
Mech. Sci., 4, 319–331, 2013
www.mech-sci.net/4/319/2013/
doi:10.5194/ms-4-319-2013
© Author(s) 2013. CC Attribution 3.0 License.

Mechanical
Sciences

Open Access

Designing hybrid flexure systems and elements using
Freedom and Constraint Topologies

J. B. Hopkins

Lawrence Livermore National Laboratory, 7000 East Avenue L-223, Livermore, CA 94551, USA

Correspondence to:J. B. Hopkins (jonathanbhopkins@gmail.com)

Received: 20 March 2013 – Accepted: 12 June 2013 – Published: 1 October 2013

Abstract. In this paper we introduce the principles necessary to synthesize hybrid flexure systems and ele-
ments. Flexure systems consist of rigid bodies that are joined together by flexure elements that elastically de-
form to guide the system’s rigid bodies with desired degrees of freedom (DOFs). The principles introduced here
for synthesizing hybrid flexure systems and elements are extensions of the Freedom and Constraint Topologies
(FACT) synthesis approach. FACT utilizes a comprehensive library of geometric shapes from which design-
ers can rapidly consider and compare a multiplicity of flexure concepts that achieve any desired set of DOFs.
Prior to this paper, designers primarily used these shapes to synthesize parallel and serial flexure systems
and elements. With this paper, designers may now use these same shapes to synthesize more general flexures
that consist of various combinations of parallel and serial systems and elements (i.e., hybrid configurations).
As such, designers can access a larger body of flexure solutions that satisfy demanding design requirements.
Instructions for helping designers utilize or avoid the advantages and challenges of over-, under-, and exact-
constraint are also provided. Hybrid systems and elements are analysed and designed as case studies.

1 Introduction

Flexure systems consist of rigid bodies that are joined to-
gether by flexure elements (Smith, 2000). These elements
are directionally compliant and thus guide the system’s rigid
bodies to move in prescribed directions called degrees of
freedom (DOFs) via elastic deformation. There are three
kinds of flexure systems – parallel, serial, and hybrid (Fig. 1).
Parallel systems consist of a single rigid body that is directly
connected to a fixed or grounded body by flexure elements.
Serial systems consist of two or more parallel systems se-
quentially stacked in a chain-like configuration. Hybrid sys-
tems consist of various combinations of parallel and serial
systems joined together. Schematic representations of gen-
eral parallel, serial, and hybrid systems are shown in the top
portion of Fig. 1. Rigid bodies are shown as rectangles and
flexure elements are shown as springs. Fixed or grounded
bodies are labelledG, intermediate bodies are labelledI , and
motion stages are labelledS. Example parallel, serial, and
hybrid flexure systems are shown in the bottom portion of the
same figure. Note that the flexure elements of these examples

are blade flexures and that the hybrid example consists of two
serial flexure systems arranged in parallel.

Similar to flexure systems, flexure elements may be cate-
gorized as parallel, serial, or hybrid. Examples of common
parallel flexure elements are wire, blade, living hinge, and
notch flexures. These elements are shown asE1 throughE4 in
Fig. 2. Parallel flexure elements impose constraining forces
directly through all parts of their geometry to the rigid bodies
that they join. As such, if constraining forces are represented
by blue lines (called constraint lines in this paper) with an
axis that is collinear with the force’s line of action, the entire
compliant portion of a parallel element’s geometry can be
filled with these lines passing directly from one of its rigid
bodies to the next. Consider elementE1 in Fig. 2 for exam-
ple. Only one constraint line fits within its geometry because
a wire flexure is only capable of imposing an appreciable
constraining force along its axis. The blade flexureE2, on
the other hand, can impose many forces on its rigid bodies.
These forces act along the axes of constraint lines that span
between these bodies and pass through the planar geometry
of the blade (only a few such constraint line examples are
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Figure 1. Three kinds of flexure systems—parallel, serial, and hybrid 3 
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Figure 1. Three kinds of flexure systems – parallel, serial, and hy-
brid.

 24 

 1 

 2 

Figure 2. Parallel flexure element examples 3 
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Figure 2. Parallel flexure element examples.

shown in the figure). Likewise, the living hinge and notch
flexures,E3 andE4, from Fig. 2 may impose forces on their
rigid bodies that act along the axes of constraint lines that
span between these bodies and pass entirely through the com-
pliant portion of their geometries. ForE3, these lines lie on
the surfaces of intersecting planes, and forE4, these lines lie
within a sphere and intersect at a common point at the neck
of the flexure. Other, less common examples of parallel flex-
ure elements are also shown in Fig. 2. These elements,E5

andE6, are shown with constraint lines that fill their geom-
etry and directly join their rigid bodies. In Figs. 1 and 3, the
springs shown in the schematic portion must represent par-
allel flexure elements only to maintain continuity with the
definitions provided here.

Serial flexure elements consist of parallel elements stacked
together in serial configurations with no intermediate rigid
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Figure 3. Three kinds of flexure elements—parallel, serial, and hybrid 3 
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Figure 3. Three kinds of flexure elements – parallel, serial, and
hybrid.

bodies in between. Thus, the junctions between these ele-
ments are depicted as black nodes instead of as rectangles in
the schematic portion of Fig. 3. The example serial flexure
element shown in this figure is a bent blade flexure that con-
sists of two parallel blade flexure elements stacked in series.

Hybrid flexure elements consist of various combinations
of parallel and serial elements joined together with no rigid
bodies in between. The example hybrid flexure element
shown in Fig. 3 consists of two pairs of serial bent blade
flexure elements arranged in parallel that are stacked in se-
ries with one another. Unlike parallel flexure elements, serial
and hybrid flexure elements possess geometries that cannot
be entirely filled with constraint lines that directly join their
rigid bodies. Note that no constraint lines can pass between
the rigid bodies and remain within the geometries of either
the serial or hybrid flexure element examples from Fig. 3.
Many other examples of parallel, serial, and hybrid flexure
elements are provided in Howell et al. (2013).

The intent of this paper is to introduce the theory neces-
sary to synthesize hybrid flexure systems and elements that
consist of various combinations of parallel and serial systems
and elements of any complexity. This theory is an extension
of the Freedom and Constraint Topologies (FACT) synthe-
sis approach (Hopkins and Culpepper, 2006; Hopkins, 2007).
This approach utilizes a comprehensive library of geometric
shapes, similar to the shapes formed by the constraint lines
within the examples of Fig. 2, which guide designers in syn-
thesizing flexure systems and elements that achieve any de-
sired set of DOFs. These shapes visually embody the mathe-
matics of screw theory (Ball, 1900; Phillips, 1984, 1990) and
enable designers to rapidly consider and compare a multi-
plicity of solution concepts in an intuitive way. The shapes of
FACT have previously been applied to the design of parallel
flexure systems (Hopkins and Culpepper, 2010), serial flex-
ure systems (Hopkins and Culpepper, 2011), parallel flexure
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elements (Hopkins, 2012; Hopkins et al., 2013), and serial
flexure elements (Hopkins, 2013). In this paper, we briefly
review the principles of these publications and explain how
these principles can be adapted and applied to the design of
hybrid flexure systems and elements. Thus, this paper con-
tains the general theory of FACT necessary to synthesize
flexure-based motion stages of all configurations.

The ability to synthesize hybrid flexure systems and ele-
ments as well as those that are configured in parallel and/or
serial is important because this ability allows designers to
consider the entire body of flexure solution concepts that
achieve a wider variety of kinematic, elastomechanic, and
dynamic design requirements. With this ability, designers are
guaranteed to identify multiple solutions that achieve any set
of desired DOFs. The ability to synthesize hybrid flexure
systems is particularly important because flexures that de-
couple displacement-based actuators within multi-DOF sys-
tems are often hybrid of necessity (Li and Xu, 2009; Aw-
tar et al., 2012). Furthermore, the ability to synthesize hy-
brid flexure systems enables designers to create flexure-based
transmission mechanisms that are capable of transforming
any set of input motions into any other set of output mo-
tions with any desired transmission ratio (Hopkins and Panas,
2013). Thus, as hybrid flexure systems enable capabilities
that cannot be achieved using any other configuration, the
comprehensive approach provided here for synthesizing gen-
eral hybrid systems significantly impacts the design of preci-
sion motion stages, nano-positioners, MEMS devices, optical
mounts, and other general-purpose flexure bearings.

The intuitive approach of this paper stems from the rig-
orous mathematics of screw theory. The shapes of FACT are
visual representations of screw systems (Ball, 1900) that con-
sist of line geometries (Klein, 1921; Merlet, 1989) that em-
body a system’s kinematics. Initially, screw theory was pri-
marily used to design and analyse rigid-body spatial mecha-
nisms and robotic manipulators (Hunt, 1978; Bothema and
Roth, 1990; Murray et al., 1994; Merlet, 2000). More re-
cently, however, screw theory has been used to design and
analyse flexure systems and compliant mechanisms (Kong
and Gosselin, 2004; Hao and Kong, 2013). Although the
principles of FACT are similar to other significant screw-
theory-based approaches for synthesizing flexure systems
(Su et al., 2009; Yu et al., 2010), FACT does not require
its users to be experienced with the mathematics of screw
theory. The intuitive shapes of FACT are thus accessible to
both novel and experienced designers in that designers are
required only to visualize geometric shapes to analyse and
design complex flexure systems and elements.

The specific contributions of this paper are (i) the princi-
ples of FACT are extended such that designers may analyse
and design hybrid flexure systems that consist of any com-
bination of parallel and/or serial systems, (ii) rules are pro-
vided for helping designers utilize the shapes of FACT for
synthesizing hybrid systems that are either over-, under-, or
exactly-constrained, (iii) the theory is provided for analysing
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Figure 4. Freedom and constraint spaces for two flexure elements—blade and wire flexure 3 
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Figure 4. Freedom and constraint spaces for two flexure elements
– blade and wire flexure.

and designing hybrid flexure elements that achieve the bene-
fits of under-constrained systems without the usual disadvan-
tages of poor dynamic characteristics, and (iv) a number of
novel hybrid flexure elements are provided as examples.

2 Fundamental principles

This section reviews the fundamental principles of FACT
necessary to analyse and synthesize parallel and serial flexure
systems. Although the mathematics of these principles have
been applied to rigid body mechanisms for many years, only
recently have these principles been applied to the synthesis
of parallel (Hopkins and Culpepper, 2006, 2010; Hopkins,
2007; Su et al., 2009; Su and Tari, 2010) and serial flexure
systems (Hopkins, 2010; Hopkins and Culpepper, 2011; Su,
2011) These principles will be extended in later sections to
enable designers to analyse and design hybrid flexure sys-
tems and elements using FACT.

2.1 Freedom and constraint spaces

Consider the blade flexure element in Fig. 4a, which pos-
sesses three DOFs – one translation and two rotations. These
DOFs may be modelled using twist vectorsT1, T2, andT3

respectively (Ball, 1900; Hao and McCarthy, 1998). In this
paper, translations are depicted as black arrows along which
bodies translate, rotations are depicted as red lines about
which bodies rotate, and screws are depicted as green lines
along and about which bodies simultaneously translate and
rotate with a coupled pitch value. The three DOFs of the
blade flexure are not the only ways its rigid body may move.
It may also move with every combination of these DOFs. If
these DOFs are simultaneously actuated with various mag-
nitudes, the blade’s rigid body will rotate about other lines
that lie on the plane of the blade as shown highlighted red on

www.mech-sci.net/4/319/2013/ Mech. Sci., 4, 319–331, 2013



322 J. B. Hopkins: Hybrid flexure synthesis using FACT

 27 

 1 

 2 

Figure 5. Comprehensive library of freedom and constraint spaces 3 
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Figure 5. Comprehensive library of freedom and constraint spaces.

the left side of Fig. 4a. This plane of rotation lines and the
orthogonal translation arrow is the element’s freedom space.
Freedom space is a geometric shape that represents all the
ways a body may move. It consists of all the twists that result
from linearly combining the body’s DOF twists.

Every freedom space uniquely links to a complementary
or reciprocal space called a constraint space according to the
principle of duality (Murray et al., 1994). Constraint space is
a geometric shape that represents all the ways a rigid body
is constrained by various constraint actions. These actions
may be modelled using wrench vectors (Ball, 1900; Hao and
McCarthy, 1998). In this paper, pure moment actions are de-
picted as black lines with circular arrows about their axes,
pure force actions are depicted as blue lines called constraint
lines (Fig. 2), and coupled moment and force actions are de-
picted as orange lines. The constraint space of the blade flex-
ure in Fig. 4a is a plane of blue constraint lines and an or-
thogonal pure moment. This means that the blade can only
impose constraining forces along the plane of the blade and
a moment perpendicular to this plane. Note that every line
that directly joins the blade’s rigid bodies and passes en-
tirely through its geometry lies within the blue portion of this
constraint space (i.e., the portion that consists of constraint
lines).

If a freedom space containsn DOFs (i.e., independent
twist vectors), its complementary constraint space will con-

tainm independent wrench vectors according to

6−n=m. (1)

Note that the constraint space of the blade flexure in Fig. 4a
contains three independent wrench vectors (e.g., the pure
force wrench vectorsW1, W2, andW3). The number of inde-
pendent wrench vectors within a flexure element’s constraint
space is called the element’s order of constraint. Thus a blade
flexure’s order of constraint is three.

As another example, consider the wire flexure in Fig. 4b.
Its constraint space is a single constraint line (i.e., pure force
wrench vector,W1) because the wire’s geometry is only ca-
pable of imposing a single constraining force along its axis.
The wire flexure’s complementary freedom space consists of
(i) a disk of translation arrows that are perpendicular to the
axis of the wire, (ii) rotation lines that lie on planes that inter-
sect this axis, and (iii) screw lines that lie on the surfaces of
circular hyperboloids and disks (Hopkins, 2010), which are
not shown in Fig. 4b to avoid visual clutter. Consistent with
Eq. (1), the wire flexure’s freedom space contains five inde-
pendent twist vectors or DOFs (e.g.,T1 throughT5 shown in
Fig. 4b). Note that a wire flexure’s order of constraint is one.

There are a finite number of complementary freedom and
constraint space pairs called types. These types are provided
in Fig. 5 and are described in detail in Hopkins (2010). The
specific geometries of these types are not important to un-
derstand for the purposes of this paper. What is important to
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recognize is that there are fifty types that are numbered and
organized into seven columns that pertain to the number of
DOFs contained within each type’s freedom space. Note that
the freedom and constraint space pair of the blade flexure in
Fig. 4a is Type 1 in the 3 DOF column of Fig. 5 and that
the freedom and constraint space pair of the wire flexure in
Fig. 4b is Type 1 in the 5 DOF column.

The types that lie within the outlined region labelled “Par-
allel Pyramid” in Fig. 5 contain all of the pertinent free-
dom and constraint space pairs necessary for analysing and
synthesizing parallel flexure systems and elements. In other
words, no parallel flexure system or element can achieve the
DOFs of the freedom spaces that lie outside of this pyramid.
Thus, the freedom and constraint space pairs that correspond
with the six parallel flexure elements shown in Fig. 2 all lay
within this pyramid. The constraint lines within elementE3

from Fig. 2 lie within the constraint space of Type 1 in the 1
DOF column of Fig. 5. The constraint lines within element
E4 from Fig. 2 lie within the constraint space of Type 3 in the
3 DOF column of Fig. 5. The constraint lines within element
E5 from Fig. 2 lie within the constraint space of Type 7 in the
3 DOF column of Fig. 5. The constraint lines within element
E6 from Fig. 2 lie within the constraint space of Type 8 in the
2 DOF column of Fig. 5.

Others have classified screw systems similar to those in
Fig. 5 for different applications using different criteria. Gib-
son and Hunt (1990) introduced an approach for classify-
ing screw systems based on projective geometry. Rico and
Duffy (1992) proposed a classification based upon the theory
of orthogonal spaces and subspaces by examining the char-
acteristics of the reciprocal basis of screw systems. The geo-
metric shapes in Fig. 5 are complete and have been classified
to facilitate the rapid analysis and synthesis of parallel, se-
rial, and hybrid flexure systems and elements. Thus, no flex-
ure system or element exists, which cannot be analysed or
synthesized using the spaces within this library.

2.2 Analysing parallel flexure systems

The following two principles are important for determining
the kinematics of any parallel flexure system:

1. The wrench vectors within the constraint spaces of
a parallel flexure system’s flexure elements may be
linearly combined to generate the effective constraint
space of the entire system.

2. The effective freedom space of a parallel flexure system
consists of the intersection of the freedom spaces of ev-
ery flexure element within the system. In other words,
a parallel flexure system’s freedom space consists of
the twist vectors that are common among the freedom
spaces of the system’s flexure elements.

Consider the parallel flexure system that consists of two wire
flexures in Fig. 6. According to the first principle, the sys-
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Figure 6. Linearly combine constraints in parallel (a) or find the intersection of their freedom 3 
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Figure 6. Linearly combine constraints in parallel(a) or find the
intersection of their freedom spaces(b) to find the system’s com-
plementary freedom and constraint spaces(c).

tem’s effective constraint space may be determined by lin-
early combining the two pure force wrench vectors shown
as parallel constraint lines in Fig. 6a. The resulting space is
a plane of parallel constraint lines and a pure moment that
is perpendicular to this plane as shown on the right side of
the figure. According to the second principle, the system’s
effective freedom space may be determined by identifying
the intersection of the freedom spaces of both wire flexures
(Fig. 4b) shown in Fig. 6b. The rotation lines that are com-
mon among these freedom spaces lie on the plane that con-
tains the two wire flexures and are parallel with the axes of
these flexures and thus lie within an infinitely large box as
shown. The translation arrows that are common among these
freedom spaces lie within a disk that is perpendicular to the
axes of the wire flexures. Note that the locations of these
translation arrows are unimportant as translation twists are
solely directional. The screw lines that are common among
these freedom spaces are not shown in Fig. 6b to avoid visual
clutter. These screw lines, described in Hopkins (2010), are
shown with the other translation arrows and rotation lines in
the freedom space of Fig. 6c. Note from Fig. 6c that the effec-
tive constraint space of the system (Fig. 6a) and its effective
freedom space (Fig. 6b) are complementary spaces and are
labelled Type 2 in the 4 DOF column of Fig. 5. Moreover,
note that it does not matter that the system’s effective spaces
shown in Fig. 6a and b are oriented differently than they are
in Fig. 6c.

2.3 Synthesizing parallel flexure systems

There are four steps to synthesize parallel flexure systems:
Step 1:identify the system’s desired DOFs.
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Step 2: identify the corresponding freedom space from
Fig. 5 that contains the DOFs of step 1. This freedom space
will result from the linear combination of the twists of those
DOFs and is the system’s effective freedom space. If this
freedom space lies outside of the Parallel Pyramid from the
library of Fig. 5, it is not possible to synthesize a parallel
flexure system that achieves the desired DOFs from step 1.
In this case, the designer must synthesize either a serial or
hybrid flexure system to achieve these DOFs.

Step 3: select constraint spaces that lie within the comple-
mentary constraint space of the freedom space of step 2 (i.e.,
the system’s effective constraint space). The number of con-
straint spaces selected will determine the number of parallel
flexure elements within the system. These constraint spaces
must lie within the Parallel Pyramid of Fig. 5 to the right
of the column that contains the system’s constraint space.
Designers can also select the system’s effective constraint
space itself as one of these spaces. Any number of viable
constraint spaces may be selected as long as the total num-
ber of independent wrench vectors from all of the selected
spaces combined equals the number of independent wrench
vectors within the system’s constraint space. The same con-
straint space may be selected multiple times.

Step 4:generate parallel flexure elements with geome-
tries that lie within the blue portions of these selected con-
straint spaces (i.e., the regions of the spaces that consist of
constraint lines). A subset of constraint lines within each of
these spaces should entirely fill and directly pass through
the geometry of the space’s element and join the system’s
rigid stage to its fixed ground. This subset of constraint lines
should contain as many independent pure force wrench vec-
tors as independent wrench vectors within the entire con-
straint space from which the element is generated.

If the sum of the order of constraint of every parallel flex-
ure element within the final system equals the number of
independent wrench vectors within the system’s constraint
space, the system is exactly-constrained (Blanding, 1999). If
this sum is greater than the number of independent wrench
vectors within the system’s constraint space, the system is
over-constrained.

An example is provided to demonstrate the approach of
this section. Suppose for step 1 we wish to synthesize a par-
allel flexure system that possesses a single rotation DOF as
shown in Fig. 7a. For step 2, the freedom space of a rota-
tion DOF is a single rotation line as shown in Fig. 7b. This
space is the Type 1 freedom space from the 1 DOF column of
Fig. 5. Its complementary constraint space shown in Fig. 7b
consists of (i) constraint lines that lie on planes that inter-
sect the rotation line, (ii) a disk of pure moment lines that
point in directions that are perpendicular to the axis of the
rotation line, and (iii) coupled moment and force lines that
lie on the surfaces of circular hyperboloids and disks as de-
scribed in Hopkins (2010). For step 3, we select two con-
straint spaces that lie within this constraint space. The two
selected spaces are the Type 1 constraint space from the 3
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Figure 7. Desired DOFs (a) belong to a freedom space that links to a complementary 3 
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Figure 7. Desired DOFs(a) belong to a freedom space that links
to a complementary constraint space(b) within which flexure ele-
ments may be selected(c).

DOF column of Fig. 5 shown in Fig. 4a. We orient these two
planar constraint spaces within the system’s effective con-
straint space as shown in Fig. 7c. For step 4, we use the region
of these spaces that consists entirely of constraint lines to
generate flexure blades that connect the system’s stage to its
fixed ground as shown. The resulting parallel flexure system
(Fig. 7c) achieves the desired rotation DOF. Note, however,
that the system is over-constrained because its effective con-
straint space (Fig. 7b) consists of five independent wrench
vectors while the sum of the order of constraint of each par-
allel flexure element within the system is six. Recall that the
order of constraint of a flexure blade is three.

2.4 Analysing serial flexure systems

The following two principles are important for determining
the kinematics of any serial flexure system:

1. The twist vectors within the freedom spaces of the par-
allel flexure system constituents may be linearly com-
bined to generate the effective freedom space of the en-
tire serial flexure system.

2. The effective constraint space of a serial flexure system
consists of the intersection of the constraint spaces of
the parallel flexure system constituents within the sys-
tem. In other words, a serial flexure system’s constraint
space consists of the wrench vectors that are common
among the constraint spaces of the parallel flexure sys-
tem constituents.

Consider the serial flexure system in Fig. 8 that consists of
the two parallel flexure systems from Figs. 6 and 7c stacked
together. According to the first principle, the system’s effec-
tive freedom space may be determined by linearly combining
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Figure 8. Linearly combine freedom spaces in series (a) or find the intersection of their 3 
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Figure 8. Linearly combine freedom spaces in series(a) or find
the intersection of their constraint spaces(b) to find the system’s
complementary freedom and constraint spaces(c).

the twist vectors within the two freedom spaces of Figs. 6b
and 7a as shown in Fig. 8a. The resulting space (Fig. 8a)
is the same freedom space shown in Fig. 4b. According to
the second principle, the system’s effective constraint space
may be determined by identifying the intersection of the con-
straint spaces of both parallel flexure system constituents
shown in Figs. 6a and 7c and again in Fig. 8b. The only
wrench vector that is common among these constraint spaces
is the constraint line shown in Fig. 8b. Note from Fig. 8c
that the effective freedom space of the serial flexure system
(Fig. 8a) and its effective constraint space (Fig. 8b) are com-
plementary spaces and are labelled Type 1 in the 5 DOF col-
umn of Fig. 5. Moreover, note that the circular hyperboloids
and disks that contain the screw lines of the freedom space
mentioned previously are also shown in Fig. 8c.

2.5 Synthesizing serial flexure systems

There are five steps to synthesize serial flexure systems:
Step 1:identify the system’s desired DOFs.
Step 2: identify the corresponding freedom space from

Fig. 5 that contains the DOFs of step 1. This freedom space
will result from the linear combination of the twists of those
DOFs and is the system’s effective freedom space.

Step 3:select intermediate freedom spaces from within the
freedom space of step 2. These intermediate freedom spaces
correspond with the freedom spaces of the parallel flexure
system constituents within the serial system being synthe-
sized. Thus, the number of intermediate freedom spaces se-
lected will determine the number of parallel flexure system

constituents within the overall system. These freedom spaces
must lie within the Parallel Pyramid of Fig. 5 to the left of
the column that contains the system’s freedom space. De-
signers can also select the system’s effective freedom space
itself as one of these spaces as long as it lies within the Par-
allel Pyramid. Any number of viable intermediate freedom
spaces may be selected as long as the total number of inde-
pendent twist vectors from all of the selected spaces com-
bined equals the number of independent twist vectors within
the system’s freedom space. The same freedom space may be
selected multiple times.

Step 4:select constraint spaces that lie within the com-
plementary constraint spaces of the selected intermediate
freedom spaces from step 3 (i.e., the system’s intermedi-
ate constraint spaces). The number of constraint spaces se-
lected from each intermediate constraint space will deter-
mine the number of parallel flexure elements within each par-
allel flexure system constituent. These constraint spaces must
lie within the Parallel Pyramid of Fig. 5 to the right of the
column that contains the intermediate constraint space from
which they are selected. Designers can also select the inter-
mediate constraint space itself as one of these spaces. Any
number of viable constraint spaces may be selected as long
as the total number of independent wrench vectors from all of
the selected spaces combined equals the number of indepen-
dent wrench vectors within the intermediate constraint space
from which they are selected. The same constraint space may
be selected multiple times.

Step 5:generate parallel flexure elements with geometries
that lie within the selected constraint spaces from step 4.
These geometries must be selected from within the blue re-
gions of these spaces (i.e., the regions that consist of con-
straint lines only). A subset of constraint lines within each
of these spaces should entirely fill and directly pass through
the geometry of the space’s element and join the appropriate
rigid bodies within the system. This subset of constraint lines
should contain as many independent pure force wrench vec-
tors as independent wrench vectors within the entire interme-
diate constraint space from which the element is generated.
The rigid bodies that a particular element should join pertain
to the intermediate constraint space from which the element’s
constraint space was selected. Ultimately, the stage of the se-
rial flexure system should be joined from one intermediate
rigid body to the next by the elements from each interme-
diate constraint space until the system is joined to a fixed
ground.

If the sum of the order of constraint of every parallel flex-
ure element within one or more parallel flexure system con-
stituents within the serial system is greater than the number
of independent wrench vectors within the constraint space
of the corresponding parallel flexure system constituent, the
overall serial system is over-constrained.

If, however, the sum of the number of DOFs within each
selected intermediate freedom space from step 3 exceeds the
number of total independent twist vectors within all of these

www.mech-sci.net/4/319/2013/ Mech. Sci., 4, 319–331, 2013



326 J. B. Hopkins: Hybrid flexure synthesis using FACT

 31 

 1 

 2 

Figure 9. Desired DOFs (a), system’s freedom and constraint space (b), intermediate freedom 3 
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Figure 9. Desired DOFs(a), system’s freedom and constraint
space(b), intermediate freedom spaces selected from the system’s
freedom space(c), flexure elements selected from the interme-
diate constraint spaces(d), and the intermediate body’s under-
constrained DOFs(e).

spaces combined, the system is under-constrained (Blanding,
1999; Hopkins and Culpepper, 2011). The intermediate rigid
bodies of an under-constrained system often possess DOFs
that are not constrained even when the final system’s stage
is held fixed relative to its ground. As such, the performance
of an under-constrained system suffers from unwanted vibra-
tions and poor controllability. Note that only serial and hy-
brid flexure systems are susceptible to under-constraint be-
cause, unlike parallel flexure systems, serial and hybrid sys-
tems possess intermediate rigid bodies.

An example is provided to demonstrate the approach of
this section. Suppose for step 1 we wish to synthesize a se-
rial flexure system that possesses five DOFs – three trans-
lations and two rotations as shown in Fig. 9a. For step 2,
the freedom space of these five DOFs consists of (i) rota-
tion lines that lie on parallel planes, (ii) translation arrows
that point in all directions as shown by the sphere in Fig. 9b,
and (iii) screw lines that lie on the same parallel planes as
the rotation lines. This freedom space is the Type 3 space
from the 5 DOF column of Fig. 5. Note that its complemen-
tary constraint space is a pure moment that is perpendicular
to the parallel planes of the freedom space and points along
the axis of the rotation that we wish to constrain. For step 3,
we select two intermediate freedom spaces that lie within the
system’s freedom space and orient them as shown in Fig. 9c
with one on top of the other. Each of these selected spaces is
the Type 2 freedom space from the 4 DOF column of Fig. 5
shown in Fig. 6c. For step 4, we note that the complementary
constraint space of each these intermediate freedom spaces
is the planar constraint space of parallel constraint lines de-
scribed in Fig. 6a and c. We select two constraint spaces from
within each of these intermediate constraint spaces of paral-
lel constraint lines (Fig. 9d). Each of these constraint spaces

is a single constraint line and is the Type 1 constraint space
from the 5 DOF column of Fig. 5 shown in Fig. 8c. For step
5, we use these constraint lines to generate wire flexures. The
two wire flexures generated from the intermediate constraint
space on the top join the system’s stage to an intermediate
rigid body. The two wire flexures generated from the inter-
mediate constraint space on the bottom join the same inter-
mediate rigid body to a fixed ground as shown in Fig. 9d. The
final serial flexure system shown in Fig. 9e achieves the de-
sired five DOFs. Note that the system is not over-constrained
because the sum of the order of constraint of both wire flex-
ures in each intermediate constraint space is two and two is
the number of independent wrench vectors within each of
these spaces. The system is, however, under-constrained be-
cause the sum of the DOFs from both intermediate freedom
spaces selected in Fig. 9c is eight (i.e., four from each) but the
total number of independent twist vectors within these two
spaces combined is only five. Note, therefore, from Fig. 9e
that when the system’s stage is held fixed with respect to its
ground, the intermediate rigid body possesses three DOFs
that are not constrained – two translations and one rotation.
Although this system is under-constrained and not practical
to use in its current form, we will return to it in a later section
to make it more practical as a hybrid flexure element.

3 Hybrid flexure systems and elements

This section applies the principles of the previous section to
enable the analysis and synthesis of hybrid flexure systems
and elements.

3.1 Analysing hybrid flexure systems

The stage of a general hybrid flexure system is joined to
ground via flexure limbs arranged in parallel. Each limb can
be a parallel, serial, or hybrid flexure system or element. As
the limbs of a hybrid system are arranged in parallel, the
principles for analysing their kinematics are similar to those
given in Sect. 2.2 for analysing parallel flexure systems. That
is, the wrench vectors within the effective constraint spaces
of each limb may be linearly combined to generate the con-
straint space of the entire hybrid system, and the hybrid sys-
tem’s freedom space is the intersection of each limb’s effec-
tive freedom space.

As an example, consider the hybrid flexure system in
Fig. 10 that consists of two limbs arranged in parallel. Each
limb is the serial flexure system from Fig. 8. The hybrid sys-
tem’s effective constraint space may be determined by lin-
early combining the two pure force wrench vectors from the
effective constraint spaces of each limb (Fig. 8b) as shown
in Fig. 10a. The resulting space is the same as that shown
in Fig. 6a. The system’s effective freedom space may be de-
termined by identifying the intersection of the effective free-
dom spaces of both serial flexure systems (Fig. 8a) as shown
in Fig. 10b. The resulting space is the same as that shown in
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Figure 10. Linearly combine the constraint spaces of limbs(a) or
find the intersection of their freedom spaces(b) to find a hybrid
system’s complementary freedom and constraint spaces.

Fig. 6b. The hybrid system’s complementary spaces are thus
the Type 2 spaces in the 4 DOF column of Fig. 5 shown in
Fig. 6c.

3.2 Synthesizing hybrid flexure systems

There are five steps to synthesize general hybrid flexure sys-
tems:

Step 1:identify the system’s desired DOFs.
Step 2: identify the corresponding freedom space from

Fig. 5 that contains the DOFs of step 1. This freedom space
will result from the linear combination of the twists of those
DOFs and is the system’s effective freedom space.

Step 3:select constraint spaces that lie within the com-
plementary constraint space of the freedom space from step
2 (i.e., the system’s constraint space). Each limb of the hy-
brid flexure system is generated from one of these constraint
spaces. These constraint spaces can belong to any column
within the library of Fig. 5 to the right of the column that
contains the system’s constraint space. Note that these spaces
do not need to lie within the Parallel Pyramid of Fig. 5 un-
less they are intended to be used to generate a parallel limb
(i.e., a limb that consists of parallel flexure elements that di-
rectly connect the system’s stage to ground). Designers can
also select the system’s constraint space itself as one of these
spaces. Any number of viable constraint spaces may be se-
lected as long as the total number of independent wrench
vectors from all of the selected spaces combined equals the
number of independent wrench vectors within the system’s
constraint space. The same constraint space may be selected
multiple times.

Step 4:determine what type of limb each constraint space
selected from step 3 is intended to generate. If the constraint
space is intended to generate a parallel limb and it belongs
within the Parallel Pyramid of Fig. 5, the designer should de-
termine this space’s complementary freedom space and use

that space to continue on with steps 3 through 4 in Sect. 2.3 to
generate the limb. If the constraint space is intended to gen-
erate a serial limb, the designer should determine this space’s
complementary freedom space and use that space to continue
on with steps 3 through 5 in Sect. 2.5 to generate the limb.
If the constraint space is intended to generate a hybrid limb,
the designer should first create a serial limb using the instruc-
tions from the previous sentence and then continue on to the
next step to make the limb hybrid. If none of the limbs are
intended to be hybrid, the final system is complete with this
step.

Step 5:identify a parallel flexure element or a group of
parallel flexure elements within a parallel flexure system con-
stituent within the desired serial limb from step 4 and linearly
combine the wrench vectors within the constraint spaces of
these elements to generate an effective constraint space for
that group of elements. Then identify this space’s comple-
mentary freedom space using the library of Fig. 5 and apply
this freedom space to steps 3 through 5 in Sect. 2.5 to gener-
ate a serial flexure system within the parallel flexure system
constituent of the original serial limb. Designers can use this
step multiple times with different groups of elements within
the same parallel flexure system constituent or within differ-
ent parallel flexure system constituents within the same serial
limb to change it into a hybrid limb of any variety.

If the sum of the number of independent wrench vectors
within each individual constraint space selected from step
3 is greater than the number of independent wrench vectors
within the hybrid system’s overall constraint space, or if the
sum of the order of constraint of every parallel flexure ele-
ment within one or more parallel flexure system constituents
within the hybrid system is greater than the number of in-
dependent wrench vectors within the constraint space of the
corresponding parallel flexure system constituent, the overall
hybrid system is over-constrained.

If, however, any limbs within a hybrid flexure system con-
tain one or more serial flexure systems that are undercon-
strained according to the criteria of Sect. 2.5, the entire hy-
brid system is also underconstrained as it will contain inter-
mediate bodies that are not constrained when its final stage
is held fixed with respect to its ground.

An example is provided to demonstrate the approach of
this section. Suppose for step 1 we wish to synthesize a hy-
brid flexure system that possesses a single translation DOF.
For step 2, the freedom space of this DOF is a translation
arrow shown in Fig. 11a. This freedom space is the Type 3
space from the 1 DOF column of Fig. 5. Note that its comple-
mentary constraint space consists of (i) constraint lines that
lie on parallel planes, (ii) pure moments that point in all di-
rections as shown by the sphere in Fig. 11a, and (iii) coupled
moment and force lines that lie on the same parallel planes
as the constraint lines. For step 3, we select two constraint
spaces that lie within the system’s constraint space oriented
as shown in Fig. 11b. Each of these spaces is the Type 2
constraint space from the 2 DOF column of Fig. 5 shown in
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Figure 11. Desired system freedom and constraint spaces(a), se-
lecting the limbs’ constraint spaces(b), complementary spaces(c),
selecting intermediate freedom spaces(d), synthesizing flexure el-
ements from intermediate constraint spaces(e) and(f), synthesized
hybrid system(g), and symmetric version(h).

Fig. 11c. This constraint space consist of (i) a plane of con-
straint lines, (ii) a box of parallel constraint lines, (iii) a disk
of pure moments that are perpendicular to these parallel con-
straint lines, and (iv) coupled moment and force lines that
lie on parallel planes as described in Hopkins (2010). The
complementary freedom space of this constraint space con-
sists of a plane of parallel rotation lines and a perpendicular
translation arrow as shown in Fig. 11c. For step 4, we decide
to generate serial limbs from the selected constraint spaces
labelled 1 and 2 in Fig. 11b. Thus, according to the instruc-
tions given in step 4, we continue on with steps 3 through 5 in
Sect. 2.5 using the complementary freedom space in Fig. 11c
to generate the serial limbs. We first generate the limb that
corresponds with the constraint space labelled 1 in Fig. 11b.
For step 3 in Sect. 2.5, we select two intermediate freedom
spaces that lie within the freedom space of Fig. 11c and orient
them as shown in Fig. 11d. Each of these spaces is the Type
1 freedom space from the 1 DOF column of Fig. 5 shown in
Fig. 7b. For step 4 in Sect. 2.5, we note that the complemen-
tary constraint spaces of these intermediate freedom spaces
are also shown in Fig. 7b. We first focus on the complemen-
tary constraint space of the intermediate freedom space la-
belled 1 in Fig. 11d. We select two constraint spaces from
within this space as shown in Fig. 11e. Both constraint spaces
consist of a plane of constraint lines and a perpendicular mo-
ment. Each of these spaces is the Type 1 constraint space
from the 3 DOF column of Fig. 5 shown in Fig. 4a. For step
5 in Sect. 2.5, we use the blue portion of these spaces (i.e., the
region that consists of constraint lines) to generate two blade
flexures shown in Fig. 11e. These flexures join a grounded
body to an intermediate body. We return to the complemen-
tary constraint space of the intermediate freedom space la-
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Figure 12. ElementE1 selected to make serial(a), intermediate
freedom spaces selected withinE1’s effective freedom space(b),
generating blade flexure elements within the intermediate constraint
spaces(c), equivalent hybrid flexure system(d), equivalent hybrid
flexure element(e).

belled 2 in Fig. 11d and repeat the same process to generate
the two flexure blades shown in Fig. 11f. These blade flex-
ures join the intermediate body to the system’s stage. We
now return to the constraint space labelled 2 in Fig. 11b to
generate the system’s other serial limb. We follow the same
steps used to generate the limb of Fig. 11f to synthesize a
similar limb shown in Fig. 11g. A more symmetric version
of the system is shown in Fig. 11h (Awtar et al., 2007). Note
that the system is over-constrained but not under-constrained.
Thus, if the system’s stage is held fixed with respect to its
four grounded bodies, all of its intermediate rigid bodies will
be fully constrained.

As the hybrid system in Fig. 11h consists only of serial
limbs, step 5 from this section was not necessary to perform.
Suppose, however, we wish to change the serial flexure sys-
tem in Fig. 9e into a hybrid system. This process would re-
quire step 5 and is thus a good example to demonstrate how
to change a serial limb into a hybrid limb. According to step
5, therefore, we select the wire flexure elementE1 shown
in Fig. 12a as the element to change. This element’s effec-
tive constraint space is the single constraint line shown in the
figure. Its complementary freedom space is the Type 1 space
from the 5 DOF column of Fig. 5 and is shown in Fig. 8c. Us-
ing this freedom space, we continue on with steps 3 through
5 in Sect. 2.5. For step 3 in Sect. 2.5, we select two inter-
mediate freedom spaces that lie within this space and orient
them as shown in Fig. 12b. Each of these spaces is the Type
1 freedom space from the 3 DOF column of Fig. 5 shown in
Fig. 4a. For step 4 in Sect. 2.5, we note that the complemen-
tary constraint spaces of these intermediate freedom spaces
are planes of constraint lines with orthogonal pure moments
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(Fig. 4a). We select these spaces to generate the elements for
the next step. For step 5 in Sect. 2.5, we use the region of
these spaces that consists of constraint lines only to gener-
ate the two stacked blade flexures shown in Fig. 12c. These
stacked blade flexures constitute a serial flexure system that
possesses the same effective freedom and constraint space
as the wire flexure elementE1 from Fig. 12a. Thus, the se-
rial flexure system of Fig. 12c may replace elementE1 from
Fig. 12a as long as the dashed line at the intersection of the
blades shown in Fig. 12c is collinear with the axis of the wire.
We could thus repeat step 5 from this section for the remain-
ing three elements shown in Fig. 12a to change all the ele-
ments into the same four serial flexure systems from Fig. 12c
as shown in Fig. 12d.

The resulting system is a hybrid system that achieves the
same five DOFs (Fig. 9a) as the serial system of Fig. 12a.
This hybrid system possesses more symmetry, is easier to
fabricate, and is more effective in constraining the unwanted
axial rotation than the system from Fig. 12a. Unfortunately,
however, the hybrid system of Fig. 12d is under-constrained
like the system in Fig. 12a. Thus if it were used as a flex-
ure coupling, for instance, to pass only the torque of one
spinning shaft through to the next, the hybrid system’s inter-
mediate rigid bodies would vibrate with multiple unwanted
DOFs. This issue could be mitigated by effectively eliminat-
ing the intermediate rigid bodies within the system as shown
in Fig. 12e. This reduction in mass significantly improves the
flexure’s dynamic performance. Note also that without inter-
mediate rigid bodies, the flexure is no longer considered a
system but an element because its entire geometry is com-
pliant and acts as a single constraining unit. The element of
Fig. 12e is thus a hybrid flexure element.

The process for generating serial and hybrid flexure el-
ements is twofold. First, designers must use the approach
of this paper to synthesize a serial or hybrid flexure system
that possesses the element’s desired DOFs. Second, design-
ers must eliminate the system’s intermediate rigid bodies to
produce the desired element. It is important to recognize,
however, that not all serial or hybrid systems possess inter-
mediate rigid bodies that can be eliminated like the system
of Fig. 12d. The intermediate rigid body of the serial system
from Fig. 12a, for instance, could not be eliminated without
changing the system’s desired kinematics. Designers should
thus synthesize systems with intermediate rigid bodies that
can be eliminated.

Ten hybrid flexure element examples are provided in
Fig. 13. These elements are each shown with their effective
constraint space. Both elementsE1 and E2 are the Type 3
constraint space from the 5 DOF column of Fig. 5. Note,
therefore, that elementE2 can also be used as a flexure cou-
pling (Soemers, 2010). ElementE3 is the Type 1 space from
the 5 DOF column of Fig. 5,E4 is the Type 1 space from the
1 DOF column,E5 is the Type 1 space from the 6 DOF col-
umn, bothE6 andE7 are the Type 1 space from the 3 DOF
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Figure 13. Hybrid flexure element examples.

column, andE8, E9 andE10 are the Type 2 space from the 4
DOF column.

Having access to a large variety of flexure elements like
those provided in Fig. 13 can help facilitate the rapid syn-
thesis of hybrid flexure systems. Suppose, for instance, we
wished to synthesize a hybrid flexure system that possesses
three translations as shown in Fig. 14a. The system’s free-
dom space is thus the sphere of translation arrows shown in
Fig. 14b. This space is the Type 20 space from the 3 DOF
column of Fig. 5. Its complementary constraint space is the
sphere of pure moments also shown in Fig. 14b. If we de-
sired the system to possess three limbs we could select the
three constraint spaces shown in Fig. 14c. These spaces are
each pure moments that point in different directions. As the
effective constraint space of the hybrid flexure element from
Fig. 12e is a single pure moment that points along the ele-
ment’s axis, we could align the axes of three of these ele-
ments with the axes of the three pure moments selected in
Fig. 14c as shown in Fig. 14d. The resulting flexure sys-
tem achieves the three desired translations over relatively
large ranges with minimal parasitic error. It is symmetric and
easy to fabricate using conventional processes (e.g., waterjet,
wire EDM, and milling) and its topology allows for sym-
metric force-based actuation as shown by the blue arrows in
Fig. 14e. Note that although the system of Fig. 14d consists
of a single rigid stage joined directly to a fixed ground by
flexure elements, the system is not considered parallel but
hybrid. The reason for this classification is that the elements
that join the stage to the ground are hybrid elements.

As a final note, it is important to emphasize that the the-
ory of this paper enables designers to analyse and synthesize
general hybrid flexure systems that consist of combinations
of parallel and serial flexure systems and elements only. It
does not enable designers to analyse and synthesize hybrid
flexure systems with interconnected limbs (i.e., the interme-
diate rigid bodies within one or more limbs are joined to the

www.mech-sci.net/4/319/2013/ Mech. Sci., 4, 319–331, 2013



330 J. B. Hopkins: Hybrid flexure synthesis using FACT

 36 

 1 

 2 

Figure 14. Desired DOFs (a), the system’s freedom and constraint space (b), three limb 3 

constraint spaces (c), final hybrid system (d), and locations for actuating the system (e)  4 

Figure 14. Desired DOFs(a), the system’s freedom and constraint
space(b), three limb constraint spaces(c), final hybrid system(d),
and locations for actuating the system(e).

intermediate rigid bodies of other limbs by various flexure
systems or elements). The principles for analysing and syn-
thesizing this type of hybrid system are the topic of a future
paper.

4 Conclusions

In this paper, we extend the principles of the FACT design ap-
proach such that designers can analyse and synthesize hybrid
flexure systems and elements using geometric shapes. These
shapes enable designers to rapidly generate and compare a
large variety of non-intuitive flexure solutions that achieve
any desired set of DOFs. Guidelines are provided for helping
designers utilize or avoid over-, under-, and exact-constraint
in the systems they synthesize. Hybrid flexure elements are
introduced as useful alternatives to the standard parallel flex-
ure elements widely used by flexure designers (e.g., wire,
blade, living hinge, and notch flexures). Ten hybrid flexure
element examples are provided, and example hybrid flexure
systems are synthesized as case studies. One of these exam-
ples is a novel system that achieves three translations.
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