Mechanical

Open Access

J. B. Hopkins
Lawrence Livermore National Laboratory, 7000 East Avenue L-223, Livermore, CA 94551, USA

Correspondence tal. B. Hopkins (jonathanbhopkins@gmail.com)

Received: 20 March 2013 — Accepted: 12 June 2013 — Published: 1 October 2013

In this paper we introduce the principles necessary to synthesize hybrid flexure systems and ele-
ments. Flexure systems consist of rigid bodies that are joined together by flexure elements that elast cally de-
form to guide the system’s rigid bodies with desired degrees of freedom (DOFs). The principles introduced here
for synthesizing hybrid flexure systems and elements are extensions of the Freedom and Constraint Topologies
(FACT) synthesis approach. FACT utilizes a comprehensive library of geometric shapes from which design-
ers can rapidly consider and compare a multiplicity of flexure concepts that achieve any desired set of DOFs.
Prior to this paper, designers primarily used these shapes to synthesize parallel and serial flexure systems
and elements. With this paper, designers may now use these same shapes to synthesize more general flexures
that consist of various combinations of parallel and serial systems and elements (i.e., hybrid configurations).
As such, designers can access a larger body of flexure solutions that satisfy demanding design requirements.
Instructions for helping designers utilize or avoid the advantages and challenges of over-, under-, and exact-
constraint are also provided. Hybrid systems and elements are analysed and designed as case studies.

are blade flexures and that the hybrid example consists of two
serial flexure systems arranged in parallel.
Similar to flexure systems, flexure elements may be cate-

Flexure systems consist of rigid bodies that are joined to-gorized as parallel, serial, or hybrid. Examples of common
gether by flexure elements (Smith, 2000). These elementparallel flexure elements are wire, blade, living hinge, and
are directionally compliant and thus guide the system’s rigidnotch flexures. These elements are showakroughE, in
bodies to move in prescribed directions called degrees ofjg. 2. Parallel flexure elements impose constraining forces
freedom (DOFs) via elastic deformation. There are threegirectly through all parts of their geometry to the rigid bodies
kinds of flexure systems — parallel, serial, and hybrid (Fig. 1).that they join. As such, if constraining forces are represented
Parallel systems consist of a single rigid body that is directlypy blue lines (called constraint lines in this paper) with an
connected to a fixed or grounded body by flexure elementsaxis that is collinear with the force’s line of action, the entire
Serial systems consist of two or more parallel systems secompliant portion of a parallel element’s geometry can be
quentially stacked in a chain-like configuration. Hybrid sys- filled with these lines passing directly from one of its rigid
tems consist of various combinations of parallel and serialpodies to the next. Consider elemditin Fig. 2 for exam-
systems joined together. Schematic representations of gefple. Only one constraint line fits within its geometry because
eral parallel, serial, and hybrid systems are shown in the tog wire flexure is only capable of imposing an appreciable
portion of Fig. 1. Rigid bodies are shown as rectangles anttonstraining force along its axis. The blade flexée on
flexure elements are shown as springs. Fixed or groundeghe other hand, can impose many forces on its rigid bodies.
bodies are labelle@, intermediate bodies are labelledand  These forces act along the axes of constraint lines that span
motion stages are labellesl Example parallel, serial, and petween these bodies and pass through the planar geometry
hybl’ld flexure systems are shown in the bottom portion of theof the blade (0n|y a few such constraint line examp|es are
same figure. Note that the flexure elements of these examples
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Three kinds of flexure systems — parallel, serial, and hy- Three kinds of flexure elements — parallel, serial, and
brid. hybrid.

bodies in between. Thus, the junctions between these ele-
ments are depicted as black nodes instead of as rectangles in
the schematic portion of Fig. 3. The example serial flexure
element shown in this figure is a bent blade flexure that con-
sists of two parallel blade flexure elements stacked in series.
Hybrid flexure elements consist of various combinations
of parallel and serial elements joined together with no rigid
bodies in between. The example hybrid flexure element
shown in Fig. 3 consists of two pairs of serial bent blade
flexure elements arranged in parallel that are stacked in se-
ries with one another. Unlike parallel flexure elements, serial
and hybrid flexure elements possess geometries that cannot
be entirely filled with constraint lines that directly join their
rigid bodies. Note that no constraint lines can pass between
the rigid bodies and remain within the geometries of either
the serial or hybrid flexure element examples from Fig. 3.
Parallel flexure element examples. Many other examples of parallel, serial, and hybrid flexure
elements are provided in Howell et al. (2013).

The intent of this paper is to introduce the theory neces-
shown in the figure). Likewise, the living hinge and notch sary to synthesize hybrid flexure systems and elements that
flexures,E3 andE4, from Fig. 2 may impose forces on their consist of various combinations of parallel and serial systems
rigid bodies that act along the axes of constraint lines thatand elements of any complexity. This theory is an extension
span between these bodies and pass entirely through the corof the Freedom and Constraint Topologies (FACT) synthe-
pliant portion of their geometries. Fd&is, these lines lie on  sis approach (Hopkins and Culpepper, 2006; Hopkins, 2007).
the surfaces of intersecting planes, andEgrthese lines lie  This approach utilizes a comprehensive library of geometric
within a sphere and intersect at a common point at the neclshapes, similar to the shapes formed by the constraint lines
of the flexure. Other, less common examples of parallel flex-within the examples of Fig. 2, which guide designers in syn-
ure elements are also shown in Fig. 2. These elemé&gts, thesizing flexure systems and elements that achieve any de-
andEg, are shown with constraint lines that fill their geom- sired set of DOFs. These shapes visually embody the mathe-
etry and directly join their rigid bodies. In Figs. 1 and 3, the matics of screw theory (Ball, 1900; Phillips, 1984, 1990) and
springs shown in the schematic portion must represent parenable designers to rapidly consider and compare a multi-
allel flexure elements only to maintain continuity with the plicity of solution concepts in an intuitive way. The shapes of
definitions provided here. FACT have previously been applied to the design of parallel

Serial flexure elements consist of parallel elements stackeflexure systems (Hopkins and Culpepper, 2010), serial flex-
together in serial configurations with no intermediate rigid ure systems (Hopkins and Culpepper, 2011), parallel flexure




elements (Hopkins, 2012; Hopkins et al., 2013), and serial

flexure elements (Hopkins, 2013). In this paper, we briefly PO,
review the principles of these publications and explain how (4 -
these principles can be adapted and applied to the design o( ) I
hybrid flexure systems and elements. Thus, this paper con- T

tains the general theory of FACT necessary to synthesize Fréedom Space Constraint Space
flexure-based motion stages of all configurations.

The ability to synthesize hybrid flexure systems and ele- 4T -
ments as well as those that are configured in paralleloand T,
serial is important because this ability allows designers to T;
consider the entire body of flexure solution concepts that (b) T, - W,
achieve a wider variety of kinematic, elastomechanic, and T<

dynamic design requirements. With this ability, designers are

guaranteed to identify multiple solutions that achieve any set

of desired DOFs. The ability to synthesize hybrid flexure Freedom Space Constraint Space

systems is particularly important because flexures that de-

couple displacement-based actuators within multi-DOF sys, Freedom and constraint spaces for two flexure elements

tems are often hybrid of necessity (Li and Xu, 2009; AW- _ pjade and wire flexure.

tar et al., 2012). Furthermore, the ability to synthesize hy-

brid flexure systems enables designers to create flexure-based

transmission mechanisms that are capable of transformingnd designing hybrid flexure elements that achieve the bene-

any set of input motions into any other set of output mo- fits of under-constrained systems without the usual disadvan-

tions with any desired transmission ratio (Hopkins and Panastages of poor dynamic characteristics, and (iv) a number of

2013). Thus, as hybrid flexure systems enable capabilitiegiovel hybrid flexure elements are provided as examples.

that cannot be achieved using any other configuration, the

comprehensive approach provided here for synthesizing gen-

eral hybrid systems significantly impacts the design of preci-

sion motion stages, nano-positioners, MEMS devices, opticalrhis section reviews the fundamental principles of FACT

mounts, and other general-purpose flexure bearings. necessary to analyse and synthesize parallel and serial flexure
The intuitive approach of this paper stems from the rig- systems. Although the mathematics of these principles have

orous mathematics of screw theory. The shapes of FACT ar@een applied to rigid body mechanisms for many years, only

visual representations of screw systems (Ball, 1900) that conrecently have these principles been applied to the synthesis

sist of line geometries (Klein, 1921; Merlet, 1989) that em- of parallel (Hopkins and Culpepper, 2006, 2010; Hopkins,

body a system’s kinematics. Initially, screw theory was pri- 2007; Su et al., 2009; Su and Tari, 2010) and serial flexure

marily used to design and analyse rigid-body spatial mechasystems (Hopkins, 2010; Hopkins and Culpepper, 2011; Su,

nisms and robotic manipulators (Hunt, 1978; Bothema and2011) These principles will be extended in later sections to

Roth, 1990; Murray et al., 1994; Merlet, 2000). More re- enable designers to analyse and design hybrid flexure sys-
cently, however, screw theory has been used to design angms and elements using FACT.

analyse flexure systems and compliant mechanisms (Kong
and Gosselin, 2004; Hao and Kong, 2013). Although the
principles of FACT are similar to other significant screw-
theory-based approaches for synthesizing flexure systemSonsider the blade flexure element in Fig. 4a, which pos-
(Su et al., 2009; Yu et al., 2010), FACT does not require sesses three DOFs — one translation and two rotations. These
its users to be experienced with the mathematics of screDOFs may be modelled using twist vectdrs, T,, andT3
theory. The intuitive shapes of FACT are thus accessible taespectively (Ball, 1900; Hao and McCarthy, 1998). In this
both novel and experienced designers in that designers angaper, translations are depicted as black arrows along which
required only to visualize geometric shapes to analyse andbodies translate, rotations are depicted as red lines about
design complex flexure systems and elements. which bodies rotate, and screws are depicted as green lines
The specific contributions of this paper are (i) the princi- along and about which bodies simultaneously translate and
ples of FACT are extended such that designers may analysetate with a coupled pitch value. The three DOFs of the
and design hybrid flexure systems that consist of any comblade flexure are not the only ways its rigid body may move.
bination of parallel antr serial systems, (i) rules are pro- It may also move with every combination of these DOFs. If
vided for helping designers utilize the shapes of FACT for these DOFs are simultaneously actuated with various mag-
synthesizing hybrid systems that are either over-, under-, onitudes, the blade’s rigid body will rotate about other lines
exactly-constrained, (iii) the theory is provided for analysing that lie on the plane of the blade as shown highlighted red on
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Figure 5. Comprehensive library of freedom and constraint spaces.

the left side of Fig. 4a. This plane of rotation lines and the tain mindependent wrench vectors according to
orthogonal translation arrow is the element’s freedom space,. n=m )
Freedom space is a geometric shape that represents all the )
ways a body may move. It consists of all the twists that resultNote that the constraint space of the blade flexure in Fig. 4a
from linearly combining the body’s DOF twists. contains three independent wrench vectors (e.g., the pure
Every freedom space uniquely links to a complementaryforce wrench vector#/;, W,, andWs). The number of inde-
or reciprocal space called a constraint space according to theendent wrench vectors within a flexure element’s constraint
principle of duality (Murray et al., 1994). Constraint space is Space is called the element’s order of constraint. Thus a blade
a geometric shape that represents all the ways a rigid bod§lexure’s order of constraint is three.
is constrained by various constraint actions. These actions As another example, consider the wire flexure in Fig. 4b.
may be modelled using wrench vectors (Ball, 1900; Hao andts constraint space is a single constraint line (i.e., pure force
McCarthy, 1998). In this paper, pure moment actions are dewrench vectorW;) because the wire’s geometry is only ca-
picted as black lines with circular arrows about their axes,pable of imposing a single constraining force along its axis.
pure force actions are depicted as blue lines called constrainthe wire flexure’s complementary freedom space consists of
lines (Fig. 2), and coupled moment and force actions are de(i) a disk of translation arrows that are perpendicular to the
picted as orange lines. The constraint space of the blade flexaxis of the wire, (ii) rotation lines that lie on planes that inter-
ure in Fig. 4a is a plane of blue constraint lines and an or-Sect this axis, and (iii) screw lines that lie on the surfaces of
thogonal pure moment. This means that the blade can onlgircular hyperboloids and disks (Hopkins, 2010), which are
impose constraining forces along the plane of the blade andot shown in Fig. 4b to avoid visual clutter. Consistent with
a moment perpendicular to this plane. Note that every lineEd. (1), the wire flexure’s freedom space contains five inde-
that directly joins the blade’s rigid bodies and passes enpendent twist vectors or DOFs (e.@y, throughTs shown in
tirely through its geometry lies within the blue portion of this Fig. 4b). Note that a wire flexure’s order of constraint is one.
constraint space (i.e., the portion that consists of constraint There are a finite number of complementary freedom and
lines). constraint space pairs called types. These types are provided
If a freedom space contains DOFs (i.e., independent in Fig. 5 and are described in detail in Hopkins (2010). The

twist vectors), its complementary constraint space will con-specific geometries of these types are not important to un-
derstand for the purposes of this paper. What is important to

Mech. Sci., 4, 319-331, 2013 www.mech-sci.net/4/319/2013/



recognize is that there are fifty types that are numbered anc
organized into seven columns that pertain to the number of
DOFs contained within each type’s freedom space. Note that{ g
the freedom and constraint space pair of the blade flexure in
Fig. 4a is Type 1 in the 3 DOF column of Fig. 5 and that
the freedom and constraint space pair of the wire flexure in

Effective
Constraint
Space

Fig. 4bis Type 1 in thg 5 DOF colgmn. . ) M Effective
The types that lie within the outlined region labelled “Par- ||!|! Freedom

allel Pyramid” in Fig. 5 contain all of the pertinent free- iiill Space

dom and constraint space pairs necessary for analysing an S=-Sis=

synthesizing parallel flexure systems and elements. In othet — :

words, no parallel flexure system or element can achieve the I ==

Thus, the freedom and constraint space pairs that correspon
with the six parallel flexure elements shown in Fig. 2 all lay =

within this pyramid. The constraint lines within elemedsy Freedom SpaCe Constraint Space
from Fig. 2 lie within the constraint space of Type 1 inthe 1
DOF column of Fig. 5. The constraint lines within element Linearly combine constraints in paralled) or find the
E4 from Fig. 2 lie within the constraint space of Type 3 in the intersection of their freedom spacs to find the system’s com-
3 DOF column of Fig. 5. The constraint lines within element plementary freedom and constraint spa@s

Es from Fig. 2 lie within the constraint space of Type 7 in the

3 DOF column of Fig. 5. The constraint lines within element

Ee from Fig. 2 lie wiFhin the constraint space of Type 8 inthe tam's dfective constraint space may be determined by lin-
2 DOF column of Fig. S. o _early combining the two pure force wrench vectors shown
‘Others have classified screw systems similar to those iys parallel constraint lines in Fig. 6a. The resulting space is
Fig. 5 for diferent applications using ffierent criteria. Gib- g plane of parallel constraint lines and a pure moment that
son and Hunt (1990) introduced an approach for classify-s perpendicular to this plane as shown on the right side of
ing screw systems based on projective geometry. Rico anghe figure. According to the second principle, the system’s
Dufty (1992) proposed a classification based upon the theorygective freedom space may be determined by identifying
of orthogonal spaces and subspaces by examining the chajie intersection of the freedom spaces of both wire flexures
acteristics of the reciprocal basis of screw systems. The 9€QqFig. 4b) shown in Fig. 6b. The rotation lines that are com-
metric shapes in Fig. 5 are complete and have been classifigg o, among these freedom spaces lie on the plane that con-
to facilitate the rapid analysis and synthesis of parallel, seyains the two wire flexures and are parallel with the axes of
rial, and hybrid flexure systems and elements. Thus, no flexyhese flexures and thus lie within an infinitely large box as
ure system or element exists, which cannot be analysed oghown. The translation arrows that are common among these
synthesized using the spaces within this library. freedom spaces lie within a disk that is perpendicular to the
axes of the wire flexures. Note that the locations of these
translation arrows are unimportant as translation twists are
solely directional. The screw lines that are common among
these freedom spaces are not shown in Fig. 6b to avoid visual
clutter. These screw lines, described in Hopkins (2010), are
1. The wrench vectors within the constraint spaces ofShown with the othertrgnslation arrows qnd rotation lines in
a parallel flexure system’s flexure elements may pethe freedom space of Fig. 6¢. Note from Fig. 6¢ that tiiece

linearly combined to generate théfective constraint Ve constraint space of the system (Fig. 6a) andffsotive
space of the entire system. freedom space (Fig. 6b) are complementary spaces and are

labelled Type 2 in the 4 DOF column of Fig. 5. Moreover,
2. The dfective freedom space of a parallel flexure systemnote that it does not matter that the systenffeaive spaces
consists of the intersection of the freedom spaces of evshown in Fig. 6a and b are orientedfdrently than they are
ery flexure element within the system. In other words, in Fig. 6c.
a parallel flexure system’s freedom space consists of
the twist vectors that are common among the freedom
spaces of the system'’s flexure elements.

DOFs of the freedom spaces that lie outside of this pyramid. (C) %7 = — “/j{#//

The following two principles are important for determining
the kinematics of any parallel flexure system:

Consider the parallel flexure system that consists of two wireThere are four steps to synthesize parallel flexure systems:
flexures in Fig. 6. According to the first principle, the sys-  Step lidentify the system’s desired DOFs.



Step 2:identify the corresponding freedom space from

Fig. 5 that contains the DOFs of step 1. This freedom space i

will result from the linear combination of the twists of those

DOFs and is the system'dfective freedom space. If this

freedom space lies outside of the Parallel Pyramid from the

library of Fig. 5, it is not possible to synthesize a parallel

flexure system that achieves the desired DOFs from step 1 ﬁ

In this case, the designer must synthesize either a serial 0

hybrid flexure system to achieve these DOFs. (a)
Step 3 select constraint spaces that lie within the comple-

mentary constraint space of the freedom space of step 2 (i.e.
the system’s fective constraint space). The number of con- -

flexure elements within the system. These constraint space: EHI MU O 17

straint spaces selected will determine the number of parallel

must lie within the Parallel Pyramid of Fig. 5 to the right Freedom

of the column that contains the system’s constraint space. Space
Designers can also select the systenffeaive constraint . .
space itself as one of these spaces. Any number of viablée Desired DOFga) belong to a freedom space that links
constraint spaces may be selected as long as the total nurf2 & complementary constraint spgeg within which flexure ele-
ber of independent wrench vectors from all of the selectedMents may be selectéd).

spaces combined equals the number of independent wrench

vectors within the system’s constraint space. The same COMYOE column of Fig. 5 shown in Fig. 4a. We orient these two
straint space may be selected multiple times. planar constraint spaces within the systentieaive con-

.Step 4598“¢r?te parallel flexgre elements with 9E0Me-giraint space as shown in Fig. 7c. For step 4, we use the region
tries that lie within the blue portions of these selected con—g

: : . ~ of these spaces that consists entirely of constraint lines to
straint Spaces (i.e., the regions of th_e spaces t_h?t consist Qo nerate flexure blades that connect the system’s stage to its
constraint lines). A subset of constraint lines within each Offixed ground as shown. The resulting parallel flexure system
these spaces should entirely fill and directly pass throug Fig. 7c) achieves the desired rotation DOF. Note, however
the geometry of the space’s element and join the system’ hat the system is over-constrained becauseﬂiw&\/:e con- ,
rigid stage tolits fixed grqund. This subset of constraint IinesStraint space (Fig. 7b) consists of five independent wrench
should contain as many independent pure force wrench V€&ectors while the sum of the order of constraint of each par-

tors_ as mdepfendenth_w;]er;]ch }/ectors_wnhln the gzntlre CONllel flexure element within the system is six. Recall that the
straint space from which the eement Is generated. order of constraint of a flexure blade is three.
If the sum of the order of constraint of every parallel flex-

ure element within the final system equals the number of
independent wrench vectors within the system’s constraint
space, the system is exactly-constrained (Blanding, 1999). Ifrhe following two principles are important for determining
this sum is greater than the number of independent wrenclhe kinematics of any serial flexure system:
vectors within the system’s constraint space, the system is
over-constrained. 1. The twist vectors within the freedom spaces of the par-
An example is provided to demonstrate the approach of allel flexure system constituents may be linearly com-
this section. Suppose for step 1 we wish to synthesize a par-  Pined to generate thefective freedom space of the en-
allel flexure system that possesses a single rotation DOF as tire serial flexure system.
shown in Fig. 7a. For step 2, the freedom space of a rota-
tion DOF is a single rotation line as shown in Fig. 7b. This
space is the Type 1 freedom space from the 1 DOF column of
Fig. 5. Its complementary constraint space shown in Fig. 7b
consists of (i) constraint lines that lie on planes that inter-
sect the rotation line, (ii) a disk of pure moment lines that
point in directions that are perpendicular to the axis of the
rotation line, and (iii) coupled moment and force lines that
lie on the surfaces of circular hyperboloids and disks as deConsider the serial flexure system in Fig. 8 that consists of
scribed in Hopkins (2010). For step 3, we select two con-the two parallel flexure systems from Figs. 6 and 7c stacked
straint spaces that lie within this constraint space. The twaogether. According to the first principle, the systenfiee-
selected spaces are the Type 1 constraint space from thet®&e freedom space may be determined by linearly combining

(b) | Constréint Space‘

2. The dfective constraint space of a serial flexure system
consists of the intersection of the constraint spaces of
the parallel flexure system constituents within the sys-
tem. In other words, a serial flexure system’s constraint
space consists of the wrench vectors that are common
among the constraint spaces of the parallel flexure sys-
tem constituents.



Effective
Freedom
Space

constituents within the overall system. These freedom spaces
must lie within the Parallel Pyramid of Fig. 5 to the left of
the column that contains the system’s freedom space. De-
signers can also select the systentfeetive freedom space
itself as one of these spaces as long as it lies within the Par-

allel Pyramid. Any number of viable intermediate freedom
spaces may be selected as long as the total number of inde-
pendent twist vectors from all of the selected spaces com-
bined equals the number of independent twist vectors within

Effective the system’s freedom space. The same freedom space may be

Constraint selected multiple times.

Space Step 4:select constraint spaces that lie within the com-
plementary constraint spaces of the selected intermediate
freedom spaces from step 3 (i.e., the system’s intermedi-
ate constraint spaces). The number of constraint spaces se-
lected from each intermediate constraint space will deter-

=) mine the number of parallel flexure elements within each par-

allel flexure system constituent. These constraint spaces must
lie within the Parallel Pyramid of Fig. 5 to the right of the
column that contains the intermediate constraint space from
which they are selected. Designers can also select the inter-
mediate constraint space itself as one of these spaces. Any
number of viable constraint spaces may be selected as long
as the total number of independent wrench vectors from all of

. o ) the selected spaces combined equals the number of indepen-

the twist vectors within the two freedom spaces of Figs. 6bgent wrench vectors within the intermediate constraint space

and 7a as shown in Fig. 8a. The resulting space (Fig. 8aj;om which they are selected. The same constraint space may
is the same freedom space shown in Fig. 4b. According tq,¢ selected multiple times.

the second principle, the systemBegtive constraint space  giep 5:generate parallel flexure elements with geometries

may be determined by identifying the intersection of the con-iha¢ Jie within the selected constraint spaces from step 4.

straint spaces of both parallel flexure system constituentshese geometries must be selected from within the blue re-

shown in Figs. 6a and 7c and again in Fig. 8b. The onlygions of these spaces (i.e., the regions that consist of con-
wrench vector thatis common among these constraint Space§aint lines only). A subset of constraint lines within each

is the constraint line shown in Fig. 8b. Note from Fig. 8¢ f these spaces should entirely fill and directly pass through
thgt the &ecn_ve freedom space of the sengl flexure systemiq geometry of the space’s element and join the appropriate

(Fig. 8a) and its ffective constraint space (Fig. 8b) are com- yiqiq hodies within the system. This subset of constraint lines

plementary spaces and are labelled Type 1 in the 5 DOF colgyoyid contain as many independent pure force wrench vec-

umn of Fig. 5. Moreover, note that the circular hyperboloids s a5 independent wrench vectors within the entire interme-

and disks that contain the screw lines of the freedom spacgjate constraint space from which the element is generated.

mentioned previously are also shown in Fig. 8c. The rigid bodies that a particular element should join pertain
to the intermediate constraint space from which the element’s
constraint space was selected. Ultimately, the stage of the se-
rial flexure system should be joined from one intermediate

There are five steps to synthesize serial flexure systems:  rigid body to the next by the elements from each interme-

Step lidentify the system’s desired DOFs. diate constraint space until the system is joined to a fixed
Step 2:identify the corresponding freedom space from ground.

Fig. 5 that contains the DOFs of step 1. This freedom space If the sum of the order of constraint of every parallel flex-

will result from the linear combination of the twists of those ure element within one or more parallel flexure system con-

DOFs and is the system’sfective freedom space. stituents within the serial system is greater than the number

Step 3:select intermediate freedom spaces from within theof independent wrench vectors within the constraint space
freedom space of step 2. These intermediate freedom spaces$ the corresponding parallel flexure system constituent, the
correspond with the freedom spaces of the parallel flexureoverall serial system is over-constrained.

system constituents within the serial system being synthe- If, however, the sum of the number of DOFs within each

sized. Thus, the number of intermediate freedom spaces seelected intermediate freedom space from step 3 exceeds the

lected will determine the number of parallel flexure systemnumber of total independent twist vectors within all of these

Ll e Constraint
Freedom Space Space

Linearly combine freedom spaces in ser{a} or find
the intersection of their constraint spade$ to find the system’s
complementary freedom and constraint spgcgs



is a single constraint line and is the Type 1 constraint space
from the 5 DOF column of Fig. 5 shown in Fig. 8c. For step

4,7 Q - 5, we use these constraint lines to generate wire flexures. The
— = two wire flexures generated from the intermediate constraint
Freedom Space Constraint space on the top join the system’s stage to an intermediate
Space rigid body. The two wire flexures generated from the inter-
(b) mediate constraint space on the bottom join the same inter-

mediate rigid body to a fixed ground as shown in Fig. 9d. The
final serial flexure system shown in Fig. 9e achieves the de-
sired five DOFs. Note that the system is not over-constrained
because the sum of the order of constraint of both wire flex-
ures in each intermediate constraint space is two and two is
the number of independent wrench vectors within each of
(d) (e) these spaces. The system is, however, under-constrained be-
cause the sum of the DOFs from both intermediate freedom
_Desired DOFs(a), system's freedom and constraint gpaces selected in Fig. 9c is eight (i.e., four from each) but the
space(b), intermediate freedom spaces selected from the System§,o) hymper of independent twist vectors within these two
fr.eedom Spa(?e(c)’ flexure elements.selected. from the interme- spaces combined is only five. Note, therefore, from Fig. 9e
diate constraint space@l), and the intermediate body’s under- ] . - o o
constrained DOF) that when thg system's sta_gg is held fixed with respect to its
ground, the intermediate rigid body possesses three DOFs
that are not constrained — two translations and one rotation.
Although this system is under-constrained and not practical
spaces combined, the system is under-constrained (Blandingg use in its current form, we will return to it in a later section
1999; Hopkins and Culpepper, 2011). The intermediate rigidto make it more practical as a hybrid flexure element.
bodies of an under-constrained system often possess DOFs
that are not constrained even when the final system’s stage
is held fixed relative to its ground. As such, the performance
of an under-constrained systentisus from unwanted vibra- - Thjs section applies the principles of the previous section to

tions and poor controllability. Note that only serial and hy- enable the analysis and synthesis of hybrid flexure systems
brid flexure systems are susceptible to under-constraint begnd elements.

cause, unlike parallel flexure systems, serial and hybrid sys-
tems possess intermediate rigid bodies.

An example is provided to demonstrate the approach of
this section. Suppose for step 1 we wish to synthesize a seFhe stage of a general hybrid flexure system is joined to
rial flexure system that possesses five DOFs — three tranground via flexure limbs arranged in parallel. Each limb can
lations and two rotations as shown in Fig. 9a. For step 2be a parallel, serial, or hybrid flexure system or element. As
the freedom space of these five DOFs consists of (i) rotathe limbs of a hybrid system are arranged in parallel, the
tion lines that lie on parallel planes, (ii) translation arrows principles for analysing their kinematics are similar to those
that point in all directions as shown by the sphere in Fig. 9b,given in Sect. 2.2 for analysing parallel flexure systems. That
and (iii) screw lines that lie on the same parallel planes ass, the wrench vectors within thefective constraint spaces
the rotation lines. This freedom space is the Type 3 spac®f each limb may be linearly combined to generate the con-
from the 5 DOF column of Fig. 5. Note that its complemen- straint space of the entire hybrid system, and the hybrid sys-
tary constraint space is a pure moment that is perpendiculatem’s freedom space is the intersection of each limbisce
to the parallel planes of the freedom space and points alongjve freedom space.
the axis of the rotation that we wish to constrain. For step 3, As an example, consider the hybrid flexure system in
we select two intermediate freedom spaces that lie within the=ig. 10 that consists of two limbs arranged in parallel. Each
system’s freedom space and orient them as shown in Fig. 9mb is the serial flexure system from Fig. 8. The hybrid sys-
with one on top of the other. Each of these selected spaces iem'’s dfective constraint space may be determined by lin-
the Type 2 freedom space from the 4 DOF column of Fig. 5early combining the two pure force wrench vectors from the
shown in Fig. 6¢. For step 4, we note that the complementaneffective constraint spaces of each limb (Fig. 8b) as shown
constraint space of each these intermediate freedom spaces Fig. 10a. The resulting space is the same as that shown
is the planar constraint space of parallel constraint lines dein Fig. 6a. The system’sfiective freedom space may be de-
scribed in Fig. 6a and c. We select two constraint spaces fromermined by identifying the intersection of thiextive free-
within each of these intermediate constraint spaces of paraldom spaces of both serial flexure systems (Fig. 8a) as shown
lel constraint lines (Fig. 9d). Each of these constraint space# Fig. 10b. The resulting space is the same as that shown in




that space to continue on with steps 3 through 4 in Sect. 2.3 to
) generate the limb. If the constraint space is intended to gen-
Effective erate a serial limb, the designer should determine this space’s
ggggéralnt complementary freedom space and use that space to continue
on with steps 3 through 5 in Sect. 2.5 to generate the limb.
If the constraint space is intended to generate a hybrid limb,
the designer should first create a serial limb using the instruc-
tions from the previous sentence and then continue on to the
Effecti next step to make the limb hybrid. If none of the limbs are
ective . . . - : .
Freedom intended to be hybrid, the final system is complete with this
I III' Space step.
‘ I | Step 5:identify a parallel flexure element or a group of
s parallel flexure elements within a parallel flexure system con-
stituent within the desired serial limb from step 4 and linearly
Linearly combine the constraint spaces of linfasor ~ combine the wrench vectors within the constraint spaces of
find the intersection of their freedom spades to find a hybrid  these elements to generate dfeetive constraint space for
system’s complementary freedom and constraint spaces. that group of elements. Then identify this space’s comple-
mentary freedom space using the library of Fig. 5 and apply

) ) , this freedom space to steps 3 through 5 in Sect. 2.5 to gener-
Fig. 6b. The hybrid system's complementary spaces are thuge 4 serial flexure system within the parallel flexure system
the Type 2 spaces in the 4 DOF column of Fig. 5 shown incopstituent of the original serial limb. Designers can use this

Fig. 6c. step multiple times with dierent groups of elements within
the same parallel flexure system constituent or withifedi
ent parallel flexure system constituents within the same serial
limb to change it into a hybrid limb of any variety.
There are five steps to synthesize general hybrid flexure sys- If the sum of the number of independent wrench vectors
tems: within each individual constraint space selected from step
Step lidentify the system’s desired DOFs. 3 is greater than the number of independent wrench vectors
Step 2:identify the corresponding freedom space from within the hybrid system’s overall constraint space, or if the
Fig. 5 that contains the DOFs of step 1. This freedom spacesum of the order of constraint of every parallel flexure ele-
will result from the linear combination of the twists of those ment within one or more parallel flexure system constituents
DOFs and is the system’stective freedom space. within the hybrid system is greater than the number of in-
Step 3:select constraint spaces that lie within the com- dependent wrench vectors within the constraint space of the
plementary constraint space of the freedom space from steporresponding parallel flexure system constituent, the overall
2 (i.e., the system’s constraint space). Each limb of the hy-hybrid system is over-constrained.
brid flexure system is generated from one of these constraint If, however, any limbs within a hybrid flexure system con-
spaces. These constraint spaces can belong to any columain one or more serial flexure systems that are undercon-
within the library of Fig. 5 to the right of the column that strained according to the criteria of Sect. 2.5, the entire hy-
contains the system’s constraint space. Note that these spacksd system is also underconstrained as it will contain inter-
do not need to lie within the Parallel Pyramid of Fig. 5 un- mediate bodies that are not constrained when its final stage
less they are intended to be used to generate a parallel limis held fixed with respect to its ground.
(i.e., a limb that consists of parallel flexure elements that di- An example is provided to demonstrate the approach of
rectly connect the system’s stage to ground). Designers cathis section. Suppose for step 1 we wish to synthesize a hy-
also select the system’s constraint space itself as one of thedwid flexure system that possesses a single translation DOF.
spaces. Any number of viable constraint spaces may be sd~or step 2, the freedom space of this DOF is a translation
lected as long as the total number of independent wrenclarrow shown in Fig. 11a. This freedom space is the Type 3
vectors from all of the selected spaces combined equals thepace from the 1 DOF column of Fig. 5. Note that its comple-
number of independent wrench vectors within the system’smentary constraint space consists of (i) constraint lines that
constraint space. The same constraint space may be selectle on parallel planes, (ii) pure moments that point in all di-
multiple times. rections as shown by the sphere in Fig. 11a, and (iii) coupled
Step 4.determine what type of limb each constraint spacemoment and force lines that lie on the same parallel planes
selected from step 3 is intended to generate. If the constrairds the constraint lines. For step 3, we select two constraint
space is intended to generate a parallel limb and it belongspaces that lie within the system’s constraint space oriented
within the Parallel Pyramid of Fig. 5, the designer should de-as shown in Fig. 11b. Each of these spaces is the Type 2
termine this space’s complementary freedom space and ussonstraint space from the 2 DOF column of Fig. 5 shown in
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lecting the limbs’ constraint spacés), complementary spacés),
selecting intermediate freedom spael synthesizing flexure el-
ements from intermediate constraint spa@and(f), synthesized
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ElementE; selected to make serigh), intermediate
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generating blade flexure elements within the intermediate constraint
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Fig. 11c. This constraint space consist of (i) a plane of con-

straint lines, (ii) a box of parallel constraint lines, (iii) a disk belled 2 in Fig. 11d and repeat the same process to generate
of pure moments that are perpendicular to these parallel corthe two flexure blades shown in Fig. 11f. These blade flex-
straint lines, and (iv) coupled moment and force lines thatures join the intermediate body to the system’s stage. We
lie on parallel planes as described in Hopkins (2010). Thenow return to the constraint space labelled 2 in Fig. 11b to
complementary freedom space of this constraint space corgenerate the system’s other serial limb. We follow the same
sists of a plane of parallel rotation lines and a perpendiculaisteps used to generate the limb of Fig. 11f to synthesize a
translation arrow as shown in Fig. 11c. For step 4, we decidesimilar limb shown in Fig. 11g. A more symmetric version
to generate serial limbs from the selected constraint spacesf the system is shown in Fig. 11h (Awtar et al., 2007). Note
labelled 1 and 2 in Fig. 11b. Thus, according to the instruc-that the system is over-constrained but not under-constrained.
tions given in step 4, we continue on with steps 3 through 5 inThus, if the system’s stage is held fixed with respect to its
Sect. 2.5 using the complementary freedom space in Fig. 11four grounded bodies, all of its intermediate rigid bodies will
to generate the serial limbs. We first generate the limb thabe fully constrained.

corresponds with the constraint space labelled 1 in Fig. 11b. As the hybrid system in Fig. 11h consists only of serial
For step 3 in Sect. 2.5, we select two intermediate freedomimbs, step 5 from this section was not necessary to perform.
spaces that lie within the freedom space of Fig. 11c and orienSuppose, however, we wish to change the serial flexure sys-
them as shown in Fig. 11d. Each of these spaces is the Typgem in Fig. 9e into a hybrid system. This process would re-
1 freedom space from the 1 DOF column of Fig. 5 shown inquire step 5 and is thus a good example to demonstrate how
Fig. 7b. For step 4 in Sect. 2.5, we note that the complemento change a serial limb into a hybrid limb. According to step
tary constraint spaces of these intermediate freedom spacés therefore, we select the wire flexure elemg&atshown

are also shown in Fig. 7b. We first focus on the complemen-in Fig. 12a as the element to change. This elemeffiitce

tary constraint space of the intermediate freedom space lative constraint space is the single constraint line shown in the
belled 1 in Fig. 11d. We select two constraint spaces fromfigure. Its complementary freedom space is the Type 1 space
within this space as shown in Fig. 11e. Both constraint spacefrom the 5 DOF column of Fig. 5 and is shown in Fig. 8c. Us-
consist of a plane of constraint lines and a perpendicular moing this freedom space, we continue on with steps 3 through
ment. Each of these spaces is the Type 1 constraint spacgein Sect. 2.5. For step 3 in Sect. 2.5, we select two inter-
from the 3 DOF column of Fig. 5 shown in Fig. 4a. For step mediate freedom spaces that lie within this space and orient
5in Sect. 2.5, we use the blue portion of these spaces (i.e., ththem as shown in Fig. 12b. Each of these spaces is the Type
region that consists of constraint lines) to generate two bladd. freedom space from the 3 DOF column of Fig. 5 shown in
flexures shown in Fig. 11e. These flexures join a grounded-ig. 4a. For step 4 in Sect. 2.5, we note that the complemen-
body to an intermediate body. We return to the complemen-+ary constraint spaces of these intermediate freedom spaces
tary constraint space of the intermediate freedom space laare planes of constraint lines with orthogonal pure moments



(Fig. 4a). We select these spaces to generate the elements fc
the next step. For step 5 in Sect. 2.5, we use the region of
these spaces that consists of constraint lines only to gener
ate the two stacked blade flexures shown in Fig. 12c. These
stacked blade flexures constitute a serial flexure system tha
possesses the samffeetive freedom and constraint space
as the wire flexure elemeit; from Fig. 12a. Thus, the se-
rial flexure system of Fig. 12c may replace elemgnfrom

Fig. 12a as long as the dashed line at the intersection of the
blades shown in Fig. 12c is collinear with the axis of the wire.
We could thus repeat step 5 from this section for the remain-
ing three elements shown in Fig. 12a to change all the ele-
ments into the same four serial flexure systems from Fig. 12c Sy,
as shown in Fig. 12d.

The resulting system is a hybrid system that achieves the @ @ @ @
same five DOFs (Fig. 9a) as the serial system of Fig. 12a.
This hybrid system possesses more symmetry, is easier t0 Hybrid flexure element examples.

fabricate, and is morefkective in constraining the unwanted
axial rotation than the system from Fig. 12a. Unfortunately,
however, the hybrid system of Fig. 12d is under-constraineccolumn, andeg, Eg andE; are the Type 2 space from the 4
like the system in Fig. 12a. Thus if it were used as a flex-DOF column.
ure coupling, for instance, to pass only the torque of one Having access to a large variety of flexure elements like
spinning shaft through to the next, the hybrid system’s inter-those provided in Fig. 13 can help facilitate the rapid syn-
mediate rigid bodies would vibrate with multiple unwanted thesis of hybrid flexure systems. Suppose, for instance, we
DOFs. This issue could be mitigated bijextively eliminat-  wished to synthesize a hybrid flexure system that possesses
ing the intermediate rigid bodies within the system as showrthree translations as shown in Fig. 14a. The system’s free-
in Fig. 12e. This reduction in mass significantly improves thedom space is thus the sphere of translation arrows shown in
flexure’s dynamic performance. Note also that without inter- Fig. 14b. This space is the Type 20 space from the 3 DOF
mediate rigid bodies, the flexure is no longer considered acolumn of Fig. 5. Its complementary constraint space is the
system but an element because its entire geometry is consphere of pure moments also shown in Fig. 14b. If we de-
pliant and acts as a single constraining unit. The element o§ired the system to possess three limbs we could select the
Fig. 12e is thus a hybrid flexure element. three constraint spaces shown in Fig. 14c. These spaces are
The process for generating serial and hybrid flexure el-each pure moments that point inffiérent directions. As the
ements is twofold. First, designers must use the approackftective constraint space of the hybrid flexure element from
of this paper to synthesize a serial or hybrid flexure systenfig. 12e is a single pure moment that points along the ele-
that possesses the element’s desired DOFs. Second, desigment’s axis, we could align the axes of three of these ele-
ers must eliminate the system’s intermediate rigid bodies tanents with the axes of the three pure moments selected in
produce the desired element. It is important to recognizeFig. 14c as shown in Fig. 14d. The resulting flexure sys-
however, that not all serial or hybrid systems possess intertem achieves the three desired translations over relatively
mediate rigid bodies that can be eliminated like the systemarge ranges with minimal parasitic error. It is symmetric and
of Fig. 12d. The intermediate rigid body of the serial systemeasy to fabricate using conventional processes (e.g., waterjet,
from Fig. 12a, for instance, could not be eliminated without wire EDM, and milling) and its topology allows for sym-
changing the system’s desired kinematics. Designers shoulthetric force-based actuation as shown by the blue arrows in
thus synthesize systems with intermediate rigid bodies thaFig. 14e. Note that although the system of Fig. 14d consists
can be eliminated. of a single rigid stage joined directly to a fixed ground by
Ten hybrid flexure element examples are provided inflexure elements, the system is not considered parallel but
Fig. 13. These elements are each shown with thiéécdve  hybrid. The reason for this classification is that the elements
constraint space. Both elemerifs and E, are the Type 3 that join the stage to the ground are hybrid elements.
constraint space from the 5 DOF column of Fig. 5. Note, As a final note, it is important to emphasize that the the-
therefore, that elemerit, can also be used as a flexure cou- ory of this paper enables designers to analyse and synthesize
pling (Soemers, 2010). Elemeht is the Type 1 space from general hybrid flexure systems that consist of combinations
the 5 DOF column of Fig. 54 is the Type 1 space from the of parallel and serial flexure systems and elements only. It
1 DOF columnEs is the Type 1 space from the 6 DOF col- does not enable designers to analyse and synthesize hybrid
umn, bothEg andE; are the Type 1 space from the 3 DOF flexure systems with interconnected limbs (i.e., the interme-
diate rigid bodies within one or more limbs are joined to the
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