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PRBMs (pseudo-rigid-body models) have been becoming important engineering technolo-
giegmethods in the field of compliant mechanisms to simplify the design and analysis through the use of
the knowledge body of rigid-body mechanisms coupling with springs. This article addresses the PRBMs of
spatial multi-beam modules for planar motion, which are composed of three or more symmetritsénder
beams parallel to each other where the planar twisting DOF (degree of freedom) is assumed to be viry small
for specific applicationtoading conditions. Simplified PRBMs are firstly proposed through replacing each
beam in spatial multi-beam module with a rigid-body link plus two identical spherical joints at its two ends.
The characteristics factor, bendingitess and twisting gthess for the spherical joint are determined. Lcad-
displacement equations are then derived for a class of spatial multi-beam modules and general spatial multi-
beam modules using the virtual work principle and kinematic relationships. Finally, nonlinear FEA (finite
element analysis) is employed with comparisons with the PRBMs. The present PRBMs have shown thie ability
to predict the primary nonlinear constraint characteristics such as |dgeehstg dfect, cross-axis coupling in
the two primary translational directions and buckling load.

A spatial multi-beam module is a spatial compliant mech-
anismjoint that has compatible size in three dimen-
sions, which transmits motidoad through the deforma-
tion of its flexible members. This article studies a class
of symmetrical-beam based spatial compliant parallel mod-
ules with distributed-compliance for planar motion (“spatial
multi-beam module” in brief), which are composed of three
or more parallel wirgslender beams connecting the base and
the motion stage. Two primary applications for this class of
spatial multi-beam modules are identified as follows:

a. The spatial multi-beam module may act asiraepen-
dent motion stagactuated by the non-contact electro-

to the fact that the output motion stage acts as the input
stage as well, no lost motion exists and fewer sensors
are needed.

b. A spatial multi-beam module can also be used as the ba-

sic building blockof new multi-axis compliant parallel
manipulators, for example as a spatial leg to enhance the
out-of-plane sfiness of an XY compliant parallel ma-
nipulator (Hao and Kong, 2012a), and as a passive PPR
(P: prismatic joint, R: revolute joint) joint of an XYZ
compliant parallel manipulator (Hao and Kong, 2012b)
(Fig. 2).

In addition, the spatial multi-beam modules composed of

magnetic (EM) actuators (an example desktop-size XYwire/slender beams may promote the fabricatiging the
compliant parallel manipulator is shown in Fig. 1). This carbon nanotubes (CNTsYhis may lead to novel CNT-
motion stage has a very simple configuration and largebased compliant mechanisms used in the emerging nano-
out-of-plane stiness, and has no the hedliieet from  electro-mechanical-systems (NEMS) (Howell et al., 2010;
the EM actuator due to the non-contact actuation. DueCulpepper et al., 2006).
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ment suggestions are discussed in Sect. 4. Finally, conclu-
A sions are drawn.

2 Simplified PRBMs of spatial multi-beam modules

2.1 Simplified PRBM for a fixed-fixed beam in planar
motion

The simplified PRBM of a fixed-fixed beam with a length of

L in planar motion has been suggested by the previous work
(Howell, 2001) where two rotational joints with each rota-
tional spring stifnessKy, are each located the same distance
from their respective end and the rigid-body link has a length
of yL. These arguments may provide a strong reference for
the PRBM of the fixed-fixed beam in spatial motion in a

Figure 1. A desktop-size XY compliant parallel manipulator ac- Stralghtforward way. The b_endlng ﬁness,,Kb =2yKqEIl/L

tuated by two EM actuators (where the twisting rotation about the(ie> bending stiness cofficient, E, Young's Modulus, and

z axis is well constrained by appropriately setting up the ratio of |- Second moment of cross-section area), and the character-

the motion stage size to the wire beam length and making beamistic factor,y, can be obtained from the analytical nonlinear

distribute around multiple circles). model of a parallelogram flexure module composed of two
fixed-fixed leaf beams (Awtar and Slocum, 2007) as derived
below.

Over the past decade, PRBMs (pseudo-rigid-body models) The virtual work princ?ple (Howell, 2001) for the parallel-
(Howell et al., 1996; Howell, 2001; Su, 2009; Ramirez and °gram flexure module yields
Lusk, 2011) have drawn plenty of attentions due to dramati- oU
cally simplifying the design and analysis of compliant mech- FydYs+ PdXs = WdYS (1)
anisms using the knowledge body of rigid-body mechanisms s
with springs. In PRBM, the compliant beams are typically re- where the variabl¥; is the generalized coordinate that is the
placed with the pseudo-rigid-body link(s) coupling with one primary translational displacement of the motion stage center
or more characteristic pivots with specified springfséiss  along they axis.Xs = —[1—COS(;—E)]7L = —(;—E)ZYL/Z, which
located at specified position(s). Most researches have beds the parasitic translational displacement of the motion stage
conducted for proposing PRBMs of planar-motion compliantalong thex axis (see Fig. 3 for the detaild}, andP are the
mechanisms with planar-motion members such as the fixedtransverse force and the axial force along yrend x axes,
free beam, fixed-guided beam, parallelogram mechanismiespectively, and is the total elastic energy from the defor-
cartwheel rotational joint and fixed-clamped carbon nan-mation contribution of four rotational joints, which is equal
otubes (Howell et al., 1996, 2010; Howell, 2001; Su, 2009),t0 4x 0.5Kb(;(—ﬁ)2. Here,;(—f is used to denote the rotational
which has resulted in very accurate approximation of load-displacement,, of each rotational joint.
displacement relationships. However, less work has been re- Differentiating Eq. (1) with respect ¥ produces
ported f_or PR3MS of_ spatial—rr_mtion _compliant beams sgch xS ()]
as spatial-motion axisymmetric cantilever beams (Ramirez Fy — Pd[(;(—ls_)zyL/Z]/dYsz — v
and Lusk, 2011). = )

This paper aims to propose a simplified PRBM of the spa- Y= Fy
tial multi-beam module over intermediate range of motion o/ OLI+PIOL)
(transverse bending displacement up to 10 % of beam lengthin addition, the closed-form analytical solution for the pri-
for the above two types of applicatigteading conditions  mary translational displacement of the parallelogram flexure
where the planar twisting DOF (degree of freedom) is con-module is shown below (Awtar and Slocum, 2007):
strained (very small) and only the two primary translations

are left as the DOF. The present PRBM is envisaged to rey, - Fy/(EI/L?) - Fy

flect the primary nonlinear constraint characteristics, which 2a+Pe/(EI/L?)~  2a(EIl/L3) +Pe/L

can detect the performance merits and shortcomings to en- Fy ®)
able the quick design synthesis. 24(EI1/L3) + 1.2P/L

The rest sections of this article are organized as follows. .
Comparing Eq. (2) and Eqg. (3), we can observe that
Section 2 derives the simplified PRBMs of spatial multi- paring Eg. (2) a- (3), w v

beam modules. In Sect. 3, FEA results are illustrated to verify( 1/y =1.2= y =0.833
the PRBM of the spatial three-beam module. Some improve-| Ky/y? = 6(El/L) = Ky = 4.167E1/L )

Mech. Sci., 4, 311-318, 2013 www.mech-sci.net/4/311/2013/
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Figure 2. A compact and decoupled XYZ compliant parallel manipulator composed of identical spatial four-beam m@JddPR
XYZ CPM, and(b) corresponding monolithic design to be fabricated from a cubic material by three orthogonal directions’ cutting.

l ing axis is obtained aky = 2yKyEl/L =4.167EI/L based
PENSS on the result derived in Sect. 2.1 (Eq. 4).
2L According to the virtual work principle and under the as-
Before sumption of negligible bending rotation (which implies the
) twisting rotation is very small), we obtain the following ex-
deformation pression for the spatial three-beam module (Fig. 4):
of rigid-
body link FydYs + F,dZs + PdXs + Mydfsx
ou ou ou
(1-0272)L v = . dYs+ z dzs + 0o, dfsx (5)

,,,,,,,,,, f where the variable¥, Zs andds, are the generalized coordi-
nates along thg, z, andx axes, respectively, which are the
primary motion displacements of the motion stage center, O’,
with regard to the fixed coordinate system O-XY&.is the
parasitic translation along theaxis. Fy, F, and P are the
two transverse forces and the axial force alongythe and

X axes, respectively, aridy is the twisting moment about the
& axis.U is the total elastic energy.

As shown in Fig. 4, there are six spherical joints for the
spatial three-beam module in its PRBM embodiment. Based
on the small range of motion assumption and superposition
principle, we have

Figure 3. Kinematics schematic diagram of bending alwais of
a fixed-fixed beam.

It is noted that, during the above derivation, the characteris
tic factor, y, is independent of the cross-section shape or th
second moment of cross-section aredrom Eg. (4), it can
be observed the bendingfitiess cofficientK, = 2.50.

2.2 Simplified PRBMs for spatial multi-beam modules

1 2 z 2
The spatial deformatigmotion of a fixed-fixed bee_xm within _ U = 6x EKb(),_E) +6x éKb((l_ (YS/ySL)Z /2)yL)
a spatial three-beam module (Fig. 4) can be stimulated via ) )
the superposition prmmplg usmg_the results from the mdle— + Bx }Kt(@) +6x }Kb(Rgesx) 6)
pendent two planar bending motions (Sect. 2.1) along with 2 °\2 2 yL
the twisting motion. The spatial-motion beam can be accord-
ingly equivalent to a rigid-body link with two identical spher- Ys Zs
ical joints (Wang et al., 2008; Ramirez and Lusk, 2011). Sim-"s =~ [1 - COS(_)}VL - [1 - COS(T_)}”L
ilarly, each spherical joint is located each located the same Ry VAL
distance from their respective end and the rigid-body link - [1_005(_9<)]y|_ — _(_S) yL/2
has a length ofL (y = 0.833). For each spherical joint, the L L
twisting stifnessK; can be simply derived a& = 2G1,/L = Z\ Lo (Refsx 2 L/ .
4G1/L(l, = 21), and the bending stnessKy about any bend- - (7_|_) vL/ _( L ) vL/ @)

www.mech-sci.net/4/311/2013/ Mech. Sci., 4, 311-318, 2013
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6KpZs 1+ (Ys/yL)2  BKpZ
- HoZ O LSz @)

T (yL)2 1-(Ys/yL)* T (yL)?
where the kinematic relationships used for bending and twist- :>(7 ) (¥s/7L) oL

ing are shown in Figs. 3 and 5. Moreover, the bending in theZ F,
XOY plane is assumed to be the first rotation aboutthes, S 7 BKp[1 + Y2/(yL)2]/(yL)2 + P/(yL)
and that in the XOZ plane is assumed to be the second rota-

F
tion about they axis. Therefore ¢ and g—v-=y7zr are = - J
used herein to denote the rotational angles abouy thed 6Kb[l+(Wzy+p/(yL)) /(VL)Z]/(VL)2+P/(V|-)
Z axes, respectively, in order to capture the tiny cross-axis 2
coupling in the two primary translational directions. M, — Pdl( Rsﬂsx) yL/2| /dos,
Substituting Egs. (6) and (7) into Eq. (5), we obtain
Refsx |2
e d[st( % )z] d[3|<t0§x/4+ 3Kp (Be) ] .
Fy—Pd||=| yL/2|/dYs= ———— =
d[BK ( Z )Z] Oy = M
N P\EC?2pt) | eK,Ys 7 15K, + 6KpR2/(yL)? + PR/ (yL)
dYs (L) The dominant kinematicfBect component of the bending an-
6KpYs  Z&/(yL)? o BKoYs  BKpYs 22/(yL)? gle (about thgy/z axis) can be then derived using the follow-
L [1-(Ys/yL)2/2* (L) (yL)? 7 ing purely kinematic relationships between the motion stage

center and the tip (mobile end) of thegh beam (=1, 2
and 3) (Hao et al., 2011):



2 2 2
Xs = —(ﬁ) 7L/2—(é) yL/Z—(R”QSX) iz (28)

yL yL yL

X1 = Xs = V3Rs0s2/2 + Raflsy/2 (11)
Xo = Xs — Rafsy (12) Cor=0a/0L) 29)
Xa = Xs+ V3Rabsz/2 + Raflsy/2 13) g4, = 0.2 (L) (30)
Y1 =Ys— Rasx/2 (14) . . ) . o
Y = Yo+ Raflx (15) where the Ioz_idlng and dlsplacem_ents are _deflned ina s_|m|lar
VacV.—R 2 16 way as mentioned above. The axial force in the denominator

3= Ys— Reflsy/ 16)  terms of Egs. (25), (26) and (27) causes the loatlesiing
71 = Zs+ V3Rs0s,/2 (17)  effect. When the primary translation fftiess and the twist-

_ ing stiffness are zero, two values of the axial foRcare ob-
Zy=1s (18) . e ) )
tained. The minimal absolute value of the axis force is the

Z3 = Zs— V3Rsbsx/2 (19)  buckling load, which is equal to HEI/L2. In addition, the

. ) cross-axis coupling is captured for the two primary transla-
whereX;, Y; andz; are the translational displacements for the tional directions.
i-th beam tip along the, y, andz axes. _ _ Note that Eq. (27) can still be used to estimate the large
Based on Figs. 3 and 5, we have the translational dISIOl""cet'\/visting rotation under the action of the dominant twisting
ment along thex axis for each beam tip: moment only although the twisting rotation is assumed to be
v \2 \2 2 2 very small during the above derivation.
Xi = —(—') yL/2- (—') yLj2=-—1 -1 (20) When translational displacements and length parameters
vk vk L L are normalized by the beam lendthforces byEIl/L?, mo-
Using Egs. (11), (12) and (13), we can obtain the two ments byEI/L, and all normalized results are denoted by their
bending rotaions about theandz axes with eliminating the  lower-case letters, Egs. (25)—(30) can be re-written as

motion stage center displacemeX, along thex axis as: ;

¥s ~ Tonii1ad2)iizp
(X1 + X3) — 2X> - 1,
Osy = 3Rs (21) L~ TN(L+1447)+129
X3—X; Osx ~ n(2G/E+12r2+1.2pr2/n (31)
Os2= VAR, (22) Xs ~ —0.6(y2 + 22 +r262)
S Osy = 1.20sys
Substituting Eq. (20) into Eq. (21), and then substituting { sz = 1.20sx

Egs. (14)~(19) to the result, we have Comparing Eq. (30) with the previously reported analytical

Osy = OscYs/ (yL) 23) work (Hao et al., 2011), we can see that the present PRBMs
sy SIS are well coincident with the dominant terms of the associated

Similarly, substituting Eq. (20) into Eq. (22), and then sub- Nonlinear analytical results.

stituting Eqgs. (14), (16), (17) and (19) to the result, we have For a spatial multi-beam module as applied in Figs. 1 and
2, its twisting rotation can be negligible. Equations (25), (26)

and (28) are therefore capable of determining the three trans-
Osz = 0sxZs/ (yL) (24) lational displacements for a general spatial module with total
n beams no matter how these beams are distributed.
Analogously, the PRBMs of a class of spatial multi-beam
modules that all the beams thereof are uniformly spaced
around a circle with a radius d®, (n>=3 and is even for

n#3) can be derived as following: In order to verify the accuracy of the present PRBMs of
spatial multi-beams, an example spatial three-beam module

Ys= 5 Fy (25) (Fig. 4) is analyzed using nonlinear FEA software (Com-
2nKp[1 +ZZ/(yL)?]/(yL)? + P/(yL) sol). The spatial three-beam module is taken to be made
E from a standard aluminium alloy for which Young’s mod-
Zs= > ZZ 5 (26) ulus, E, is 69 000 N mm? and Poisson’s ratio, is 0.33. The
2nKe[1 + Y5/ L)</ (yL)* + P/(yL) beam has round cross-section with a diameted ef4 mm.
M The other geometrical parameters are sd®zas 30 mm and
Osx . (27)  L=50mm.

~ nKy/2+ 2nKpR2/(yL)Z+ PR/ (yL)
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FEA results with comparisons with the PRBM results for
the spatial three-beam module are shown in Figs. 6-11. It Figure 10 shows that the twisting angle about the X-axis
is shown in Figs. 6, 7, 8 that the translational displace-obtained from the FEA results is within ifad (most prob-
ments, including the primary motion and parasitic motion, ably from the inaccuracy of the FEA results) compared with
obtained from the FEA have a good agreement with thosahe zero value obtained from the PRBM results when only
obtained from the PRBM. The maximalffirences in per- pure forces are exerted on the motion stage center.
centage (FEA results as the denominator) in Figs. 6, 7, 8 are In addition, the FEA results capture the bending rotation,
2.18 %, 0.40 % and 0.43 %, respectively. sz, under the dominant forcdsy, with the value less than

The FEA results and the PRBM results both capture thel.5 mrad (Fig. 11), which is not obtained by the PRBM re-
cross-axis coupling féect in the two primary translational sults (Eq. 30). From the analytical results in Hao et al. (2011),
directions with an acceptableftiirence (Fig. 9), which de- the bending rotationféect can be smaller wheR; increases
scribes that the cross-axis force slightly increases the primargndor D decreases. The dominant kinematiteet compo-
translational sftness. The maximal cross-axis coupling er- nent of the bending angl®4{) caused by the non-dominant
ror from the FEA is of 0.83 %, and that from the PRBM is coupled loadsNix andF;) (Eg. 30) has been roughly ver-
1.24 %, which suggests that the cross-axis coupling in twafied by a prototyped spatial three-beam module in Hao et
primary translational directions can be ignored. al. (2011).
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It is noted that the PRBM proposed in this paper can be
further improved to capture the additional nonlinear charac-

As shown in PRBMs proposed in this paper gmdFigs. 6  teristics such as the purely elastifeet of axis force along
and 11, the purely elastidfect of the axis force along the thex axis, and the bending rotation caused by the dominant
x axis and the parasitic bending rotation caused by the domiload. The PRBMs for more generality with diverse loading
nant force (or moment) are lost, which is the main shortcom-conditions also deserve the future investigations.
ing of the PRBMs. One alternative approach to overcome
this issue is to use the PRBMs for determining the two pri-
mary translational motions and to use the analytical results in The author would like to thank final year
Hao et al. (2011) for capturing the other characteristics. Theundergraduates John Mullins and Mark Bruton in UCC for their
PRBMs of spatial multi-beam modules may be re-derived viacontribution to Fig. 1.
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