, K. and Shabana, A.: Analysis of thin plate structures using
the absolute nodal coordinate formulation, P. I. Mech. Eng. K-J.
Mul., 219, 345–355, 2005.

Gerstmayr, J. and Shabana, A.: Analysis of thin beams and cables
using the absolute nodal co-ordinate formulation, Nonlinear Dy-
nam., 45, 109–130, 2006.

Gingold, R. and Monaghan, J.: Smoothed particle hydrodynamics-
theory and application to non-spherical stars, Mon. Not. R. As-
tron. Soc., 181, 375–389, 1977.

Gropp, W., Lusk, E., and Skjellum, A.: Using MPI: Portable Paral-
lel Programming with the Message-Passing Interface, 2nd Edn.,
MIT Press, 1999.

Heyn, T.: Simulation of Tracked Vehicles on Granular Terrain
Leveraging GPUComputing, M.S. thesis, Department of Me-
chanical Engineering, University of Wisconsin-Madison,http:
//sbel.wisc.edu/documents/TobyHeynThesisfinal.pdf, 2009.

Hussein, B., Negrut, D., and Shabana, A.: Implicit and explicit inte-
gration in the solution of the absolute nodal coordinate differen-
tial/algebraic equations, Nonlinear Dynam., 54, 283–296, 2008.

Khude, N., Melanz, D., Stanciulescu, I., and Negrut, D.: A Paral-
lel GPU Implementation of the Absolute Nodal Coordinate For-
mulation With a Frictional/Contact Model for the Simulation of
Large Flexible Body Systems, ASME Conference on Multibody
Systemss and Nonlinear Dynamics, 2011.

Koshizuka, S., Nobe, A., and Oka, Y.: Numerical analysis of break-
ing waves using the moving particle semi-implicit method, Int. J.
Numer. Meth. Fl., 26, 751–769, 1998.

Kruggel-Emden, H., Simsek, E., Rickelt, S., Wirtz, S., and Scherer,
V.: Review and extension of normal force models for the discrete
element method, Powder Technol., 171, 157–173, 2007.

Lucy, L.: A numerical approach to the testing of the fission hypoth-
esis, Astron. J., 82, 1013–1024, 1977.

Mazhar, H., Heyn, T., and Negrut, D.: A scalable parallel method
for large collision detection problems, Multibody Syst. Dyn., 26,
37–55,doi:10.1007/s11044-011-9246-y, 2011.

Melanz, D.: On the Validation and Applications of a Parallel Flex-
ible Multi-body Dynamics Implementation, M.S. thesis, Univer-
sity of Wisconsin-Madison, 2012.

Melanz, D., Tupy, M., Smith, B., Turner, K., and Negrut, D.: On the
Validation of a Differential Variational Inequality Approach for
the Dynamics of Granular Material-DETC2010-28804, in: Pro-
ceedings to the 30th Computers and Information in Engineer-
ing Conference, edited by: Fukuda, S. and Michopoulos, J. G.,
ASME International Design Engineering Technical Conferences
(IDETC) and Computers and Information in Engineering Con-
ference (CIE), 2010.

Mindlin, R. and Deresiewicz, H.: Elastic spheres in contact under
varying oblique forces, J. Appl. Mech., 20, 327–344, 1953.

Monaghan, J.: On the problem of penetration in particle methods, J.
Comput. Phys., 82, 1–15, 1989.

Monaghan, J.: Smoothed particle hydrodynamics, Rep. Prog. Phys.,
68, 1703–1759, 2005.

MSC.Software: ADAMS: Automatic Dynamic Analysis of Me-
chanical Systems, Ann Arbor, Michigan, 2012.

Negrut, D., Tasora, A., Mazhar, H., Heyn, T., and Hahn, P.: Leverag-
ing parallel computing in multibody dynamics, Multibody Syst.
Dyn., 27, 95–117,doi:10.1007/s11044-011-9262-y, 2012.

NVIDIA Corporation: NVIDIA CUDA Developer Zone, available
at: https://developer.nvidia.com/cuda-downloads, 2012.

Pazouki, A. and Negrut, D.: Direct simulation of lateral migra-
tion of bouyant particles in channel flow using GPU computing,
in: Computers and Information in Engineering, CIE32, ASME,
Chicago, IL, USA, 2012a.

Pazouki, A. and Negrut, D.: A numerical study of the effect of
rigid body rotation, size, skewness, mutual distance, and colli-
sion on the radial distribution of suspensions in pipe flow, in re-
view, 2013.

Pazouki, A., Mazhar, H., and Negrut, D.: Parallel Ellipsoid
Collision Detection with Application in Contact Dynamics-
DETC2010-29073, in: Proceedings to the 30th Computers and
Information in Engineering Conference, edited by: Fukuda, S.
and Michopoulos, J. G., ASME International Design Engineer-
ing Technical Conferences (IDETC) and Computers and Infor-
mation in Engineering Conference (CIE), 2010.

Pazouki, A., Mazhar, H., and Negrut, D.: Parallel colli-
sion detection of ellipsoids with applications in large scale
multibody dynamics, Math. Comput. Simulat., 82, 879–894,
doi:10.1016/j.matcom.2011.11.005, 2012.

Pixar: The RenderMan Interface, Technical specification, Pixar,
1988, 1989, 2000, 2005.

Sanderson, C.: Armadillo: An open source C++ linear algebra li-
brary for fast prototyping and computationally intensive experi-
ments, Tech. rep., Technical report, NICTA, 2010.

Shabana, A. A.: Dynamics of Multibody Systems, Cambridge Uni-
versity Press, 3rd Edn., 2005.

Snethen, G.: XenoCollide Website,http://www.xenocollide.com,
2007.

Snethen, G.: XenoCollide: Complex Collision Made Simple, in:
Game Programming Gems 7, edited by: Jacobs, S., Charles River

www.mech-sci.net/4/49/2013/ Mech. Sci., 4, 49–64, 2013

http://dx.doi.org/10.1007/s10589-008-9223-4
http://cusp-library.googlecode.com
http://cusp-library.googlecode.com
http://sbel.wisc.edu/documents/TobyHeynThesis_final.pdf
http://sbel.wisc.edu/documents/TobyHeynThesis_final.pdf
http://dx.doi.org/10.1007/s11044-011-9246-y
http://dx.doi.org/10.1007/s11044-011-9262-y
https://developer.nvidia.com/cuda-downloads
http://dx.doi.org/10.1016/j.matcom.2011.11.005
http://www.xenocollide.com

64 H. Mazhar et al.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics

Media, 165–178, 2008.
Tasora, A. and Anitescu, M.: A convex complementarity approach

for simulating large granular flows, J. Comput. Nonlin. Dyn., 5,
1–10,doi:10.1115/1.4001371, 2010.

Tasora, A. and Anitescu, M.: A matrix-free cone comple-
mentarity approach for solving large-scale, nonsmooth, rigid
body dynamics, Comput. Method. Appl. M., 200, 439–453,
doi:10.1016/j.cma.2010.06.030, 2011.

Tasora, A., Righettini, P., and Silvestri, M.: Architecture of the
Chrono::Engine physics simulation middleware, in: Proceedings
of ECCOMAS 2007 Multibody Conference, 2007.

von Dombrowski, S.: Analysis of Large Flexible Body Deformation
in Multibody Systems Using Absolute Coordinates, Multibody
Syst. Dyn., 8, 409–432,doi:10.1023/A:1021158911536, 2002.

Yang, L. and Brent, R.: The improved BiCGStab method for large
and sparse unsymmetric linear systems on parallel distributed
memory architectures, in: Algorithms and Architectures for Par-
allel Processing, 2002. Proceedings. Fifth International Confer-
ence on, IEEE, 324–328, 2002.

Mech. Sci., 4, 49–64, 2013 www.mech-sci.net/4/49/2013/

http://dx.doi.org/10.1115/1.4001371
http://dx.doi.org/10.1016/j.cma.2010.06.030
http://dx.doi.org/10.1023/A:1021158911536

